51
|
Sun Q, Sheng J, Yang R. Encapsulation of curcumin in CD-MOFs: promoting its incorporation into water-based products and consumption. Food Funct 2021; 12:10795-10805. [PMID: 34610077 DOI: 10.1039/d1fo02087k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Curcumin has received considerable interest in functional food areas due to its variety of biological effects. However, its utilization is often limited by its insolubility and instability in aqueous solutions. Herein, curcumin was encapsulated in γ-cyclodextrin metal-organic frameworks (CD-MOFs) to achieve immediate release and rapid dissolution in water just by gentle stirring due to the dissociation of CD-MOFs. The released curcumin exhibited remarkably enhanced stability compared to its free form in aqueous solutions due to the inclusion effects of cyclodextrins. Besides, the impacts of temperature, light and gastrointestinal pH on the chemical stability of curcumin released from basic and neutral CD-MOFs were compared. The molar ratios of curcumin : γ-CD in basic CD-MOFs and neutral CD-MOFs were 1 : 1.7 and 1 : 9.8, respectively. Neutral CD-MOFs were more effective in retarding thermal and gastrointestinal degradation of curcumin because all curcumin molecules can form inclusion complexes with cyclodextrin. Basic CD-MOFs were more conducive to prolonging the half-life time of curcumin during photodegradation since its alkalinity darkened the color of curcumin solution causing lower light transmittance. Moreover, CD-MOFs exhibited higher loading and stability of curcumin due to their unique host-guest structure, than their pure cyclodextrin inclusion complex. Curcumin-loaded CD-MOFs having a fast-dissolving ability accompanied by the improved amorphous form stability of curcumin hold great potential as functional additives in instant food.
Collapse
Affiliation(s)
- Qianyu Sun
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 5106401, China.
| | - Jie Sheng
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Rendang Yang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 5106401, China.
| |
Collapse
|
52
|
Yu S, Wei Z, Xiao H, Mohamed H, Xu S, Yang X, Ren X, Li L, Song Y. Effect of mono- and double-layer polysaccharide surface coating on the physical stability of nanoliposomes under various environments. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
53
|
Barani M, Sangiovanni E, Angarano M, Rajizadeh MA, Mehrabani M, Piazza S, Gangadharappa HV, Pardakhty A, Mehrbani M, Dell’Agli M, Nematollahi MH. Phytosomes as Innovative Delivery Systems for Phytochemicals: A Comprehensive Review of Literature. Int J Nanomedicine 2021; 16:6983-7022. [PMID: 34703224 PMCID: PMC8527653 DOI: 10.2147/ijn.s318416] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, medicinal herbs and their phytochemicals have emerged as a great therapeutic option for many disorders. However, poor bioavailability and selectivity might limit their clinical application. Therefore, bioavailability is considered a notable challenge to improve bio-efficacy in transporting dietary phytochemicals. Different methods have been proposed for generating effective carrier systems to enhance the bioavailability of phytochemicals. Among them, nano-vesicles have been introduced as promising candidates for the delivery of insoluble phytochemicals. Due to the easy preparation of the bilayer vesicles and their adaptability, they have been widely used and approved by the scientific literature. The first part of the review is focused on introducing phytosome technology as well as its applications, with emphasis on principles of formulations and characterization. The second part provides a wide overview of biological activities of commercial and non-commercial phytosomes, divided by systems and related pathologies. These results confirm the greater effectiveness of phytosomes, both in terms of biological activity or reduced dosage, highlighting curcumin and silymarin as the most formulated compounds. Finally, we describe the promising clinical and experimental findings regarding the applications of phytosomes. The conclusion of this study encourages the researchers to transfer their knowledge from laboratories to market, for a further development of these products.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, 76169-13555, Iran
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Marco Angarano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | | | - Mehrnaz Mehrabani
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | | | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrzad Mehrbani
- Department of Traditional Medicine, Faculty of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Mohammad Hadi Nematollahi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
54
|
Zhang P, Bao Z, Jiang P, Zhang S, Zhang X, Lin S, Sun N. Nanoliposomes for encapsulation and calcium delivery of egg white peptide-calcium complex. J Food Sci 2021; 86:1418-1431. [PMID: 33880783 DOI: 10.1111/1750-3841.15677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 11/28/2022]
Abstract
Nanoliposomes and crude liposomes loaded with egg white peptide-calcium complex (EWP-Ca) were fabricated by thin-film dispersion with or without dynamic high-pressure microfluidization. Their physiochemical properties, in vitro stability, and calcium release profiles were investigated in this study. Results showed that the EWP-Ca-loaded nanoliposomes exhibited spherical structures with a lower particle size and polydispersity index as well as a higher thermal stability as compared to the corresponding crude liposomes. Further investigations revealed that EWP-Ca was embedded into the liposomes mainly through hydrogen bonding and present in an amorphous form within the liposomes. Additionally, the EWP-Ca-loaded nanoliposomes effectively slowed the release of calcium in gastric digestion, allowing more soluble calcium to enter the intestinal tract; in the subsequent intestinal digestion, the EWP-Ca-loaded nanoliposomes were more electrically and physically stable than the crude liposomes. Therefore, the EWP-Ca-loaded nanoliposomes could be used as a favorable dietary calcium delivery system to promote calcium bioavailability. PRACTICAL APPLICATION: Nanoliposomes were fabricated in this study to encapsulate the egg white peptide-calcium complex (EWP-Ca) for calcium delivery. The EWP-Ca-loaded nanoliposomes effectively slowed the release of calcium in gastric digestion, allowing more soluble calcium to enter the intestinal tract, and were more electrically and physically stable in the subsequent intestinal digestion. Therefore, the EWP-Ca-loaded nanoliposomes may be incorporated in calcium-fortified food to enhance calcium delivery for maintaining bone health.
Collapse
Affiliation(s)
- Penglin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Pengfei Jiang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Simin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiumin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
55
|
Mutalik SP, Mullick P, Pandey A, Kulkarni SS, Mutalik S. Box-Behnken design aided optimization and validation of developed reverse phase HPLC analytical method for simultaneous quantification of dolutegravir sodium and lamivudine co-loaded in nano-liposomes. J Sep Sci 2021; 44:2917-2931. [PMID: 34076952 DOI: 10.1002/jssc.202100152] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/11/2022]
Abstract
A stability-indicating reversed-phase high-performance liquid chromatography method for simultaneous estimation of dolutegravir sodium and lamivudine encapsulated in the nanoliposomal formulation was developed. The chromatographic parameters namely, organic phase ratio, flow rate, and sample injection volume were selected as independent factors and were optimized by multivariate Box-Behnken design. Responses analyzed were retention time, peak area, and resolution. The optimized chromatographic method with Hypersil BDS C8 CN column as stationary phase and methanol and acetonitrile mixture and acidified Milli-Q water (pH 2.8, adjusted with 0.02% v/v orthophosphoric acid) as the mobile phase in an isocratic elution mode was validated according to parameters of International Conference on Harmonization Q1(R2) guidelines. The validated reversed-phase high-performance liquid chromatography method exhibited specificity for both dolutegravir sodium and lamivudine in the presence of degradation products as well as the liposomal matrix. This method was effectively utilized to determine the amount of drug entrapped and drug loading efficiency of dolutegravir sodium and lamivudine in a nano-liposomal formulation.
Collapse
Affiliation(s)
- Sadhana P Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Prashansha Mullick
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Smita S Kulkarni
- Division of Virology, ICMR-National AIDS Research Institute (NARI), Pune, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
56
|
Li J, Chang C, Zhai J, Yang Y, Yu H. Ascorbyl palmitate effects on the stability of curcumin-loaded soybean phosphatidylcholine liposomes. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
57
|
Lakshmi BA, Reddy AS, Sangubotla R, Hong JW, Kim S. Ruthenium(II)-curcumin liposome nanoparticles: Synthesis, characterization, and their effects against cervical cancer. Colloids Surf B Biointerfaces 2021; 204:111773. [PMID: 33933878 DOI: 10.1016/j.colsurfb.2021.111773] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 12/31/2022]
Abstract
Ruthenium complexes have increased the scope for improvement in current cancer treatment by replacing platinum-based drugs. However, to reduce metal-associated toxicity, a biocompatible flavonoid, such as curcumin, is indispensable, as it offers uncompensated therapeutic benefits through formation of complexes. In this study, we synthesized metal-based flavonoid complexes using ruthenium(II) and curcumin by adopting a convenient reflux reaction, represented as Ru-Cur complexes. These complexes were thoroughly characterized using 1H, 13C NMR, XPS, FT-IR, and UV-vis spectroscopy. As curcumin is sparingly soluble in water and has poor chemical stability, we loaded Ru-Cur complexes into liposomes and further formed nanoparticles (NPs) using the thin layer evaporation method. These were named Ru-Cur loaded liposome nanoparticles (RCLNPs). The effects of RCLNPs on cell proliferation was investigated using human cervical cancer cell lines (HeLa). These RCLNPs exhibited significant cytotoxicity in HeLa cells. The anticancer properties of RCLNPs were studied using reactive oxygen species (ROS), LDH, and MTT assays as well as live-dead staining. Nuclear damage studies of RCLNPs were performed in HeLa cells using the Hoechst staining assay.
Collapse
Affiliation(s)
| | - Ankireddy Seshadri Reddy
- Department of Chemical and Biological Engineering, Gachon University, Gyeonggi-Do, Republic of Korea
| | - Roopkumar Sangubotla
- Department of Chemical and Biological Engineering, Gachon University, Gyeonggi-Do, Republic of Korea
| | - Jong Wook Hong
- Center for Exosome & Bioparticulate Research, Hanyang University, Gyeonggi-do, Republic of Korea; Department of Bionanotechnology, Hanyang University, Seoul, Republic of Korea.
| | - Sanghyo Kim
- Department of Bio-nanotechnology, Gachon University, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
58
|
Qi C, Wang D, Gong X, Zhou Q, Yue X, Li C, Li Z, Tian G, Zhang B, Wang Q, Wei X, Wu J. Co-Delivery of Curcumin and Capsaicin by Dual-Targeting Liposomes for Inhibition of aHSC-Induced Drug Resistance and Metastasis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16019-16035. [PMID: 33819006 DOI: 10.1021/acsami.0c23137] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent research studies have shown that the low survival rate of liver cancer is due to drug resistance and metastasis. In the tumor microenvironment (TME), activated hepatic stellate cells (aHSCs) have been proven to favor the development of liver cancer. Hence, the combination therapy dual-targeting aHSCs and tumor cells might be an effective strategy for treatment of liver cancer. In this study, the novel multifunctional liposomes (CAPS-CUR/GA&Gal-Lip) were prepared for co-delivery of curcumin (CUR) and capsaicin (CAPS), in which glycyrrhetinic acid (GA) and galactose (Gal) were chosen as targeting ligands to modify the liposomes (Lip) for dual-targeting liver cancer. To mimic TME, a novel HSCs+HepG2 (human hepatoma cell line) cocultured model was established for the antitumor effect in vitro. The results showed that, compared to HepG2 cells alone, the cocultured model promoted drug resistance and migration by upregulating the expression of P-glycoprotein (P-gp) and Vimentin, which were effectively inhibited by CAPS-CUR/GA&Gal-Lip. The efficacy of the in vivo antitumor was evaluated by three mice models: subcutaneous H22 (mouse hepatoma cell line) tumor-bearing mice, H22+m-HSC (mouse hepatic stellate cell) tumor-bearing mice, and orthotopic H22 cells-bearing mice. The results showed that CAPS-CUR/GA&Gal-Lip exhibited lesser extracellular matrix (ECM) deposition, lesser tumor angiogenesis, and superior antitumor effect compared with the no- and/or Gal-modified Lip, which was attributed to the simultaneous blocking of the activation of HSCs and inhibition of the metastasis of tumor cells. The dual-targeting method using Lip is thus a potential strategy for liver cancer treatment.
Collapse
Affiliation(s)
- Cuiping Qi
- School of Nursing, Weifang Medical University, Weifang 261053, P. R. China
| | - Di Wang
- School of Nursing, Weifang Medical University, Weifang 261053, P. R. China
| | - Xue Gong
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, P. R. China
| | - Qiyang Zhou
- School of Pharmacy, Weifang Medical University, Weifang 261053, P. R. China
| | - Xinxin Yue
- School of Nursing, Weifang Medical University, Weifang 261053, P. R. China
| | - Chenglei Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, P. R. China
| | - Zhipeng Li
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, P. R. China
| | - Guixiang Tian
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, P. R. China
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, P. R. China
| | - Qing Wang
- School of Basic Medicine, Weifang Medical University, Weifang 261053, P. R. China
| | - Xiuhong Wei
- School of Nursing, Weifang Medical University, Weifang 261053, P. R. China
| | - Jingliang Wu
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, P. R. China
| |
Collapse
|
59
|
Ajeeshkumar KK, Aneesh PA, Raju N, Suseela M, Ravishankar CN, Benjakul S. Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review. Compr Rev Food Sci Food Saf 2021; 20:1280-1306. [PMID: 33665991 DOI: 10.1111/1541-4337.12725] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/28/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Liposomes play a significant role in encapsulation of various bioactive compounds (BACs), including functional food ingredients to improve the stability of core. This technology can be used for promoting an effective application in functional food and nutraceuticals. Incorporation of traditional and emerging methods for the developments of liposome for loading BACs resulted in viable and stable liposome formulations for industrial applications. Thus, the advance technologies such as supercritical fluidic methods, microfluidization, ultrasonication with traditional methods are revisited. Liposomes loaded with plant and animal BACs have been introduced for functional food and nutraceutical applications. In general, application of liposome systems improves stability, delivery, and bioavailability of BACs in functional food systems and nutraceuticals. This review covers the current techniques and methodologies developed and practiced in liposomal preparation and application in functional foods.
Collapse
Affiliation(s)
| | | | - Navaneethan Raju
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Mathew Suseela
- ICAR - Central Institute of Fisheries Technology, Cochin, Kerala, 682029, India
| | | | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
60
|
Ghiasi F, Eskandari MH, Golmakani MT, Rubio RG, Ortega F. Build-Up of a 3D Organogel Network within the Bilayer Shell of Nanoliposomes. A Novel Delivery System for Vitamin D 3: Preparation, Characterization, and Physicochemical Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2585-2594. [PMID: 33617257 PMCID: PMC8478283 DOI: 10.1021/acs.jafc.0c06680] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The inherent thermodynamic instability of liposomes during production and storage has limited their widespread applications. Therefore, a novel structure of food-grade nanoliposomes stabilized by a 3D organogel network within the bilayer shell was developed through the extrusion process and successfully applied to encapsulate vitamin D3. A huge flocculation and a significant reduction of zeta potential (-17 mV) were observed in control nanoliposomes (without the organogel shell) after 2 months of storage at 4 °C, while the sample with a gelled bilayer showed excellent stability with a particle diameter of 105 nm and a high negative zeta potential (-63.4 mV), even after 3 months. The development of spherical vesicles was confirmed by TEM. Interestingly, the gelled bilayer shell led to improved stability against osmotically active divalent salt ions. Electron paramagnetic resonance confirmed the higher rigidity of the shell bilayer upon gelation. The novel liposome offered a dramatic increase in encapsulation efficiency and loading of vitamin D3 compared to those of control.
Collapse
Affiliation(s)
- Fatemeh Ghiasi
- Department
of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71946-84636, Iran
| | - Mohammad Hadi Eskandari
- Department
of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71946-84636, Iran
| | - Mohammad-Taghi Golmakani
- Department
of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71946-84636, Iran
| | - Ramón G. Rubio
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria S/n, Madrid 28040, Spain
- Instituto
Pluridisciplinar, Universidad Complutense
de Madrid, Paseo Juan
XXIII 1, Madrid 28040, Spain
| | - Francisco Ortega
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria S/n, Madrid 28040, Spain
- Instituto
Pluridisciplinar, Universidad Complutense
de Madrid, Paseo Juan
XXIII 1, Madrid 28040, Spain
| |
Collapse
|
61
|
Jurinjak Tušek A, Šalić A, Valinger D, Jurina T, Benković M, Kljusurić JG, Zelić B. The power of microsystem technology in the food industry – Going small makes it better. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
62
|
Drying soy phosphatidylcholine liposomal suspensions in alginate matrix: Effect of drying methods on physico-chemical properties and stability. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
63
|
Zhou W, Cheng C, Ma L, Zou L, Liu W, Li R, Cao Y, Liu Y, Ruan R, Li J. The Formation of Chitosan-Coated Rhamnolipid Liposomes Containing Curcumin: Stability and In Vitro Digestion. Molecules 2021; 26:molecules26030560. [PMID: 33494543 PMCID: PMC7865861 DOI: 10.3390/molecules26030560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
There is growing interest in developing biomaterial-coated liposome delivery systems to improve the stability and bioavailability of curcumin, which is a hydrophobic nutraceutical claimed to have several health benefits. The curcumin-loaded rhamnolipid liposomes (Cur-RL-Lips) were fabricated from rhamnolipid and phospholipids, and then chitosan (CS) covered the surface of Cur-RL-Lips by electrostatic interaction to form CS-coated Cur-RL-Lips. The influence of CS concentration on the physical stability and digestion of the liposomes was investigated. The CS-coated Cur-RL-Lips with RL:CS = 1:1 have a relatively small size (412.9 nm) and positive charge (19.7 mV). The CS-coated Cur-RL-Lips remained stable from pH 2 to 5 at room temperature and can effectively slow the degradation of curcumin at 80 °C; however, they were highly unstable to salt addition. In addition, compared with Cur-RL-Lips, the bioavailability of curcumin in CS-coated Cur-RL-Lips was relatively high due to its high transformation in gastrointestinal tract. These results may facilitate the design of a more efficacious liposomal delivery system that enhances the stability and bioavailability of curcumin in nutraceutical-loaded functional foods and beverages.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; (W.Z.); (C.C.); (L.M.); (L.Z.); (Y.L.); (R.R.)
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China; (Y.C.); (J.L.)
| | - Ce Cheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; (W.Z.); (C.C.); (L.M.); (L.Z.); (Y.L.); (R.R.)
| | - Li Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; (W.Z.); (C.C.); (L.M.); (L.Z.); (Y.L.); (R.R.)
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; (W.Z.); (C.C.); (L.M.); (L.Z.); (Y.L.); (R.R.)
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; (W.Z.); (C.C.); (L.M.); (L.Z.); (Y.L.); (R.R.)
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
- Correspondence: (W.L.); (R.L.); Tel.: +86-13970916758 (W.L); +86-759-2221090 (R.L.)
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China; (Y.C.); (J.L.)
- Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang 524001, Guangdong, China
- Correspondence: (W.L.); (R.L.); Tel.: +86-13970916758 (W.L); +86-759-2221090 (R.L.)
| | - Yupo Cao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China; (Y.C.); (J.L.)
- Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang 524001, Guangdong, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; (W.Z.); (C.C.); (L.M.); (L.Z.); (Y.L.); (R.R.)
| | - Roger Ruan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; (W.Z.); (C.C.); (L.M.); (L.Z.); (Y.L.); (R.R.)
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China; (Y.C.); (J.L.)
- Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang 524001, Guangdong, China
| |
Collapse
|
64
|
Guo Q, Su J, Shu X, Yuan F, Mao L, Liu J, Gao Y. Fabrication, structural characterization and functional attributes of polysaccharide-surfactant-protein ternary complexes for delivery of curcumin. Food Chem 2020; 337:128019. [PMID: 32927227 DOI: 10.1016/j.foodchem.2020.128019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
In this study, the nanocomplexes as a novel delivery system for curcumin, were successfully fabricated using high methoxyl pectin (HMP), individual surfactants (rhamnolipid (Rha), tea saponin (TS) and ethyl lauroyl arginate hydrochloride (ELA)) and pea protein isolate (PPI). The optimum mass ratio between PPI and curcumin was 40:1. The HMP-Rha-PPI-Cur, HMP-TS-PPI-Cur and HMP-ELA-PPI-Cur complexes which had particle sizes of 453, 422 and 587 nm, exhibited encapsulation efficiencies of curcumin with 93.46, 92.05 and 86.73%, respectively. The analysis of FTIR revealed that HMP-surfactant-PPI-Cur complexes were formed mainly by hydrogen bonding and electrostatic attraction. XRD result showed that curcumin exhibited a non-crystallized state in the ternary complexes. Moreover, the curcumin within the HMP-Rha-PPI ternary complexes showed better stability under UV-light, thermal and simulated gastrointestinal conditions.
Collapse
Affiliation(s)
- Qing Guo
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiaqi Su
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xin Shu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Fang Yuan
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Like Mao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jinfang Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yanxiang Gao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
65
|
Karim N, Shishir MRI, Chen W. Surface decoration of neohesperidin-loaded nanoliposome using chitosan and pectin for improving stability and controlled release. Int J Biol Macromol 2020; 164:2903-2914. [PMID: 32853610 DOI: 10.1016/j.ijbiomac.2020.08.174] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
The aim of this study was to improve the physicochemical stability of neohesperidin (NH) using nanoliposomal encapsulation in association with surface decoration strategy employing chitosan (CH) and pectin (P). Different nanoliposomal systems, i.e. NH-loaded nanoliposome (NH-NL), CH-coated NH-NL (CH-NH-NL), and P-coated CH-NH-NL (P-CH-NH-NL) were characterized through DLS, HPLC, TEM, and FTIR. The results confirmed good encapsulation efficiency (>90%) and successful layer formation with nano-sized and spherical carrier. Both CH-NL and P-CH-NL exhibited better physicochemical stability than NL under storage, thermal, pH, ionic, UV, oxidative, and serum conditions. In vitro mucin adsorption study revealed that CH-NL (60%) was more effective in mucoadhesion followed by P-CH-NL (46%) and NL (41%). Furthermore, P-CH-NL showed better performance in NH retention under different food simulants compared to CH-NH-NL and NH-NL, in which the release was mainly governed by the diffusion process. Thus, the P-CH conjugated nanoliposome could be a promising nano-carrier for neohesperidin.
Collapse
Affiliation(s)
- Naymul Karim
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Mohammad Rezaul Islam Shishir
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
66
|
Engineering oral delivery of hydrophobic bioactives in real-world scenarios. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
67
|
Shishir MRI, Karim N, Xu Y, Xie J, Chen W. Improving the physicochemical stability and functionality of nanoliposome using green polymer for the delivery of pelargonidin-3-O-glucoside. Food Chem 2020; 337:127654. [PMID: 32791428 DOI: 10.1016/j.foodchem.2020.127654] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 12/31/2022]
Abstract
This study aimed to improve the physicochemical stability of nanoliposome (NL) with enhanced functionality for the delivery of Pelargonidin-3-O-glucoside (P3G) using biopolymers, i.e. chitosan (CH) and pectin (P). In this study, we successfully developed stabilized liposomal carriers, i.e. CH-conjugated NL (CH-NL) and P-conjugated CH-NL (P-CH-NL) using an optimum concentration of CH (0.6 wt%) and P (0.5 wt%). Results revealed that P-CH-NL had better physical stability to salt and pH with maximum P3G retention (>97%) under oxidative, thermal, and UV conditions. Nanoliposomes were more stable under refrigerated-storage and ensured high P3G retention (>96%). In vitro mucoadhesion study revealed that CH-NL had better mucin adsorption efficiency (59.72%) followed by P-CH-NL and NL. Furthermore, CH-NL and P-CH-NL alternatively had better stability to serum than NL. Taken together, the stabilization of nanoliposome using chitosan and pectin can be a promising approach for the delivery of hydrophilic compounds in association with enhanced stability and functionality.
Collapse
Affiliation(s)
- Mohammad Rezaul Islam Shishir
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Naymul Karim
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yang Xu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Jiahong Xie
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
68
|
Wei XQ, Ba K. Construction a Long-Circulating Delivery System of Liposomal Curcumin by Coating Albumin. ACS OMEGA 2020; 5:16502-16509. [PMID: 32685814 PMCID: PMC7364587 DOI: 10.1021/acsomega.0c00930] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/02/2020] [Indexed: 05/11/2023]
Abstract
Although the bioavailability and stability of curcumin can be greatly improved by liposomes encapsulation, its application is still limited due to the short circulating time. In this present work, we aim to construct a long-circulating delivery system of liposomal curcumin (Cur-Lips) by coating bovine serum albumin (BSA), namely, BSA-coated liposomal curcumin (BSA-Cur-Lips). The effects of coating albumin on the physicochemical properties of Cur-Lips were investigated. It was found that BSA-Cur-Lips was more spherical, more homogeneous in size, and significantly larger than Cur-Lips. Combining sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Coomassie bright blue staining, and X-ray photoelectron spectroscopy analysis (XPS), we confirmed that albumin molecules were stably located on the surface of BSA-Cur-Lips. In addition, the impacts of the coating albumin on the Cur-Lips release and phagocytosis by mouse macrophages Raw264.7 in vitro were investigated. We found that no significant initial burst drug release effect was observed for both Cur-Lips and BSA-Cur-Lips and the presence of albumin can enhance the liposome structure stability and slow down the release of Cur. More importantly, the macrophage phagocytosis of Cur-Lips was significantly reduced after coating albumin. In conclusion, coating albumin is a promising approach for developing a long-circulating delivery system of liposomal curcumin, and its properties including low phagocytosis, slow drug release, enhanced stability, and nontoxicity give this system great prospects for practical use.
Collapse
|
69
|
Li Z, Xiong X, Peng S, Chen X, Liu W, Liu C. Novel folated pluronic F127 modified liposomes for delivery of curcumin: preparation, release, and cytotoxicity. J Microencapsul 2020; 37:220-229. [PMID: 32039640 DOI: 10.1080/02652048.2020.1720030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aim: A novel folated pluronic F127 (FA-F127) was synthesised, so as to modify liposomes with FA group on the surface, and evaluate the effects of FA-F127 modification on the properties of the modified liposomes.Methods: FA was linked to one end of pluronic F127, via the terminal OH group, to obtain FA-F127 and the structure was characterised. FA-F127 modified curcumin liposomes (cur-FA-F127-Lps) were prepared. The physicochemical characteristics of cur-FA-F127-Lps, including morphology and particle size, were studied. The in vitro cytotoxicity of cur-FA-F127-Lps against KB cancer cells was determined by MTT tests.Results: The effects of FA-F127 modification on the average particle size, PDI, curcumin encapsulation efficiency and microstructure were not significant. Compared with nonfolated F127 liposomes (cur-F127-Lps), cur-FA-F127-Lps exhibited significantly higher cytotoxicity towards KB cells.Conclusions: Folic acid modified liposomes provide a novel strategy to improve the chemotherapeutic efficacy of hydrophobic bioactive compounds.
Collapse
Affiliation(s)
- Ziling Li
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, PR China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, PR China
| | - Xiangyuan Xiong
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, PR China
| | - Shengfeng Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, PR China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, PR China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, PR China.,National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi, PR China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, PR China
| |
Collapse
|
70
|
Eleraky NE, Allam A, Hassan SB, Omar MM. Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics 2020; 12:E142. [PMID: 32046289 PMCID: PMC7076477 DOI: 10.3390/pharmaceutics12020142] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Based on the recent reports of World Health Organization, increased antibiotic resistance prevalence among bacteria represents the greatest challenge to human health. In addition, the poor solubility, stability, and side effects that lead to inefficiency of the current antibacterial therapy prompted the researchers to explore new innovative strategies to overcome such resilient microbes. Hence, novel antibiotic delivery systems are in high demand. Nanotechnology has attracted considerable interest due to their favored physicochemical properties, drug targeting efficiency, enhanced uptake, and biodistribution. The present review focuses on the recent applications of organic (liposomes, lipid-based nanoparticles, polymeric micelles, and polymeric nanoparticles), and inorganic (silver, silica, magnetic, zinc oxide (ZnO), cobalt, selenium, and cadmium) nanosystems in the domain of antibacterial delivery. We provide a concise description of the characteristics of each system that render it suitable as an antibacterial delivery agent. We also highlight the recent promising innovations used to overcome antibacterial resistance, including the use of lipid polymer nanoparticles, nonlamellar liquid crystalline nanoparticles, anti-microbial oligonucleotides, smart responsive materials, cationic peptides, and natural compounds. We further discuss the applications of antimicrobial photodynamic therapy, combination drug therapy, nano antibiotic strategy, and phage therapy, and their impact on evading antibacterial resistance. Finally, we report on the formulations that made their way towards clinical application.
Collapse
Affiliation(s)
- Nermin E. Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (N.E.E.); (A.A.)
| | - Ayat Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (N.E.E.); (A.A.)
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Sahar B. Hassan
- Department of Clinical pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
| | - Mahmoud M. Omar
- Department of Pharmaceutics and Industrial Pharmacy, Deraya University, Minia 61768, Egypt
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy Sohag University, Sohag 82524, Egypt
| |
Collapse
|
71
|
Evaluation of Thermal Effects on the Bioactivity of Curcumin Microencapsulated with Porous Starch-Based Wall Material Using Spray Drying. Processes (Basel) 2020. [DOI: 10.3390/pr8020172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Curcumin was microencapsulated by porous starch using a spray dryer with a particle size between 1.5 and 2.0 µm and subjected to water bath (40–100 °C) and oven heating (150–200 °C) in comparison to non-encapsulated samples. The minimum possible encapsulation rate ranged from 26.75 to 52.23%. A reasonable thermal stability was observed after water bath heating with regard to 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) scavenging activity. On the other hand, the increase in oven heating temperature caused significant alterations compared with the control samples (p < 0.05). The encapsulated particles subjected to oven heating at 170 °C demonstrated serious collapse. The DPPH scavenging activity of non-encapsulated curcumin was significantly reduced (p < 0.05) from 48.94% ± 3.72% (control, 0 °C) to 40.42% ± 2.23% (oven heating, 160 °C); however, remained stable for the encapsulated samples (51.18% ± 4.86%–50.02% ± 1.79%) without significant difference (p < 0.05). The ABTS scavenging activity was promoted as a function of the oven heating temperature. Both DPPH and ABTS free radical scavenging activities remained stable after water bath. Nevertheless, the color of microencapsulated curcumin was better preserved in comparison to the controls.
Collapse
|
72
|
Lucas J, Ralaivao M, Estevinho BN, Rocha F. A new approach for the microencapsulation of curcumin by a spray drying method, in order to value food products. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.11.095] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
73
|
Cheng Y, Zhang Y, Deng W, Hu J. Antibacterial and anticancer activities of asymmetric lollipop-like mesoporous silica nanoparticles loaded with curcumin and gentamicin sulfate. Colloids Surf B Biointerfaces 2019; 186:110744. [PMID: 31874345 DOI: 10.1016/j.colsurfb.2019.110744] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022]
Abstract
Asymmetric mesoporous silica nanoparticles with anisotropic geometry and dual-compartments are highly desired for loading and release of dual-drugs in separated storage spaces. In this study, an asymmetric lollipop-like mesoporous silica nanoparticle Fe3O4@SiO2&EPMO (EPMO = ethane bridged periodic mesoporous organosilica) was successfully developed via an anisotropic epitaxial growth strategy. The asymmetric nanoparticles show a uniform lollipop shape with a head of spherical Fe3O4@SiO2 core-shell that is 200 nm in diameter and a tail of EPMO nanorods with a length of ∼90 nm, and a specific surface area of ∼650.3 m2 g-1. Most importantly, the asymmetric nanoparticles possess the unique dual independent (hydrophilic/hydrophobic) spaces with good loading capacities and are significantly more efficient for cancer cell killing than pure drug based on in vitro studies. Additionally, the dual-drug-loaded nanoparticles exhibited excellent antibacterial activity.
Collapse
Affiliation(s)
- Yajun Cheng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yudi Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Weijun Deng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|