51
|
Chun H, Sharma AK, Lee J, Chan J, Jia S, Kim BE. The Intestinal Copper Exporter CUA-1 Is Required for Systemic Copper Homeostasis in Caenorhabditis elegans. J Biol Chem 2016; 292:1-14. [PMID: 27881675 DOI: 10.1074/jbc.m116.760876] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/15/2016] [Indexed: 12/23/2022] Open
Abstract
Copper plays key catalytic and regulatory roles in biochemical processes essential for normal growth, development, and health. Defects in copper metabolism cause Menkes and Wilson's disease, myeloneuropathy, and cardiovascular disease and are associated with other pathophysiological states. Consequently, it is critical to understand the mechanisms by which organisms control the acquisition, distribution, and utilization of copper. The intestinal enterocyte is a key regulatory point for copper absorption into the body; however, the mechanisms by which intestinal cells transport copper to maintain organismal copper homeostasis are poorly understood. Here, we identify a mechanism by which organismal copper homeostasis is maintained by intestinal copper exporter trafficking that is coordinated with extraintestinal copper levels in Caenorhabditis elegans Specifically, we show that CUA-1, the C. elegans homolog of ATP7A/B, localizes to lysosome-like organelles (gut granules) in the intestine under copper overload conditions for copper detoxification, whereas copper deficiency results in a redistribution of CUA-1 to basolateral membranes for copper efflux to peripheral tissues. Worms defective in gut granule biogenesis exhibit defects in copper sequestration and increased susceptibility to toxic copper levels. Interestingly, however, a splice isoform CUA-1.2 that lacks a portion of the N-terminal domain is targeted constitutively to the basolateral membrane irrespective of dietary copper concentration. Our studies establish that CUA-1 is a key intestinal copper exporter and that its trafficking is regulated to maintain systemic copper homeostasis. C. elegans could therefore be exploited as a whole-animal model system to study regulation of intra- and intercellular copper trafficking pathways.
Collapse
Affiliation(s)
- Haarin Chun
- From the Department of Animal and Avian Sciences
| | | | - Jaekwon Lee
- the Redox Biology Center, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, and
| | - Jefferson Chan
- the Department of Chemistry, University of California at Berkeley, Berkeley, California 94720
| | - Shang Jia
- the Department of Chemistry, University of California at Berkeley, Berkeley, California 94720
| | - Byung-Eun Kim
- From the Department of Animal and Avian Sciences, .,Biological Sciences Graduate Program, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
52
|
Berendzen KM, Durieux J, Shao LW, Tian Y, Kim HE, Wolff S, Liu Y, Dillin A. Neuroendocrine Coordination of Mitochondrial Stress Signaling and Proteostasis. Cell 2016; 166:1553-1563.e10. [PMID: 27610575 DOI: 10.1016/j.cell.2016.08.042] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/17/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023]
Abstract
During neurodegenerative disease, the toxic accumulation of aggregates and misfolded proteins is often accompanied with widespread changes in peripheral metabolism, even in cells in which the aggregating protein is not present. The mechanism by which the central nervous system elicits a distal reaction to proteotoxic stress remains unknown. We hypothesized that the endocrine communication of neuronal stress plays a causative role in the changes in mitochondrial homeostasis associated with proteotoxic disease states. We find that an aggregation-prone protein expressed in the neurons of C. elegans binds to mitochondria, eliciting a global induction of a mitochondrial-specific unfolded protein response (UPR(mt)), affecting whole-animal physiology. Importantly, dense core vesicle release and secretion of the neurotransmitter serotonin is required for the signal's propagation. Collectively, these data suggest the commandeering of a nutrient sensing network to allow for cell-to-cell communication between mitochondria in response to protein folding stress in the nervous system.
Collapse
Affiliation(s)
- Kristen M Berendzen
- The Glenn Center for Aging Research, Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jenni Durieux
- The Glenn Center for Aging Research, Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Li-Wa Shao
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ye Tian
- The Glenn Center for Aging Research, Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hyun-Eui Kim
- The Glenn Center for Aging Research, Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Suzanne Wolff
- The Glenn Center for Aging Research, Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ying Liu
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Andrew Dillin
- The Glenn Center for Aging Research, Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
53
|
Lee K, Goh GYS, Wong MA, Klassen TL, Taubert S. Gain-of-Function Alleles in Caenorhabditis elegans Nuclear Hormone Receptor nhr-49 Are Functionally Distinct. PLoS One 2016; 11:e0162708. [PMID: 27618178 PMCID: PMC5019492 DOI: 10.1371/journal.pone.0162708] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/27/2016] [Indexed: 02/07/2023] Open
Abstract
Nuclear hormone receptors (NHRs) are transcription factors that regulate numerous physiological and developmental processes and represent important drug targets. NHR-49, an ortholog of Hepatocyte Nuclear Factor 4 (HNF4), has emerged as a key regulator of lipid metabolism and life span in the nematode worm Caenorhabditis elegans. However, many aspects of NHR-49 function remain poorly understood, including whether and how it regulates individual sets of target genes and whether its activity is modulated by a ligand. A recent study identified three gain-of-function (gof) missense mutations in nhr-49 (nhr-49(et7), nhr-49(et8), and nhr-49(et13), respectively). These substitutions all affect the ligand-binding domain (LBD), which is critical for ligand binding and protein interactions. Thus, these alleles provide an opportunity to test how three specific residues contribute to NHR-49 dependent gene regulation. We used computational and molecular methods to delineate how these mutations alter NHR-49 activity. We find that despite originating from a screen favoring the activation of specific NHR-49 targets, all three gof alleles cause broad upregulation of NHR-49 regulated genes. Interestingly, nhr-49(et7) and nhr-49(et8) exclusively affect nhr-49 dependent activation, whereas the nhr-49(et13) surprisingly affects both nhr-49 mediated activation and repression, implicating the affected residue as dually important. We also observed phenotypic non-equivalence of these alleles, as they unexpectedly caused a long, short, and normal life span, respectively. Mechanistically, the gof substitutions altered neither protein interactions with the repressive partner NHR-66 and the coactivator MDT-15 nor the subcellular localization or expression of NHR-49. However, in silico structural modeling revealed that NHR-49 likely interacts with small molecule ligands and that the missense mutations might alter ligand binding, providing a possible explanation for increased NHR-49 activity. In sum, our findings indicate that the three nhr-49 gof alleles are non-equivalent, and highlight the conserved V411 residue affected by et13 as critical for gene activation and repression alike.
Collapse
Affiliation(s)
- Kayoung Lee
- Graduate Program in Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics and Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Grace Ying Shyen Goh
- Centre for Molecular Medicine and Therapeutics and Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Cell and Developmental Biology, University of British Columbia, Vancouver, BC, Canada
| | - Marcus Andrew Wong
- Centre for Molecular Medicine and Therapeutics and Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Tara Leah Klassen
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Stefan Taubert
- Graduate Program in Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics and Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Cell and Developmental Biology, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
54
|
Auerbach S, Filer D, Reif D, Walker V, Holloway AC, Schlezinger J, Srinivasan S, Svoboda D, Judson R, Bucher JR, Thayer KA. Prioritizing Environmental Chemicals for Obesity and Diabetes Outcomes Research: A Screening Approach Using ToxCast™ High-Throughput Data. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1141-54. [PMID: 26978842 PMCID: PMC4977057 DOI: 10.1289/ehp.1510456] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/09/2015] [Accepted: 02/08/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Diabetes and obesity are major threats to public health in the United States and abroad. Understanding the role that chemicals in our environment play in the development of these conditions is an emerging issue in environmental health, although identifying and prioritizing chemicals for testing beyond those already implicated in the literature is challenging. This review is intended to help researchers generate hypotheses about chemicals that may contribute to diabetes and to obesity-related health outcomes by summarizing relevant findings from the U.S. Environmental Protection Agency (EPA) ToxCast™ high-throughput screening (HTS) program. OBJECTIVES Our aim was to develop new hypotheses around environmental chemicals of potential interest for diabetes- or obesity-related outcomes using high-throughput screening data. METHODS We identified ToxCast™ assay targets relevant to several biological processes related to diabetes and obesity (insulin sensitivity in peripheral tissue, pancreatic islet and β cell function, adipocyte differentiation, and feeding behavior) and presented chemical screening data against those assay targets to identify chemicals of potential interest. DISCUSSION The results of this screening-level analysis suggest that the spectrum of environmental chemicals to consider in research related to diabetes and obesity is much broader than indicated by research papers and reviews published in the peer-reviewed literature. Testing hypotheses based on ToxCast™ data will also help assess the predictive utility of this HTS platform. CONCLUSIONS More research is required to put these screening-level analyses into context, but the information presented in this review should facilitate the development of new hypotheses. CITATION Auerbach S, Filer D, Reif D, Walker V, Holloway AC, Schlezinger J, Srinivasan S, Svoboda D, Judson R, Bucher JR, Thayer KA. 2016. Prioritizing environmental chemicals for obesity and diabetes outcomes research: a screening approach using ToxCast™ high-throughput data. Environ Health Perspect 124:1141-1154; http://dx.doi.org/10.1289/ehp.1510456.
Collapse
Affiliation(s)
- Scott Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Dayne Filer
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - David Reif
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Vickie Walker
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Alison C. Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer Schlezinger
- Department of Environmental Health, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Supriya Srinivasan
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Daniel Svoboda
- SciOme, LLC, Research Triangle Park, North Carolina, USA
| | - Richard Judson
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - John R. Bucher
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Kristina A. Thayer
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
55
|
Lemieux GA, Ashrafi K. Investigating Connections between Metabolism, Longevity, and Behavior in Caenorhabditis elegans. Trends Endocrinol Metab 2016; 27:586-596. [PMID: 27289335 PMCID: PMC4958586 DOI: 10.1016/j.tem.2016.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 01/19/2023]
Abstract
An overview of Caenorhabditis elegans as an experimental organism for studying energy balance is presented. Some of the unresolved questions that complicate the interpretation of lipid measurements from C. elegans are highlighted. We review studies that show that both lipid synthesis and lipid breakdown pathways are activated and needed for the longevity of hermaphrodites that lack their germlines. These findings illustrate the heterogeneity of triglyceride-rich lipid particles in C. elegans and reveal specific lipid signals that promote longevity. Finally, we provide a brief overview of feeding behavioral responses of C. elegans to varying nutritional conditions and highlight an unanticipated metabolic pathway that allows the incorporation of experience in feeding behavior.
Collapse
Affiliation(s)
| | - Kaveh Ashrafi
- University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
56
|
Peng H, Wei Z, Luo H, Yang Y, Wu Z, Gan L, Yang X. Inhibition of Fat Accumulation by Hesperidin in Caenorhabditis elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5207-5214. [PMID: 27267939 DOI: 10.1021/acs.jafc.6b02183] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hesperidin, abundant in citrus fruits, has a wide range of pharmacological effects, including anticarcinogenic, anti-inflammatory, antioxidative, radioprotective, and antiviral activities. However, relatively few studies on the effects of hesperidin on lipid metabolism have been reported. Here, using Caenorhaditis elegans as a model animal, we found that 100 μM hesperidin significantly decreased fat accumulation in both high-fat worms cultured in nematode growth medium containing 10 mM glucose (83.5 ± 1.2% versus control by Sudan Black B staining and 87.6 ± 2.0% versus control by Oil Red O staining; p < 0.001) and daf-2 mutant worms (87.8 ± 1.4% versus control by Oil Red O staining; p < 0.001). Furthermore, 50 μM hesperidin decreased the ratio of oleic acid/stearic acid (C18:1Δ9/C18:0) (p < 0.05), and supplementation of oleic acid could restore the inhibitory effect of hesperidin on fat accumulation. Hesperidin significantly downregulated the expression of stearoyl-CoA desaturase, fat-6, and fat-7 (p < 0.05), and mutation of fat-6 and fat-7 reversed fat accumulation inhibited by hesperidin. In addition, hesperidin decreased the expression of other genes involved in lipid metabolism, including pod-2, mdt-15, acs-2, and kat-1 (p < 0.05). These results suggested that hesperidin reduced fat accumulation by affecting several lipid metabolism pathways, such as fat-6 and fat-7. This study provided new insights into elucidating the mechanism underlying the regulation of lipid metabolism by hesperidin.
Collapse
Affiliation(s)
- Huimin Peng
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, Hubei 430074, People's Republic of China
| | - Zhaohan Wei
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, Hubei 430074, People's Republic of China
| | - Hujie Luo
- Infinitus (China) Company Ltd. , Guangzhou, Guangdong 510665, People's Republic of China
| | - Yiting Yang
- Infinitus (China) Company Ltd. , Guangzhou, Guangdong 510665, People's Republic of China
| | - Zhengxing Wu
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, Hubei 430074, People's Republic of China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, Hubei 430074, People's Republic of China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
57
|
Ying L, Zhu H. Current advances in the functional studies of fatty acids and fatty acid-derived lipids in C. elegans. WORM 2016; 5:e1184814. [PMID: 27695652 DOI: 10.1080/21624054.2016.1184814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/18/2016] [Accepted: 04/26/2016] [Indexed: 02/08/2023]
Abstract
Fatty acids and fatty acid-derived lipids (FAs/FADLs) play essential roles in many living organisms, including contributions to membrane structure and signaling transduction. Aberrant metabolism of FAs/FADLs often causes diseases and health problems. However, the detailed mechanistic studies of specific FAs/FADLs in vivo are limited. C. elegans has been an effective model system for FA/ FADL studies due to its powerful genetics and conserved lipid biosynthetic pathways. The recently developed high-throughput analytic tools also enable sophisticated profiling of lipids molecules in C. elegans, which is critical for understanding their specific functions. Here we review a subset of current advances in FA/FADL functional studies in C. elegans.
Collapse
Affiliation(s)
- Lu Ying
- School of Life Science and Technology, ShanghaiTech University , Shanghai, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University , Shanghai, China
| |
Collapse
|
58
|
Tao J, Ma YC, Yang ZS, Zou CG, Zhang KQ. Octopamine connects nutrient cues to lipid metabolism upon nutrient deprivation. SCIENCE ADVANCES 2016; 2:e1501372. [PMID: 27386520 PMCID: PMC4928904 DOI: 10.1126/sciadv.1501372] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/06/2016] [Indexed: 05/21/2023]
Abstract
Starvation is probably the most common stressful situation in nature. In vertebrates, elevation of the biogenic amine norepinephrine levels is common during starvation. However, the precise role of norepinephrine in nutrient deprivation remains largely unknown. We report that in the free-living nematode Caenorhabditis elegans, up-regulation of the biosynthesis of octopamine, the invertebrate counterpart of norepinephrine, serves as a mechanism to adapt to starvation. During nutrient deprivation, the nuclear receptor DAF-12, known to sense nutritional cues, up-regulates the expression of tbh-1 that encodes tyramine β-hydroxylase, a key enzyme for octopamine biosynthesis, in the RIC neurons. Octopamine induces the expression of the lipase gene lips-6 via its receptor SER-3 in the intestine. LIPS-6, in turn, elicits lipid mobilization. Our findings reveal that octopamine acts as an endocrine regulator linking nutrient cues to lipolysis to maintain energy homeostasis, and suggest that such a mechanism may be evolutionally conserved in diverse organisms.
Collapse
Affiliation(s)
- Jun Tao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Yi-Cheng Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Zhong-Shan Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
- College of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, China
| | - Cheng-Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
- Corresponding author. (C.-G.Z.); (K.-Q.Z.)
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
- Corresponding author. (C.-G.Z.); (K.-Q.Z.)
| |
Collapse
|
59
|
Mishur RJ, Khan M, Munkácsy E, Sharma L, Bokov A, Beam H, Radetskaya O, Borror M, Lane R, Bai Y, Rea SL. Mitochondrial metabolites extend lifespan. Aging Cell 2016; 15:336-48. [PMID: 26729005 PMCID: PMC4783347 DOI: 10.1111/acel.12439] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2015] [Indexed: 12/26/2022] Open
Abstract
Disruption of mitochondrial respiration in the nematode Caenorhabditis elegans can extend lifespan. We previously showed that long-lived respiratory mutants generate elevated amounts of α-ketoacids. These compounds are structurally related to α-ketoglutarate, suggesting they may be biologically relevant. Here, we show that provision of several such metabolites to wild-type worms is sufficient to extend their life. At least one mode of action is through stabilization of hypoxia-inducible factor-1 (HIF-1). We also find that an α-ketoglutarate mimetic, 2,4-pyridinedicarboxylic acid (2,4-PDA), is alone sufficient to increase the lifespan of wild-type worms and this effect is blocked by removal of HIF-1. HIF-1 is constitutively active in isp-1(qm150) Mit mutants, and accordingly, 2,4-PDA does not further increase their lifespan. Incubation of mouse 3T3-L1 fibroblasts with life-prolonging α-ketoacids also results in HIF-1α stabilization. We propose that metabolites that build up following mitochondrial respiratory dysfunction form a novel mode of cell signaling that acts to regulate lifespan.
Collapse
Affiliation(s)
- Robert J. Mishur
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Department of PhysiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Maruf Khan
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Department of PhysiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Erin Munkácsy
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Department of Cellular & Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Lokendra Sharma
- Department of Cellular & Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Biotechnology ProgrammeCenter for Biological SciencesCentral University of South BiharPatna800014India
| | - Alex Bokov
- Department of Epidemiology and BiostatisticsUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Haley Beam
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Oxana Radetskaya
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Megan Borror
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Rebecca Lane
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Yidong Bai
- Department of Cellular & Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Shane L. Rea
- The Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Department of PhysiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| |
Collapse
|
60
|
Witham E, Comunian C, Ratanpal H, Skora S, Zimmer M, Srinivasan S. C. elegans Body Cavity Neurons Are Homeostatic Sensors that Integrate Fluctuations in Oxygen Availability and Internal Nutrient Reserves. Cell Rep 2016; 14:1641-1654. [PMID: 26876168 DOI: 10.1016/j.celrep.2016.01.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/16/2015] [Accepted: 01/14/2016] [Indexed: 12/28/2022] Open
Abstract
It is known that internal physiological state, or interoception, influences CNS function and behavior. However, the neurons and mechanisms that integrate sensory information with internal physiological state remain largely unknown. Here, we identify C. elegans body cavity neurons called URX(L/R) as central homeostatic sensors that integrate fluctuations in oxygen availability with internal metabolic state. We show that depletion of internal body fat reserves increases the tonic activity of URX neurons, which influences the magnitude of the evoked sensory response to oxygen. These responses are integrated via intracellular cGMP and Ca(2+). The extent of neuronal activity thus reflects the balance between the perception of oxygen and available fat reserves. The URX homeostatic sensor ensures that neural signals that stimulate fat loss are only deployed when there are sufficient fat reserves to do so. Our results uncover an interoceptive neuroendocrine axis that relays internal state information to the nervous system.
Collapse
Affiliation(s)
- Emily Witham
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Dorris Neuroscience Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Claudio Comunian
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Harkaranveer Ratanpal
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Dorris Neuroscience Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Susanne Skora
- Research Institute of Molecular Pathology IMP, Vienna Biocenter VBC, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Manuel Zimmer
- Research Institute of Molecular Pathology IMP, Vienna Biocenter VBC, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Supriya Srinivasan
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Dorris Neuroscience Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
61
|
Dallière N, Bhatla N, Luedtke Z, Ma DK, Woolman J, Walker RJ, Holden-Dye L, O'Connor V. Multiple excitatory and inhibitory neural signals converge to fine-tune Caenorhabditis elegans feeding to food availability. FASEB J 2015; 30:836-48. [PMID: 26514165 DOI: 10.1096/fj.15-279257] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/13/2015] [Indexed: 01/02/2023]
Abstract
How an animal matches feeding to food availability is a key question for energy homeostasis. We addressed this in the nematode Caenorhabditis elegans, which couples feeding to the presence of its food (bacteria) by regulating pharyngeal activity (pumping). We scored pumping in the presence of food and over an extended time course of food deprivation in wild-type and mutant worms to determine the neural substrates of adaptive behavior. Removal of food initially suppressed pumping but after 2 h this was accompanied by intermittent periods of high activity. We show pumping is fine-tuned by context-specific neural mechanisms and highlight a key role for inhibitory glutamatergic and excitatory cholinergic/peptidergic drives in the absence of food. Additionally, the synaptic protein UNC-31 [calcium-activated protein for secretion (CAPS)] acts through an inhibitory pathway not explained by previously identified contributions of UNC-31/CAPS to neuropeptide or glutamate transmission. Pumping was unaffected by laser ablation of connectivity between the pharyngeal and central nervous system indicating signals are either humoral or intrinsic to the enteric system. This framework in which control is mediated through finely tuned excitatory and inhibitory drives resonates with mammalian hypothalamic control of feeding and suggests that fundamental regulation of this basic animal behavior may be conserved through evolution from nematode to human.
Collapse
Affiliation(s)
- Nicolas Dallière
- *Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom; and Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Nikhil Bhatla
- *Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom; and Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zara Luedtke
- *Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom; and Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dengke K Ma
- *Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom; and Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jonathan Woolman
- *Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom; and Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Robert J Walker
- *Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom; and Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lindy Holden-Dye
- *Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom; and Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Vincent O'Connor
- *Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom; and Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
62
|
Abstract
The compact nervous system of Caenorhabditis elegans and its genetic tractability are features that make this organism highly suitable for investigating energy balance in an animal system. Here, we focus on molecular components and organizational principles emerging from the investigation of pathways that largely originate in the nervous system and regulate feeding behavior but also peripheral fat regulation through neuroendocrine signaling. We provide an overview of studies aimed at understanding how C. elegans integrate internal and external cues in feeding behavior. We highlight some of the similarities and differences in energy balance between C. elegans and mammals. We also provide our perspective on unresolved issues, both conceptual and technical, that we believe have hampered critical evaluation of findings relevant to fat regulation in C. elegans.
Collapse
Affiliation(s)
- George A Lemieux
- Department of Physiology, University of California, San Francisco, California 94158;
| | - Kaveh Ashrafi
- Department of Physiology, University of California, San Francisco, California 94158;
| |
Collapse
|
63
|
Burkewitz K, Morantte I, Weir HJM, Yeo R, Zhang Y, Huynh FK, Ilkayeva OR, Hirschey MD, Grant AR, Mair WB. Neuronal CRTC-1 governs systemic mitochondrial metabolism and lifespan via a catecholamine signal. Cell 2015; 160:842-855. [PMID: 25723162 DOI: 10.1016/j.cell.2015.02.004] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/21/2014] [Accepted: 01/28/2015] [Indexed: 12/21/2022]
Abstract
Low energy states delay aging in multiple species, yet mechanisms coordinating energetics and longevity across tissues remain poorly defined. The conserved energy sensor AMP-activated protein kinase (AMPK) and its corresponding phosphatase calcineurin modulate longevity via the CREB regulated transcriptional coactivator (CRTC)-1 in C. elegans. We show that CRTC-1 specifically uncouples AMPK/calcineurin-mediated effects on lifespan from pleiotropic side effects by reprogramming mitochondrial and metabolic function. This pro-longevity metabolic state is regulated cell nonautonomously by CRTC-1 in the nervous system. Neuronal CRTC-1/CREB regulates peripheral metabolism antagonistically with the functional PPARα ortholog, NHR-49, drives mitochondrial fragmentation in distal tissues, and suppresses the effects of AMPK on systemic mitochondrial metabolism and longevity via a cell-nonautonomous catecholamine signal. These results demonstrate that while both local and distal mechanisms combine to modulate aging, distal regulation overrides local contribution. Targeting central perception of energetic state is therefore a potential strategy to promote healthy aging.
Collapse
Affiliation(s)
- Kristopher Burkewitz
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Ianessa Morantte
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Heather J M Weir
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Robin Yeo
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Yue Zhang
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Frank K Huynh
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC 27701, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC 27701, USA
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC 27701, USA
| | - Ana R Grant
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenah Avenue, Ann Arbor, MI 48109, USA
| | - William B Mair
- Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
64
|
Measuring Food Intake and Nutrient Absorption in Caenorhabditis elegans. Genetics 2015; 200:443-54. [PMID: 25903497 PMCID: PMC4492371 DOI: 10.1534/genetics.115.175851] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/16/2015] [Indexed: 12/19/2022] Open
Abstract
Caenorhabditiselegans has emerged as a powerful model to study the genetics of feeding, food-related behaviors, and metabolism. Despite the many advantages of C. elegans as a model organism, direct measurement of its bacterial food intake remains challenging. Here, we describe two complementary methods that measure the food intake of C. elegans. The first method is a microtiter plate-based bacterial clearing assay that measures food intake by quantifying the change in the optical density of bacteria over time. The second method, termed pulse feeding, measures the absorption of food by tracking de novo protein synthesis using a novel metabolic pulse-labeling strategy. Using the bacterial clearance assay, we compare the bacterial food intake of various C. elegans strains and show that long-lived eat mutants eat substantially more than previous estimates. To demonstrate the applicability of the pulse-feeding assay, we compare the assimilation of food for two C. elegans strains in response to serotonin. We show that serotonin-increased feeding leads to increased protein synthesis in a SER-7-dependent manner, including proteins known to promote aging. Protein content in the food has recently emerged as critical factor in determining how food composition affects aging and health. The pulse-feeding assay, by measuring de novo protein synthesis, represents an ideal method to unequivocally establish how the composition of food dictates protein synthesis. In combination, these two assays provide new and powerful tools for C. elegans research to investigate feeding and how food intake affects the proteome and thus the physiology and health of an organism.
Collapse
|
65
|
Dallaire A, Proulx S, Simard MJ, Lebel M. Expression profile of Caenorhabditis elegans mutant for the Werner syndrome gene ortholog reveals the impact of vitamin C on development to increase life span. BMC Genomics 2014; 15:940. [PMID: 25346348 PMCID: PMC4221712 DOI: 10.1186/1471-2164-15-940] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 10/15/2014] [Indexed: 11/17/2022] Open
Abstract
Background Werner Syndrome (WS) is a rare disorder characterized by the premature onset of a number of age-related diseases. The gene responsible for WS encodes a DNA helicase/exonuclease protein believed to affect different aspects of transcription, replication, and DNA repair. Caenorhabditis elegans (C. elegans) with a nonfunctional wrn-1 DNA helicase ortholog also exhibits a shorter life span, which can be rescued by vitamin C. In this study, we analyzed the impact of a mutation in the wrn-1 gene and the dietary supplementation of vitamin C on the global mRNA expression of the whole C. elegans by the RNA-seq technology. Results Vitamin C increased the mean life span of the wrn-1(gk99) mutant and the N2 wild type strains at 25°C. However, the alteration of gene expression by vitamin C is different between wrn-1(gk99) and wild type strains. We observed alteration in the expression of 1522 genes in wrn-1(gk99) worms compared to wild type animals. Such genes significantly affected the metabolism of lipid, cellular ketone, organic acid, and carboxylic acids. Vitamin C, in return, altered the expression of genes in wrn-1(gk99) worms involved in locomotion and anatomical structure development. Proteolysis was the only biological process significantly affected by vitamin C in wild type worms. Conclusions Expression profiling of wrn-1(gk99) worms revealed a very different response to the addition of vitamin C compared to wild type worms. Finally, vitamin C extended the life span of wrn-1(gk99) animals by altering biological processes involved mainly in locomotion and anatomical structure development. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-940) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Michel Lebel
- Centre de Recherche sur le Cancer de l'Université Laval, Hôpital Hôtel-Dieu de Québec (CHU de Québec Research Center), 9 McMahon Sreet, Québec City G1R 2 J6, Canada.
| |
Collapse
|
66
|
Abstract
Over the past decade, studies conducted in Caenorhabditis elegans have helped to uncover the ancient and complex origins of body fat regulation. This review highlights the powerful combination of genetics, pharmacology, and biochemistry used to study energy balance and the regulation of cellular fat metabolism in C. elegans. The complete wiring diagram of the C. elegans nervous system has been exploited to understand how the sensory nervous system regulates body fat and how food perception is coupled with the production of energy via fat metabolism. As a model organism, C. elegans also offers a unique opportunity to discover neuroendocrine factors that mediate direct communication between the nervous system and the metabolic tissues. The coming years are expected to reveal a wealth of information on the neuroendocrine control of body fat in C. elegans.
Collapse
Affiliation(s)
- Supriya Srinivasan
- Department of Chemical Physiology and Dorris Neuroscience Center, The Scripps Research Institute (TSRI), La Jolla, California 92037;
| |
Collapse
|
67
|
Lemieux GA, Ashrafi K. Insights and challenges in using C. elegans for investigation of fat metabolism. Crit Rev Biochem Mol Biol 2014; 50:69-84. [PMID: 25228063 DOI: 10.3109/10409238.2014.959890] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
C. elegans provides a genetically tractable system for deciphering the homeostatic mechanisms that underlie fat regulation in intact organisms. Here, we provide an overview of the recent advances in the C. elegans fat field with particular attention to studies of C. elegans lipid droplets, the complex links between lipases, autophagy, and lifespan, and analyses of key transcriptional regulatory mechanisms that coordinate lipid homeostasis. These studies demonstrate the ancient origins of mammalian and C. elegans fat regulatory pathways and highlight how C. elegans is being used to identify and analyze novel lipid pathways that are then shown to function similarly in mammals. Despite its many advantages, study of fat regulation in C. elegans is currently faced with a number of conceptual and methodological challenges. We critically evaluate some of the assumptions in the field and highlight issues that we believe should be taken into consideration when interpreting lipid content data in C. elegans.
Collapse
Affiliation(s)
- George A Lemieux
- Department of Physiology, University of California , San Francisco, CA , USA
| | | |
Collapse
|
68
|
Lipid droplet protein LID-1 mediates ATGL-1-dependent lipolysis during fasting in Caenorhabditis elegans. Mol Cell Biol 2014; 34:4165-76. [PMID: 25202121 DOI: 10.1128/mcb.00722-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipolysis is a delicate process involving complex signaling cascades and sequential enzymatic activations. In Caenorhabditis elegans, fasting induces various physiological changes, including a dramatic decrease in lipid contents through lipolysis. Interestingly, C. elegans lacks perilipin family genes which play a crucial role in the regulation of lipid homeostasis in other species. Here, we demonstrate that in the intestinal cells of C. elegans, a newly identified protein, lipid droplet protein 1 (C25A1.12; LID-1), modulates lipolysis by binding to adipose triglyceride lipase 1 (C05D11.7; ATGL-1) during nutritional deprivation. In fasted worms, lipid droplets were decreased in intestinal cells, whereas suppression of ATGL-1 via RNA interference (RNAi) resulted in retention of stored lipid droplets. Overexpression of ATGL-1 markedly decreased lipid droplets, whereas depletion of LID-1 via RNAi prevented the effect of overexpressed ATGL-1 on lipolysis. In adult worms, short-term fasting increased cyclic AMP (cAMP) levels, which activated protein kinase A (PKA) to stimulate lipolysis via ATGL-1 and LID-1. Moreover, ATGL-1 protein stability and LID-1 binding were augmented by PKA activation, eventually leading to increased lipolysis. These data suggest the importance of the concerted action of lipase and lipid droplet protein in the response to fasting signals via PKA to maintain lipid homeostasis.
Collapse
|
69
|
Cunningham KA, Bouagnon AD, Barros AG, Lin L, Malard L, Romano-Silva MA, Ashrafi K. Loss of a neural AMP-activated kinase mimics the effects of elevated serotonin on fat, movement, and hormonal secretions. PLoS Genet 2014; 10:e1004394. [PMID: 24921650 PMCID: PMC4055570 DOI: 10.1371/journal.pgen.1004394] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 04/07/2014] [Indexed: 12/30/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is an evolutionarily conserved master regulator of metabolism and a therapeutic target in type 2 diabetes. As an energy sensor, AMPK activity is responsive to both metabolic inputs, for instance the ratio of AMP to ATP, and numerous hormonal cues. As in mammals, each of two genes, aak-1 and aak-2, encode for the catalytic subunit of AMPK in C. elegans. Here we show that in C. elegans loss of aak-2 mimics the effects of elevated serotonin signaling on fat reduction, slowed movement, and promoting exit from dauer arrest. Reconstitution of aak-2 in only the nervous system restored wild type fat levels and movement rate to aak-2 mutants and reconstitution in only the ASI neurons was sufficient to significantly restore dauer maintenance to the mutant animals. As in elevated serotonin signaling, inactivation of AAK-2 in the ASI neurons caused enhanced secretion of dense core vesicles from these neurons. The ASI neurons are the site of production of the DAF-7 TGF-β ligand and the DAF-28 insulin, both of which are secreted by dense core vesicles and play critical roles in whether animals stay in dauer or undergo reproductive development. These findings show that elevated levels of serotonin promote enhanced secretions of systemic regulators of pro-growth and differentiation pathways through inactivation of AAK-2. As such, AMPK is not only a recipient of hormonal signals but can also be an upstream regulator. Our data suggest that some of the physiological phenotypes previously attributed to peripheral AAK-2 activity on metabolic targets may instead be due to the role of this kinase in neural serotonin signaling.
Collapse
Affiliation(s)
- Katherine A. Cunningham
- Department of Physiology, University of California, San Francisco, San Francisco, California, United States of America
| | - Aude D. Bouagnon
- Department of Physiology, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexandre G. Barros
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lin Lin
- Department of Physiology, University of California, San Francisco, San Francisco, California, United States of America
| | - Leandro Malard
- Departamento de Física, Instituto de Ciências Exatas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marco Aurélio Romano-Silva
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kaveh Ashrafi
- Department of Physiology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|