51
|
Chernykh ER, Oleynik EA, Leplina OY, Starostina NM, Ostanin AA. Dendritic cells in the pathogenesis of viral hepatitis C. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2019. [DOI: 10.15789/2220-7619-2019-2-239-252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
52
|
Alizadeh S, Irani S, Bolhassani A, Sadat SM. Simultaneous use of natural adjuvants and cell penetrating peptides improves HCV NS3 antigen-specific immune responses. Immunol Lett 2019; 212:70-80. [PMID: 31254535 DOI: 10.1016/j.imlet.2019.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 06/11/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
To improve an effective hepatitis C virus (HCV) therapeutic vaccine, induction of a strong and long term HCV antigen-specific immune response is an important parameter. HCV non-structural protein 3 (NS3) has antigenic properties and plays a major role in viral clearance. In this study, DNA constructs encoding HCV NS3 and heat shock protein 27 (Hsp27)-NS3 genes, and the recombinant (r) NS3 and rHsp27-NS3 proteins complexed with HR9 and Cady-2 cell penetrating peptides (CPPs) were utilized to evaluate antibody, cytokine and Granzyme B secretion in mice. Herein, the formation of NS3 and Hsp27-NS3 DNA/ HR9 CPP complexes were revealed by gel retardation assay and protection against DNase and protease. Cady-2 peptide was used to form the nanoparticles with rNS3 and rHsp27-NS3 proteins. The size and charge of the nanoparticles were confirmed by SEM and Zetasizer instruments. Next, in vitro transfection of the nanoparticles was assessed by flow cytometry and western blotting. Finally, humoral and cellular immune responses were evaluated using different modalities in mice. Our data showed that HR9 and Cady-2 could form stable nanoparticles with DNA and proteins, respectively and enhance their delivery into HEK-293 T cells in a non-covalent approach. Furthermore, the heterologous Hsp27-NS3 DNA + HR9 prime/rHsp27-NS3+Cady-2 protein boost elicited a higher Th1 cellular immune response with a predominant IgG2a, IgG2b, IFN-γ profile and strong Granzyme B secretion than those induced by other groups. Briefly, the combination of a natural adjuvant (Hsp27) and CPPs (HR9 and Cady-2) could significantly stimulate effective immune responses as a promising approach for development of HCV therapeutic vaccines.
Collapse
Affiliation(s)
- Sina Alizadeh
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
53
|
Humanized Mouse Models for the Study of Hepatitis C and Host Interactions. Cells 2019; 8:cells8060604. [PMID: 31213010 PMCID: PMC6627916 DOI: 10.3390/cells8060604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) infection is commonly attributed as a major cause of chronic hepatotropic diseases, such as, steatosis, cirrhosis and hepatocellular carcinoma. As HCV infects only humans and primates, its narrow host tropism hampers in vivo studies of HCV-mammalian host interactions and the development of effective therapeutics and vaccines. In this context, we will focus our discussion on humanized mice in HCV research. Here, these humanized mice are defined as animal models that encompass either only human hepatocytes or both human liver and immune cells. Aspects related to immunopathogenesis, anti-viral interventions, drug testing and perspectives of these models for future HCV research will be discussed.
Collapse
|
54
|
Le Guillou-Guillemette H, Apaire-Marchais V. Virus de l’hépatite C, aspects virologiques. ACTUALITES PHARMACEUTIQUES 2019. [DOI: 10.1016/j.actpha.2018.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
55
|
Poller W, Haghikia A, Kasner M, Kaya Z, Bavendiek U, Wedemeier H, Epple HJ, Skurk C, Landmesser U. Cardiovascular Involvement in Chronic Hepatitis C Virus Infections - Insight from Novel Antiviral Therapies. J Clin Transl Hepatol 2018; 6:161-167. [PMID: 29951361 PMCID: PMC6018314 DOI: 10.14218/jcth.2017.00057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/06/2017] [Accepted: 12/23/2017] [Indexed: 12/11/2022] Open
Abstract
Whereas statistical association of hepatitis C virus (HCV) infection with cardiomyopathy is long known, establishment of a causal relationship has not been achieved so far. Patients with advanced heart failure (HF) are mostly unable to tolerate interferon (IFN)-based treatment, resulting in limited experience regarding the possible pathogenic role of HCV in this patient group. HCV infection often triggers disease in a broad spectrum of extrahepatic organs, with innate immune and autoimmune pathogenic processes involved. The fact that worldwide more than 70 million patients are chronically infected with HCV illustrates the possible clinical impact arising if cardiomyopathies were induced or aggravated by HCV, resulting in progressive HF or severe arrhythmias. A novel path has been opened to finally resolve the long-standing question of cause-effect relationship between HCV infection and cardiac dysfunction, by the recent development of IFN-free, highly efficient, and well tolerable anti-HCV regimens. The new direct-acting antiviral (DAA) agents are highly virus-specific and lack unspecific side-effects upon cardiac function which have always confounded the interpretation of IFN treatment data. The actual frequency of unexplained HF in chronic HCV infection will be determined from a planned large-scale study. Whereas such patients probably constitute a rather small fraction of all those harboring HCV, they have major clinical relevance. It is not yet known which fraction of these patients will significantly benefit from HCV eradication, but this issue will be addressed now in a prospective study.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Site Berlin, Berlin, Germany
- *Correspondence to: Wolfgang Poller, Department of Cardiology, Campus Benjamin Franklin, Charite Centrum 11, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin 12200, Germany. Tel: +49-30-450-513765, Fax: +49-30-450-513984, E-mail:
| | - Arash Haghikia
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Site Berlin, Berlin, Germany
| | - Mario Kasner
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ziya Kaya
- German Center for Cardiovascular Research (DZHK) Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, University Hospital, Heidelberg, Germany
| | | | | | - Hans-Jörg Epple
- Department of Gastroenterology, Infectiology and Rheumatology, CC 13, Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Skurk
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, CC11 Charité Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Site Berlin, Berlin, Germany
| |
Collapse
|
56
|
Vopálenský V, Khawaja A, Rožnovský L, Mrázek J, Mašek T, Pospíšek M. Characterization of Hepatitis C Virus IRES Quasispecies - From the Individual to the Pool. Front Microbiol 2018; 9:731. [PMID: 29740402 PMCID: PMC5928756 DOI: 10.3389/fmicb.2018.00731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) is a single-stranded positive-sense RNA virus from the genus Hepacivirus. The viral genomic +RNA is 9.6 kb long and contains highly structured 5′ and 3′ untranslated regions (UTRs) and codes for a single large polyprotein, which is co- and post-translationally processed by viral and cellular proteases into at least 11 different polypeptides. Most of the 5′ UTR and an initial part of the polyprotein gene are occupied by an internal ribosome entry site (IRES), which mediates cap-independent translation of the viral proteins and allows the virus to overcome cellular antiviral defense based on the overall reduction of the cap-dependent translation initiation. We reconsidered published results concerning a search for possible correlation between patient response to interferon-based antiviral therapy and accumulation of nucleotide changes within the HCV IRES. However, we were unable to identify any such correlation. Rather than searching for individual mutations, we suggest to focus on determination of individual and collective activities of the HCV IRESs found in patient specimens. We developed a combined, fast, and undemanding approach based on high-throughput cloning of the HCV IRES species to a bicistronic plasmid followed by determination of the HCV IRES activity by flow cytometry. This approach can be adjusted for measurement of the individual HCV IRES activity and for estimation of the aggregate ability of the whole HCV population present in the specimen to synthesize viral proteins. To detect nucleotide variations in the individual IRESs, we used denaturing gradient gel electrophoresis (DGGE) analysis that greatly improved identification and classification of HCV IRES variants in the sample. We suggest that determination of the collective activity of the majority of HCV IRES variants present in one patient specimen in a given time represents possible functional relations among variant sequences within the complex population of viral quasispecies better than bare information about their nucleotide sequences. A similar approach might be used for monitoring of sequence variations in quasispecies populations of other RNA viruses in all cases when changes in primary sequence represent changes in measurable and easily quantifiable phenotypes.
Collapse
Affiliation(s)
- Václav Vopálenský
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Anas Khawaja
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Luděk Rožnovský
- Clinic of Infectious Medicine, University Hospital Ostrava, Ostrava, Czechia
| | - Jakub Mrázek
- Institute of Public Health in Ostrava, Ostrava, Czechia
| | - Tomáš Mašek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Pospíšek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
57
|
Cavallari I, Scattolin G, Silic-Benussi M, Raimondi V, D'Agostino DM, Ciminale V. Mitochondrial Proteins Coded by Human Tumor Viruses. Front Microbiol 2018; 9:81. [PMID: 29467726 PMCID: PMC5808139 DOI: 10.3389/fmicb.2018.00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/12/2018] [Indexed: 12/26/2022] Open
Abstract
Viruses must exploit the cellular biosynthetic machinery and evade cellular defense systems to complete their life cycles. Due to their crucial roles in cellular bioenergetics, apoptosis, innate immunity and redox balance, mitochondria are important functional targets of many viruses, including tumor viruses. The present review describes the interactions between mitochondria and proteins coded by the human tumor viruses human T-cell leukemia virus type 1, Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, human hepatitis viruses B and C, and human papillomavirus, and highlights how these interactions contribute to viral replication, persistence and transformation.
Collapse
Affiliation(s)
| | - Gloria Scattolin
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | | | | | | | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV-IRRCS, Padova, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| |
Collapse
|
58
|
Interleukin-7 augments CD8 + T cells function and promotes viral clearance in chronic hepatitis C virus infection. Cytokine 2017; 102:26-33. [PMID: 29275010 DOI: 10.1016/j.cyto.2017.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
Interleukin (IL)-7 is a potent proliferation, activation, and survival cytokine for CD8+ T cells to improve viral and tumor specific CD8+ T cell responses. However, the role of IL-7 in regulation of dysfunctional hepatitis C virus (HCV)-specific CD8+ T cells was not fully elucidated. Thus, a total of 53 patients with chronic hepatitis C and 24 healthy individuals were enrolled in the current study. Serum IL-7 and its receptor α chain CD127 expression was measured. The modulatory function of IL-7 to CD8+ T cells was investigated in both direct and indirect contact co-culture with HCVcc-infected Huh7.5 cells. Both serum IL-7 and CD127 expression on CD8+ T cells was significantly reduced in chronic HCV-infected patients, which was negatively correlated with HCV RNA. Stimulation of IL-7 promoted both cytotoxicity and cytokines (interferon-γ, tumor necrosis factor-α, and IL-2) production of CD8+ T cells from patients with chronic hepatitis C. Moreover, IL-7 increased proliferation of CD8+ T cells, while downregulated a critical repressor of cytokine signaling, suppressor of cytokine signaling 3 (SOCS3). The IL-7-mediated enhancement effects to CD8+ T cells were dependent on IL-6 production. The current data suggested that IL-7 induced both cytolytic and noncytolytic functions of CD8+ T cells probably via repression of SOCS3. IL-7 might be considered as one of the therapeutic candidates for treatment of chronic HCV infection.
Collapse
|
59
|
Liu S, Zhang Q, Shao X, Wang W, Zhang C, Jin Z. An immunosuppressive function of interleukin-35 in chronic hepatitis C virus infection. Int Immunopharmacol 2017. [PMID: 28644966 DOI: 10.1016/j.intimp.2017.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Interleukin (IL)-35, a newly identified member of the IL-12 cytokine family, has been reported to suppress inflammation and induce immunotolerance. However, little is known regarding the role of IL-35 during chronic hepatitis C virus (HCV) infection. Herein, we measured the serum IL-35 concentration of 73 patients with hepatitis C and 22 healthy individuals, as well as further investigated the modulatory function of IL-35 on CD4+CD25+CD127dim/- regulatory T cells (Tregs) and on hepatocytes infected with HCV in cell culture (HCVcc). IL-35 expression was significantly increased in patients with chronic hepatitis C and was positively correlated with the levels of HCV RNA. Inhibition of viral replication led to decreases in the serum levels of IL-35. IL-35 stimulation not only elevated the percentage of Tregs but also robustly inhibited cellular proliferation and up-regulated the production of anti-inflammatory cytokines (e.g., IL-10 and IL-35) in a HCV-specific and non-specific manner, which indicates enhancement of the suppressive function of Tregs. Although IL-35 did not exert anti-HCV activity in HCVcc-infected Huh7.5 cells, it reduced inflammatory cytokine secretion from Huh7.5 cells. This was probably via inhibition of the STAT1 and STAT3 signaling pathways, which could suppress subsequent liver damage due to chronic hepatitis C. The current data suggested that IL-35 contributes to persistent HCV infection by inhibiting antiviral immune activity. Moreover, IL-35 might also protect against HCV-induced liver injury by down-regulating the expression of proinflammatory cytokines. Thus, the immunosuppressive properties of IL-35 might play contradictory roles in maintaining viral persistence and reducing the inflammatory responses in chronic HCV infection.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, China
| | - Qian Zhang
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, China
| | - Xue Shao
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, China
| | - Wenrui Wang
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, China
| | - Chuanhui Zhang
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, China
| | - Zhenjing Jin
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, China.
| |
Collapse
|
60
|
Ippolito G, Antonelli G. Emerging issues on hepatitis C virus infection after the introduction of the Directly Acting Antivirals. Clin Microbiol Infect 2017; 22:824-825. [PMID: 27863749 DOI: 10.1016/j.cmi.2016.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/15/2016] [Accepted: 10/15/2016] [Indexed: 11/18/2022]
Affiliation(s)
- G Ippolito
- National Institute for Infectious Diseases 'Lazzaro Spallanzani' Rome, Italy
| | - G Antonelli
- Department of Molecular Medicine, and Pasteur Institute-Cenci Bolognetti Foundation, 'Sapienza' University of Rome, Rome, Italy.
| |
Collapse
|