51
|
Ashrafizadeh M, Zarrabi A, Hashemipour M, Vosough M, Najafi M, Shahinozzaman M, Hushmandi K, Khan H, Mirzaei H. Sensing the scent of death: Modulation of microRNAs by Curcumin in gastrointestinal cancers. Pharmacol Res 2020; 160:105199. [DOI: 10.1016/j.phrs.2020.105199] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
|
52
|
Iqbal A, Zaman M, Wahab Amjad M, Adnan S, Abdul Ghafoor Raja M, Haider Rizvi SF, Mustafa MW, Farooq U, Abbas G, Shah S. Solid Lipid Nanoparticles of Mycophenolate Mofetil: An Attempt to Control the Release of an Immunosuppressant. Int J Nanomedicine 2020; 15:5603-5612. [PMID: 32848390 PMCID: PMC7428318 DOI: 10.2147/ijn.s255636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/29/2020] [Indexed: 12/03/2022] Open
Abstract
Introduction Organ transplantation is a critically important procedure, which requires immune modulation by using immunosuppressants. Development of nanoparticles is an emerging and beneficial engineering process to increase the dissolution rate of poorly soluble immunosuppressants as well as to provide controlled release for better therapeutic outcomes. Method Currently, the nanoprecipitation method was employed to fabricate β-cyclodextrin (βCD) facilitated mycophenolate mofetil (MMF)-loaded solid lipid nanoparticles (SLNPs). The prime objectives of the study included, improvement of the dissolution profile of poorly aqueous soluble drug and controlled release from the SLNs to provide steady state drug concentration. Drug release from the prepared SLNs was assessed in two different media, ie, acidic buffer at pH 1.2 and phosphate buffer at pH 7.2 using USP dissolution apparatus for 12 h, followed by the evaluation of drug release mechanism and pattern by applying kinetic models. Results Justifiably, in acidic medium, the release was found to be 12% more (68%) in comparison to that in basic medium (56%). However, in both dissolution media, drug release was independent of initial concentration (R2>0.95) with non-Fickian type of diffusion mechanism. The outcomes of the study have exhibited that prepared formulations were in nanosized range (80–170 nm) with a net charge of ±23 charge on their surface. They possessed fairly uniform surface with acceptable polydispersity index (0.23±0.09). Scanning electron microscopy (SEM) analysis illustrated that the nanoparticles had uniform particle size and shape. Discussion The findings show potential applications of the nanoparticles and the method for the development of SLNPs in controlled release of MMF for better therapeutic outcomes. Conclusively, the prepared SLNPs were well designed in nanosized ranges and justifying the once daily controlled release formulation dose of MMF to enhance patient compliance.
Collapse
Affiliation(s)
- Asma Iqbal
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan.,Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | | | - Sharjeel Adnan
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | | | | | | | - Umer Farooq
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Ghulam Abbas
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shahid Shah
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
53
|
Ashrafizadeh M, Najafi M, Makvandi P, Zarrabi A, Farkhondeh T, Samarghandian S. Versatile role of curcumin and its derivatives in lung cancer therapy. J Cell Physiol 2020; 235:9241-9268. [PMID: 32519340 DOI: 10.1002/jcp.29819] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is a main cause of death all over the world with a high incidence rate. Metastasis into neighboring and distant tissues as well as resistance of cancer cells to chemotherapy demand novel strategies in lung cancer therapy. Curcumin is a naturally occurring nutraceutical compound derived from Curcuma longa (turmeric) that has great pharmacological effects, such as anti-inflammatory, neuroprotective, and antidiabetic. The excellent antitumor activity of curcumin has led to its extensive application in the treatment of various cancers. In the present review, we describe the antitumor activity of curcumin against lung cancer. Curcumin affects different molecular pathways such as vascular endothelial growth factors, nuclear factor-κB (NF-κB), mammalian target of rapamycin, PI3/Akt, microRNAs, and long noncoding RNAs in treatment of lung cancer. Curcumin also can induce autophagy, apoptosis, and cell cycle arrest to reduce the viability and proliferation of lung cancer cells. Notably, curcumin supplementation sensitizes cancer cells to chemotherapy and enhances chemotherapy-mediated apoptosis. Curcumin can elevate the efficacy of radiotherapy in lung cancer therapy by targeting various signaling pathways, such as epidermal growth factor receptor and NF-κB. Curcumin-loaded nanocarriers enhance the bioavailability, cellular uptake, and antitumor activity of curcumin. The aforementioned effects are comprehensively discussed in the current review to further direct studies for applying curcumin in lung cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
54
|
Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101662] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
55
|
The role of stabilizers and mechanical processes on physico-chemical and anti-inflammatory properties of methotrexate nanosuspensions. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
56
|
Rudnik LAC, Farago PV, Manfron Budel J, Lyra A, Barboza FM, Klein T, Kanunfre CC, Nadal JM, Bandéca MC, Raman V, Novatski A, Loguércio AD, Zanin SMW. Co-Loaded Curcumin and Methotrexate Nanocapsules Enhance Cytotoxicity against Non-Small-Cell Lung Cancer Cells. Molecules 2020; 25:molecules25081913. [PMID: 32326159 PMCID: PMC7221560 DOI: 10.3390/molecules25081913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022] Open
Abstract
Background: As part of the efforts to find natural alternatives for cancer treatment and to overcome the barriers of cellular resistance to chemotherapeutic agents, polymeric nanocapsules containing curcumin and/or methotrexate were prepared by an interfacial deposition of preformed polymer method. Methods: Physicochemical properties, drug release experiments and in vitro cytotoxicity of these nanocapsules were performed against the Calu-3 lung cancer cell line. Results: The colloidal suspensions of nanocapsules showed suitable size (287 to 325 nm), negative charge (-33 to -41 mV) and high encapsulation efficiency (82.4 to 99.4%). Spherical particles at nanoscale dimensions were observed by scanning electron microscopy. X-ray diffraction analysis indicated that nanocapsules exhibited a non-crystalline pattern with a remarkable decrease of crystalline peaks of the raw materials. Fourier-transform infrared spectra demonstrated no chemical bond between the drug(s) and polymers. Drug release experiments evidenced a controlled release pattern with no burst effect for nanocapsules containing curcumin and/or methotrexate. The nanoformulation containing curcumin and methotrexate (NCUR/MTX-2) statistically decreased the cell viability of Calu-3. The fluorescence and morphological analyses presented a predominance of early apoptosis and late apoptosis as the main death mechanisms for Calu-3. Conclusions: Curcumin and methotrexate co-loaded nanocapsules can be further used as a novel therapeutic strategy for treating non-small-cell lung cancer.
Collapse
Affiliation(s)
- Loanda Aparecida Cabral Rudnik
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | - Paulo Vitor Farago
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, 81020-430 Curitiba, Brazil;
| | - Jane Manfron Budel
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
- Correspondence: ; Tel.: +55-42-3220-3124
| | - Amanda Lyra
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | - Fernanda Malaquias Barboza
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | - Traudi Klein
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | - Carla Cristine Kanunfre
- Postgraduate Program in Biomedical Science, Department of General Biology, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil;
| | - Jessica Mendes Nadal
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | | | - Vijayasankar Raman
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
| | - Andressa Novatski
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | - Alessandro Dourado Loguércio
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | - Sandra Maria Warumby Zanin
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, 81020-430 Curitiba, Brazil;
| |
Collapse
|
57
|
Insights on Ultrafiltration-Based Separation for the Purification and Quantification of Methotrexate in Nanocarriers. Molecules 2020; 25:molecules25081879. [PMID: 32325744 PMCID: PMC7221554 DOI: 10.3390/molecules25081879] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
The evaluation of encapsulation efficiency is a regulatory requirement for the characterization of drug delivery systems. However, the difficulties in efficiently separating nanomedicines from the free drug may compromise the achievement of accurate determinations. Herein, ultrafiltration was exploited as a separative strategy towards the evaluation of methotrexate (MTX) encapsulation efficiency in nanostructured lipid carriers and polymeric nanoparticles. The effect of experimental conditions such as pH and the amount of surfactant present in the ultrafiltration media was addressed aiming at the selection of suitable conditions for the effective purification of nanocarriers. MTX-loaded nanoparticles were then submitted to ultrafiltration and the portions remaining in the upper compartment of the filtering device and in the ultrafiltrate were collected and analyzed by HPLC-UV using a reversed-phase (C18) monolithic column. A short centrifugation time (5 min) was suitable for establishing the amount of encapsulated MTX in nanostructured lipid carriers, based on the assumption that the free MTX concentration was the same in the upper compartment and in the ultrafiltrate. The defined conditions allowed the efficient separation of nanocarriers from the free drug, with recoveries of >85% even when nanoparticles were present in cell culture media and in pig skin surrogate from permeation assays.
Collapse
|
58
|
Cheng Y, Zhang Y, Deng W, Hu J. Antibacterial and anticancer activities of asymmetric lollipop-like mesoporous silica nanoparticles loaded with curcumin and gentamicin sulfate. Colloids Surf B Biointerfaces 2019; 186:110744. [PMID: 31874345 DOI: 10.1016/j.colsurfb.2019.110744] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022]
Abstract
Asymmetric mesoporous silica nanoparticles with anisotropic geometry and dual-compartments are highly desired for loading and release of dual-drugs in separated storage spaces. In this study, an asymmetric lollipop-like mesoporous silica nanoparticle Fe3O4@SiO2&EPMO (EPMO = ethane bridged periodic mesoporous organosilica) was successfully developed via an anisotropic epitaxial growth strategy. The asymmetric nanoparticles show a uniform lollipop shape with a head of spherical Fe3O4@SiO2 core-shell that is 200 nm in diameter and a tail of EPMO nanorods with a length of ∼90 nm, and a specific surface area of ∼650.3 m2 g-1. Most importantly, the asymmetric nanoparticles possess the unique dual independent (hydrophilic/hydrophobic) spaces with good loading capacities and are significantly more efficient for cancer cell killing than pure drug based on in vitro studies. Additionally, the dual-drug-loaded nanoparticles exhibited excellent antibacterial activity.
Collapse
Affiliation(s)
- Yajun Cheng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yudi Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Weijun Deng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|