51
|
Xu M, Li G, Zhang H, Chen X, Li Y, Yao Q, Xie M. Sequential delivery of dual drugs with nanostructured lipid carriers for improving synergistic tumor treatment effect. Drug Deliv 2021; 27:983-995. [PMID: 32611218 PMCID: PMC8216445 DOI: 10.1080/10717544.2020.1785581] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To improve synergistic anticancer efficacy and minimize the adverse effects of chemotherapeutic drugs, temozolomide (TMZ) and curcumin (CUR) co-loaded nanostructured lipid carriers (NLCs) were prepared by microemulsion in this study. And the physicochemical properties, drug release behavior, intracellular uptake efficiency, in vitro and in vivo anticancer effects of TMZ/CUR-NLCs were evaluated. TMZ/CUR-NLCs showed enhanced inhibitory effects on glioma cells compared to single drug loaded NLCs, which may be owing to that the quickly released CUR can sensitize the cancer cells to TMZ. The inhibitory mechanism is a combination of S phase cell cycle arrest associated with induced apoptosis. Notably, TMZ/CUR-NLCs can accumulate at brain and tumor sites effectively and perform a significant synergistic anticancer effect in vivo. More importantly, the toxic effects of TMZ/CUR-NLCs on major organs and normal cells at the same therapeutic dosage were not observed. In conclusion, NLCs are promising nanocarriers for delivering dual chemotherapeutic drugs sequentially, showing potentials in the synergistic treatment of tumors while reducing adverse effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Man Xu
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China.,Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Guangmeng Li
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Haoxiang Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaoming Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yi Li
- School of Materials, The University of Manchester, Manchester, UK
| | - Qianming Yao
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Maobin Xie
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China.,Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
52
|
A novel 'smart' PNIPAM-based copolymer for breast cancer targeted therapy: Synthesis, and characterization of dual pH/temperature-responsive lactoferrin-targeted PNIPAM-co-AA. Colloids Surf B Biointerfaces 2021; 202:111694. [PMID: 33740633 DOI: 10.1016/j.colsurfb.2021.111694] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Despite the active research towards introducing novel anticancer agents, the long-term sequelae and side effects of chemotherapy remain the major obstacle to achieving clinical success. Recent cancer research is now utilizing the medicinal chemistry toolbox to tailor novel 'smart' carrier systems that can reduce the major limitations of chemotherapy ranging from non-specificity and ubiquitous biodistribution to systemic toxicity. In this aspect, various stimuli-responsive polymers have gained considerable interest due to their intrinsic tumor targeting properties. Among these polymers, poly(N-isopropylacrylamide (PNIPAM) has been chemically modified to tune its thermoresponsivity or even copolymerized to endow new stimulus responsiveness for enhancing tumor targeting. Herein, we set our design rationale to impart additional active targeting entity to pH/temperature-responsive PNIPAM-based polymer for more efficient controlled payloads accumulation at the tumor through cellular internalization via synthesizing novel "super intelligent" lactoferrin conjugated PNIPAM-acrylic acid (LF-PNIPAM-co-AA) copolymer. The synthesized copolymer was physicochemically characterized and evaluated as a smart nanocarrier for targeting breast cancer. In this regard, Honokiol (HK) was utilized as a model anticancer drug and encapsulated in the nanoparticles to overcome its lipophilic nature and allow its parenteral administration, for achieving sustainable drug release with targeting action. Results showed that the developed HK-loaded LF-PNIPAM-co-AA nanohydrogels displayed high drug loading capacity reaching to 18.65 wt.% with excellent physical and serum stability. Moreover, the prepared HK-loaded nanohydrogels exhibited efficient in vitro and in vivo antitumor activities. In vivo, HK-loaded nanohydrogels demonstrated suppression of VEGF-1 and Ki-67 expression levels, besides inducing apoptosis through upregulating the expression level of active caspase-3 in breast cancer-bearing mice. Overall, the developed nanohydrogels (NGs) with pH and temperature responsivity provide a promising nanocarrier for anticancer treatment.
Collapse
|
53
|
Mohamed Isa ED, Ahmad H, Abdul Rahman MB, Gill MR. Progress in Mesoporous Silica Nanoparticles as Drug Delivery Agents for Cancer Treatment. Pharmaceutics 2021; 13:152. [PMID: 33498885 PMCID: PMC7911720 DOI: 10.3390/pharmaceutics13020152] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer treatment and therapy have made significant leaps and bounds in these past decades. However, there are still cases where surgical removal is impossible, metastases are challenging, and chemotherapy and radiotherapy pose severe side effects. Therefore, a need to find more effective and specific treatments still exists. One way is through the utilization of drug delivery agents (DDA) based on nanomaterials. In 2001, mesoporous silica nanoparticles (MSNs) were first used as DDA and have gained considerable attention in this field. The popularity of MSNs is due to their unique properties such as tunable particle and pore size, high surface area and pore volume, easy functionalization and surface modification, high stability and their capability to efficiently entrap cargo molecules. This review describes the latest advancement of MSNs as DDA for cancer treatment. We focus on the fabrication of MSNs, the challenges in DDA development and how MSNs address the problems through the development of smart DDA using MSNs. Besides that, MSNs have also been applied as a multifunctional DDA where they can serve in both the diagnostic and treatment of cancer. Overall, we argue MSNs provide a bright future for both the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Eleen Dayana Mohamed Isa
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia;
| | - Haslina Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43000, Malaysia;
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
| | | | - Martin R. Gill
- Department of Chemistry, Swansea University, Swansea SA2 8PP, UK;
| |
Collapse
|
54
|
Nisha R, Kumar P, Kumar U, Mishra N, Maurya P, Singh S, Singh P, Guleria A, Saha S, Saraf SA. Fabrication of Imatinib Mesylate-Loaded Lactoferrin-Modified PEGylated Liquid Crystalline Nanoparticles for Mitochondrial-Dependent Apoptosis in Hepatocellular Carcinoma. Mol Pharm 2020; 18:1102-1120. [PMID: 33356314 DOI: 10.1021/acs.molpharmaceut.0c01024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major cause of concern as it has substantial morbidity associated with it. Previous reports have ascertained the antiproliferative activity of imatinib mesylate (IMS) against diverse types of carcinomas, but limited bioavailability has also been reported. The present study envisaged optimized IMS-loaded lactoferrin (LF)-modified PEGylated liquid crystalline nanoparticles (IMS-LF-LCNPs) for effective therapy of IMS to HCC via asialoglycoprotein receptor (ASGPR) targeting. Results displayed that IMS-LF-LCNPs presented an optimum particle size of 120.40 ± 2.75 nm, a zeta potential of +12.5 ± 0.23 mV, and 73.94 ± 2.69% release. High-resolution transmission electron microscopy and atomic force microscopy were used to confirm the surface architecture of IMS-LF-LCNPs. The results of cytotoxicity and 4,6-diamidino-2-phenylindole revealed that IMS-LF-LCNPs had the highest growth inhibition and significant apoptotic effects. Pharmacokinetics and biodistribution studies showed that IMS-LF-LCNPs have superior pharmacokinetic performance and targeted delivery compared to IMS-LCNPs and plain IMS, which was attributed to the targeting action of LF that targets the ASGPR in hepatic cells. Next, our in vivo experiment established that the HCC environment existed due to suppression of BAX, cyt c, BAD, e-NOS, and caspase (3 and 9) genes, which thus owed upstream expression of Bcl-xl, iNOS, and Bcl-2 genes. The excellent therapeutic potential of IMS-LF-LCNPs began the significant stimulation of caspase-mediated apoptotic signals accountable for its anti-HCC prospect. 1H nuclear magnetic resonance (serum) metabolomics revealed that IMS-LF-LCNPs are capable of regulating the disturbed levels of metabolites linked to HCC triggered through N-nitrosodiethylamine. Therefore, IMS-LF-LCNPs are a potentially effective formulation against HCC.
Collapse
Affiliation(s)
- Raquibun Nisha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Umesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Priyanka Maurya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Samipta Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Anupam Guleria
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| |
Collapse
|
55
|
Lactoferrin coated or conjugated nanomaterials as an active targeting approach in nanomedicine. Int J Biol Macromol 2020; 167:1527-1543. [PMID: 33212102 DOI: 10.1016/j.ijbiomac.2020.11.107] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/08/2020] [Accepted: 11/15/2020] [Indexed: 12/28/2022]
Abstract
A successful drug delivery to a specific site relies on two essential factors including; efficient entrapment of the drug within the carrier and successful delivery of drug- loaded nanocarrier to the target site without opsonisation or drug release in the circulation before reaching the organ of interest. Lactoferrin (LF) is a glycoprotein belonging to the transferrin (TF) family which can bind to TF receptors (TFRs) and LF membrane internalization receptors (LFRs) highly expressed on the cell surface of both highly proliferating cancer cells and blood brain barrier (BBB), which in turn can facilitate its accessibility to the cell nucleus. This merit could be exploited to develop actively targeted drug delivery systems that can easily cross the BBB or internalize into tumor cells. In this review, the most recent advances of utilizing LF as an active targeting ligand for different types of nanocarriers including: inorganic nanoparticles, dendrimers, synthetic biodegradable polymers, lipid nanocarriers, natural polymers, and nanoemulstions will be highlighted. Collectively, LF seems to be a promising targeting ligand in the field of nanomedicine.
Collapse
|
56
|
Salama L, Pastor ER, Stone T, Mousa SA. Emerging Nanopharmaceuticals and Nanonutraceuticals in Cancer Management. Biomedicines 2020; 8:E347. [PMID: 32932737 PMCID: PMC7554840 DOI: 10.3390/biomedicines8090347] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology is the science of nanoscale, which is the scale of nanometers or one billionth of a meter. Nanotechnology encompasses a broad range of technologies, materials, and manufacturing processes that are used to design and/or enhance many products, including medicinal products. This technology has achieved considerable progress in the oncology field in recent years. Most chemotherapeutic agents are not specific to the cancer cells they are intended to treat, and they can harm healthy cells, leading to numerous adverse effects. Due to this non-specific targeting, it is not feasible to administer high doses that may harm healthy cells. Moreover, low doses can cause cancer cells to acquire resistance, thus making them hard to kill. A solution that could potentially enhance drug targeting and delivery lies in understanding the complexity of nanotechnology. Engineering pharmaceutical and natural products into nano-products can enhance the diagnosis and treatment of cancer. Novel nano-formulations such as liposomes, polymeric micelles, dendrimers, quantum dots, nano-suspensions, and gold nanoparticles have been shown to enhance the delivery of drugs. Improved delivery of chemotherapeutic agents targets cancer cells rather than healthy cells, thereby preventing undesirable side effects and decreasing chemotherapeutic drug resistance. Nanotechnology has also revolutionized cancer diagnosis by using nanotechnology-based imaging contrast agents that can specifically target and therefore enhance tumor detection. In addition to the delivery of drugs, nanotechnology can be used to deliver nutraceuticals like phytochemicals that have multiple properties, such as antioxidant activity, that protect cells from oxidative damage and reduce the risk of cancer. There have been multiple advancements and implications for the use of nanotechnology to enhance the delivery of both pharmaceutical and nutraceutical products in cancer prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
| | | | | | - Shaker A. Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (L.S.); (E.R.P.); (T.S.)
| |
Collapse
|
57
|
Elzoghby AO, Abdelmoneem MA, Hassanin IA, Abd Elwakil MM, Elnaggar MA, Mokhtar S, Fang JY, Elkhodairy KA. Lactoferrin, a multi-functional glycoprotein: Active therapeutic, drug nanocarrier & targeting ligand. Biomaterials 2020; 263:120355. [PMID: 32932142 PMCID: PMC7480805 DOI: 10.1016/j.biomaterials.2020.120355] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
Recent progress in protein-based nanomedicine, inspired by the success of Abraxane® albumin-paclitaxel nanoparticles, have resulted in novel therapeutics used for treatment of challenging diseases like cancer and viral infections. However, absence of specific drug targeting, poor pharmacokinetics, premature drug release, and off-target toxicity are still formidable challenges in the clinic. Therefore, alternative protein-based nanomedicines were developed to overcome those challenges. In this regard, lactoferrin (Lf), a glycoprotein of transferrin family, offers a promising biodegradable well tolerated material that could be exploited both as an active therapeutic and drug nanocarrier. This review highlights the major pharmacological actions of Lf including anti-cancer, antiviral, and immunomodulatory actions. Delivery technologies of Lf to improve its pries and enhance its efficacy were also reviewed. Moreover, different nano-engineering strategies used for fabrication of drug-loaded Lf nanocarriers were discussed. In addition, the use of Lf for functionalization of drug nanocarriers with emphasis on tumor-targeted drug delivery was illustrated. Besides its wide application in oncology nano-therapeutics, we discussed the recent advances of Lf-based nanocarriers as efficient platforms for delivery of anti-parkinsonian, anti-Alzheimer, anti-viral drugs, immunomodulatory and bone engineering applications.
Collapse
Affiliation(s)
- Ahmed O Elzoghby
- Center for Engineered Therapeutics, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Harvard-MIT Division of Health Sciences & Technology (HST), Cambridge, MA, 02139, USA; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Mona A Abdelmoneem
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Damanhur University, Damanhur, 22516, Egypt
| | - Islam A Hassanin
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Mahmoud M Abd Elwakil
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Manar A Elnaggar
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Nanotechnology Program, School of Sciences & Engineering, The American University in Cairo (AUC), New Cairo, 11835, Egypt
| | - Sarah Mokhtar
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, 333, Taiwan
| | - Kadria A Elkhodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
58
|
Ghaferi M, Koohi Moftakhari Esfahani M, Raza A, Al Harthi S, Ebrahimi Shahmabadi H, Alavi SE. Mesoporous silica nanoparticles: synthesis methods and their therapeutic use-recent advances. J Drug Target 2020; 29:131-154. [PMID: 32815741 DOI: 10.1080/1061186x.2020.1812614] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesoporous silica nanoparticles (MSNPs) are a particular example of innovative nanomaterials for the development of drug delivery systems. MSNPs have recently received more attention for biological and pharmaceutical applications due to their capability to deliver therapeutic agents. Due to their unique structure, they can function as an effective carrier for the delivery of therapeutic agents to mitigate diseases progress, reduce inflammatory responses and consequently improve cancer treatment. The potency of MSNPs for the diagnosis and management of various diseases has been studied. This literature review will take an in-depth look into the properties of various types of MSNPs (e.g. shape, particle and pore size, surface area, pore volume and surface functionalisation), and discuss their characteristics, in terms of cellular uptake, drug delivery and release. MSNPs will then be discussed in terms of their therapeutic applications (passive and active tumour targeting, theranostics, biosensing and immunostimulative), biocompatibility and safety issues. Also, emerging trends and expected future advancements of this carrier will be provided.
Collapse
Affiliation(s)
- Mohsen Ghaferi
- Department of Chemical Engineering, Islamic Azad University, Shahrood Branch, Shahrood, Iran
| | - Maedeh Koohi Moftakhari Esfahani
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Molecular Design and Synthesis Discipline, Queensland University of Technology, Brisbane, Australia
| | - Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba, Australia
| | - Sitah Al Harthi
- School of Pharmacy, The University of Queensland, Woolloongabba, Australia.,Department of Pharmaceutical Science, College of Pharmacy, Shaqra University, Dawadmi, Saudi Arabia
| | - Hasan Ebrahimi Shahmabadi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | |
Collapse
|
59
|
Naghizadeh A, Mohammadi-Aghdam S, Mortazavi-Derazkola S. Novel CoFe 2O 4@ZnO-CeO 2 ternary nanocomposite: Sonochemical green synthesis using Crataegus microphylla extract, characterization and their application in catalytic and antibacterial activities. Bioorg Chem 2020; 103:104194. [PMID: 32890997 DOI: 10.1016/j.bioorg.2020.104194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
In this study, CoFe2O4@ZnO-CeO2 magnetic nanocomposite (CoFe@Zn-Ce MNC) was successfully prepared by facile sonochemical method for the first time. CoFe@Zn-Ce MNC was obtained by green and cost-effective process in the presence of Crataegus microphylla (C. microphylla) fruit extract. Influence of some parameters like capping agents (C. microphylla, SDS and CTAB), sonication time (10, 30 and 60 min) and sonication power (40, 60 and 80 W) were studied to achieve optimum condition. The as-obtained products were characterized by FT-IR, FESEM, TEM, DRS, VSM, EDS, TGA and XRD analysis. Results showed that high magnetic properties (20.38 emug-1), 70-80 nm size and spherical morphology were unique characteristics of synthesized nanocomposite. Antibacterial activity of CoFe@Zn-Ce MNC was examined against E. coli, P. aeruginoss and S. aureus bacteria. Among theme, S. aureus as gram-positive bacteria showed excellent antibacterial activity. Furthermore, photocatalytic performance of the CoFe@Zn-Ce MNC was investigated by degradation of humic acid (HA) molecules under visible and UV light irradiations. The influence of morphology of products and incorporation of cerium oxide with CoFe2O4@ZnO on photocatalytic activity of CoFe2O4@ZnO was performed. After 100 min illumination, the decomposition of HA pollutant by magnetic nanocomposite were 97.2% and 72.4% under exposure of UV and visible light irradiations, respectively. Also, CoFe@Zn-Ce MNC demonstrated high stability in the cycling decomposition experiment after six times cycling runs.
Collapse
Affiliation(s)
- Ali Naghizadeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | | | - Sobhan Mortazavi-Derazkola
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
60
|
Kondapi AK. Targeting cancer with lactoferrin nanoparticles: recent advances. Nanomedicine (Lond) 2020; 15:2071-2083. [PMID: 32779524 DOI: 10.2217/nnm-2020-0090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lactoferrin, an iron storage protein, is known for its microbicidal activity and its ability to modulate the immune system, mediated through specific interactions with receptors on cell surfaces for internalization. These activities confer a significant versatility to lactoferrin, presenting it as a targeting ligand to disease-bearing cells. Early efforts in developing targeted delivery systems have focused on nano- and microcomposites comprised of metal and polymeric materials. These can be targeted through conjugation or adsorption of lactoferrin to achieve recognition to receptor-expressing cells. More recently, efforts are underway to utilize lactoferrin itself as a medium in loading the therapeutic agent. The functional efficiency of drug-loaded lactoferrin nanoparticles has been evaluated in different disease conditions such as cancer, HIV, Parkinson's disease, etc. This review will present the details of composition and performance of various delivery systems designed and developed using lactoferrin as targeting agent for the treatment of cancer.
Collapse
Affiliation(s)
- Anand K Kondapi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.,Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
61
|
Rosch J, DuRoss AN, Landry MR, Sun C. Development of a Pemetrexed/Folic Acid Nanoformulation: Synthesis, Characterization, and Efficacy in a Murine Colorectal Cancer Model. ACS OMEGA 2020; 5:15424-15432. [PMID: 32637817 PMCID: PMC7331029 DOI: 10.1021/acsomega.0c01550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/04/2020] [Indexed: 05/07/2023]
Abstract
The folate analogue pemetrexed (PEM) is an approved therapeutic for non-small cell lung cancer and malignant pleural mesothelioma with the potential for broader application in combination therapies. Here, we report the development of a nanoformulation of PEM and its efficacy against the CT26 murine colorectal cancer cell line in vitro and in vivo. Utilizing layer-by-layer deposition, we integrate PEM, along with folic acid (FA), onto a fluorescent polystyrene nanoparticle (NP) substrate. The final nanoformulation (PEM/FA-NP) has a size of ∼40 nm and a zeta potential of approximately -20 mV. Cell uptake studies indicated increased uptake in vitro for the PEM/FA-NP compared to the uncoated NP, likely due to the presence of PEM and FA. Viability studies were performed to determine the potency of the PEM/FA-NP formulation against CT26 cells. Syngeneic CT26 tumors in BALB/c mice showed reduced growth when treated once daily (2.1 mg/kg PEM) for 3 days with PEM/FA-NP versus the vehicle (uncoated) control, with no observable signs of systemic toxicity associated with the nanoformulation. Although the current study size is limited (n = 4 animals for each group), the overall performance and biocompatibility of the PEM/FA-NP observed suggest that further optimization and larger-scale studies may be warranted for this novel formulation.
Collapse
Affiliation(s)
- Justin
G. Rosch
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Allison N. DuRoss
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Madeleine R. Landry
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Conroy Sun
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
- Department
of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
- . Phone: 503-346-4699
| |
Collapse
|
62
|
Mc Cormack BA, Bilotas MA, Madanes D, Ricci AG, Singla JJ, Barañao RI. Potential use of ellagic acid for endometriosis treatment: its effect on a human endometrial cell cycle, adhesion and migration. Food Funct 2020; 11:4605-4614. [DOI: 10.1039/d0fo00267d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
EA treatment decreases cell adhesion and migration of endometrial cells and alters the progression of an endometrial stromal cell line cycle.
Collapse
Affiliation(s)
- B. A. Mc Cormack
- Laboratorio de Inmunología de la Reproducción
- Instituto de Biología y Medicina Experimental
- (IBYME-CONICET)
- Buenos Aires C1428ADN
- Argentina
| | - M. A. Bilotas
- Laboratorio de Inmunología de la Reproducción
- Instituto de Biología y Medicina Experimental
- (IBYME-CONICET)
- Buenos Aires C1428ADN
- Argentina
| | - D. Madanes
- Laboratorio de Inmunología de la Reproducción
- Instituto de Biología y Medicina Experimental
- (IBYME-CONICET)
- Buenos Aires C1428ADN
- Argentina
| | - A. G. Ricci
- Laboratorio de Inmunología de la Reproducción
- Instituto de Biología y Medicina Experimental
- (IBYME-CONICET)
- Buenos Aires C1428ADN
- Argentina
| | - J. J. Singla
- Hospital de Clínicas “José de San Martín”
- Buenos Aires C1120AAR
- Argentina
| | - R. I. Barañao
- Laboratorio de Inmunología de la Reproducción
- Instituto de Biología y Medicina Experimental
- (IBYME-CONICET)
- Buenos Aires C1428ADN
- Argentina
| |
Collapse
|