51
|
Roager HM, Stanton C, Hall LJ. Microbial metabolites as modulators of the infant gut microbiome and host-microbial interactions in early life. Gut Microbes 2023; 15:2192151. [PMID: 36942883 PMCID: PMC10038037 DOI: 10.1080/19490976.2023.2192151] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
The development of infant gut microbiome is a pivotal process affecting the ecology and function of the microbiome, as well as host health. While the establishment of the infant microbiome has been of interest for decades, the focus on gut microbial metabolism and the resulting small molecules (metabolites) has been rather limited. However, technological and computational advances are now enabling researchers to profile the plethora of metabolites in the infant gut, allowing for improved understanding of how gut microbial-derived metabolites drive microbiome community structuring and host-microbial interactions. Here, we review the current knowledge on development of the infant gut microbiota and metabolism within the first year of life, and discuss how these microbial metabolites are key for enhancing our basic understanding of interactions during the early life developmental window.
Collapse
Affiliation(s)
- Henrik M. Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Catherine Stanton
- APC Microbiome Ireland, Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Lindsay J. Hall
- Gut Microbes & Health, Quadram Institute Biosciences, Norwich, UK
- Intestinal Microbiome, School of Life Sciences, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, Germany
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
52
|
Xu W, Yu J, Yang Y, Li Z, Zhang Y, Zhang F, Wang Q, Xie Y, Zhao B, Wu C. Strain-level screening of human gut microbes identifies Blautia producta as a new anti-hyperlipidemic probiotic. Gut Microbes 2023; 15:2228045. [PMID: 37408362 PMCID: PMC10324434 DOI: 10.1080/19490976.2023.2228045] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
Compelling evidence has tightly linked gut microbiota with host metabolism homeostasis and inspired novel therapeutic potentials against metabolic diseases (e.g., hyperlipidemia). However, the regulatory profile of individual bacterial species and strain on lipid homeostasis remains largely unknown. Herein, we performed a large-scale screening of 2250 human gut bacterial strains (186 species) for the lipid-decreasing activity. Different strains in the same species usually displayed distinct lipid-modulatory actions, showing evident strain-specificity. Among the tested strains, Blautia producta exhibited the most potency to suppress cellular lipid accumulation and effectively ameliorated hyperlipidemia in high fat diet (HFD)-feeding mice. Taking a joint comparative approach of pharmacology, genomics and metabolomics, we identified an anteiso-fatty acid, 12-methylmyristic acid (12-MMA), as the key active metabolite of Bl. Producta. In vivo experiment confirmed that 12-MMA could exert potent hyperlipidemia-ameliorating efficacy and improve glucose metabolism via activating G protein-coupled receptor 120 (GPR120). Altogether, our work reveals a previously unreported large-scale lipid-modulatory profile of gut microbes at the strain level, emphasizes the strain-specific function of gut bacteria, and provides a possibility to develop microbial therapeutics against hyperlipidemia based on Bl. producta and its metabolite.
Collapse
Affiliation(s)
- Wenyi Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Beijing QuantiHealth Technology Co, Ltd, Beijing, China
| | - Jiaqi Yu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanan Yang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhuanyu Li
- Beijing QuantiHealth Technology Co, Ltd, Beijing, China
| | - Yinghui Zhang
- Beijing QuantiHealth Technology Co, Ltd, Beijing, China
| | - Fang Zhang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qingshi Wang
- Beijing QuantiHealth Technology Co, Ltd, Beijing, China
| | - Yong Xie
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bowen Zhao
- Beijing QuantiHealth Technology Co, Ltd, Beijing, China
| | - Chongming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
53
|
The Molecular Gut-Brain Axis in Early Brain Development. Int J Mol Sci 2022; 23:ijms232315389. [PMID: 36499716 PMCID: PMC9739658 DOI: 10.3390/ijms232315389] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Millions of nerves, immune factors, and hormones in the circulatory system connect the gut and the brain. In bidirectional communication, the gut microbiota play a crucial role in the gut-brain axis (GBA), wherein microbial metabolites of the gut microbiota regulate intestinal homeostasis, thereby influencing brain activity. Dynamic changes are observed in gut microbiota as well as during brain development. Altering the gut microbiota could serve as a therapeutic target for treating abnormalities associated with brain development. Neurophysiological development and immune regulatory disorders are affected by changes that occur in gut microbiota composition and function. The molecular aspects relevant to the GBA could help develop targeted therapies for neurodevelopmental diseases. Herein, we review the findings of recent studies on the role of the GBA in its underlying molecular mechanisms in the early stages of brain development. Furthermore, we discuss the bidirectional regulation of gut microbiota from mother to infant and the potential signaling pathways and roles of posttranscriptional modifications in brain functions. Our review summarizes the role of molecular GBA in early brain development and related disorders, providing cues for novel therapeutic targets.
Collapse
|
54
|
Suzuki TA, Fitzstevens JL, Schmidt VT, Enav H, Huus KE, Ngwese MM, Grießhammer A, Pfleiderer A, Adegbite BR, Zinsou JF, Esen M, Velavan TP, Adegnika AA, Song LH, Spector TD, Muehlbauer AL, Marchi N, Kang H, Maier L, Blekhman R, Ségurel L, Ko G, Youngblut ND, Kremsner P, Ley RE. Codiversification of gut microbiota with humans. Science 2022; 377:1328-1332. [PMID: 36108023 PMCID: PMC10777373 DOI: 10.1126/science.abm7759] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The gut microbiomes of human populations worldwide have many core microbial species in common. However, within a species, some strains can show remarkable population specificity. The question is whether such specificity arises from a shared evolutionary history (codiversification) between humans and their microbes. To test for codiversification of host and microbiota, we analyzed paired gut metagenomes and human genomes for 1225 individuals in Europe, Asia, and Africa, including mothers and their children. Between and within countries, a parallel evolutionary history was evident for humans and their gut microbes. Moreover, species displaying the strongest codiversification independently evolved traits characteristic of host dependency, including reduced genomes and oxygen and temperature sensitivity. These findings all point to the importance of understanding the potential role of population-specific microbial strains in microbiome-mediated disease phenotypes.
Collapse
Affiliation(s)
- Taichi A. Suzuki
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - J. Liam Fitzstevens
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Victor T. Schmidt
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Hagay Enav
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Kelsey E. Huus
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Mirabeau Mbong Ngwese
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Anne Grießhammer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anne Pfleiderer
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Bayode R. Adegbite
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Jeannot F. Zinsou
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Meral Esen
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Thirumalaisamy P. Velavan
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese German Center for Medical Research, Hanoi, Vietnam
| | - Ayola A. Adegnika
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research, Tübingen, Germany
- Fondation pour la Recherche Scientifique, Cotonou, Bénin
| | - Le Huu Song
- Vietnamese German Center for Medical Research, Hanoi, Vietnam
- 108 Military Central Hospital, Hanoi, Vietnam
| | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Amanda L. Muehlbauer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA
| | - Nina Marchi
- Eco-anthropologie, Muséum National d’Histoire Naturelle, CNRS, Université de Paris, Paris, France
| | - Hyena Kang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Lisa Maier
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Laure Ségurel
- Eco-anthropologie, Muséum National d’Histoire Naturelle, CNRS, Université de Paris, Paris, France
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, Université Lyon 1, Villeurbanne, France
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Nicholas D. Youngblut
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Peter Kremsner
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| |
Collapse
|