51
|
Debelee TG. Skin Lesion Classification and Detection Using Machine Learning Techniques: A Systematic Review. Diagnostics (Basel) 2023; 13:3147. [PMID: 37835889 PMCID: PMC10572538 DOI: 10.3390/diagnostics13193147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Skin lesions are essential for the early detection and management of a number of dermatological disorders. Learning-based methods for skin lesion analysis have drawn much attention lately because of improvements in computer vision and machine learning techniques. A review of the most-recent methods for skin lesion classification, segmentation, and detection is presented in this survey paper. The significance of skin lesion analysis in healthcare and the difficulties of physical inspection are discussed in this survey paper. The review of state-of-the-art papers targeting skin lesion classification is then covered in depth with the goal of correctly identifying the type of skin lesion from dermoscopic, macroscopic, and other lesion image formats. The contribution and limitations of various techniques used in the selected study papers, including deep learning architectures and conventional machine learning methods, are examined. The survey then looks into study papers focused on skin lesion segmentation and detection techniques that aimed to identify the precise borders of skin lesions and classify them accordingly. These techniques make it easier to conduct subsequent analyses and allow for precise measurements and quantitative evaluations. The survey paper discusses well-known segmentation algorithms, including deep-learning-based, graph-based, and region-based ones. The difficulties, datasets, and evaluation metrics particular to skin lesion segmentation are also discussed. Throughout the survey, notable datasets, benchmark challenges, and evaluation metrics relevant to skin lesion analysis are highlighted, providing a comprehensive overview of the field. The paper concludes with a summary of the major trends, challenges, and potential future directions in skin lesion classification, segmentation, and detection, aiming to inspire further advancements in this critical domain of dermatological research.
Collapse
Affiliation(s)
- Taye Girma Debelee
- Ethiopian Artificial Intelligence Institute, Addis Ababa 40782, Ethiopia;
- Department of Electrical and Computer Engineering, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia
| |
Collapse
|
52
|
Sufyan M, Shokat Z, Ashfaq UA. Artificial intelligence in cancer diagnosis and therapy: Current status and future perspective. Comput Biol Med 2023; 165:107356. [PMID: 37688994 DOI: 10.1016/j.compbiomed.2023.107356] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/21/2023] [Accepted: 08/12/2023] [Indexed: 09/11/2023]
Abstract
Artificial intelligence (AI) in healthcare plays a pivotal role in combating many fatal diseases, such as skin, breast, and lung cancer. AI is an advanced form of technology that uses mathematical-based algorithmic principles similar to those of the human mind for cognizing complex challenges of the healthcare unit. Cancer is a lethal disease with many etiologies, including numerous genetic and epigenetic mutations. Cancer being a multifactorial disease is difficult to be diagnosed at an early stage. Therefore, genetic variations and other leading factors could be identified in due time through AI and machine learning (ML). AI is the synergetic approach for mining the drug targets, their mechanism of action, and drug-organism interaction from massive raw data. This synergetic approach is also facing several challenges in data mining but computational algorithms from different scientific communities for multi-target drug discovery are highly helpful to overcome the bottlenecks in AI for drug-target discovery. AI and ML could be the epicenter in the medical world for the diagnosis, treatment, and evaluation of almost any disease in the near future. In this comprehensive review, we explore the immense potential of AI and ML when integrated with the biological sciences, specifically in the context of cancer research. Our goal is to illuminate the many ways in which AI and ML are being applied to the study of cancer, from diagnosis to individualized treatment. We highlight the prospective role of AI in supporting oncologists and other medical professionals in making informed decisions and improving patient outcomes by examining the intersection of AI and cancer control. Although AI-based medical therapies show great potential, many challenges must be overcome before they can be implemented in clinical practice. We critically assess the current hurdles and provide insights into the future directions of AI-driven approaches, aiming to pave the way for enhanced cancer interventions and improved patient care.
Collapse
Affiliation(s)
- Muhammad Sufyan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan.
| | - Zeeshan Shokat
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan.
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan.
| |
Collapse
|
53
|
Ait Hammou B, Antaki F, Boucher MC, Duval R. MBT: Model-Based Transformer for retinal optical coherence tomography image and video multi-classification. Int J Med Inform 2023; 178:105178. [PMID: 37657204 DOI: 10.1016/j.ijmedinf.2023.105178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/13/2023] [Accepted: 08/06/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND AND OBJECTIVE The detection of retinal diseases using optical coherence tomography (OCT) images and videos is a concrete example of a data classification problem. In recent years, Transformer architectures have been successfully applied to solve a variety of real-world classification problems. Although they have shown impressive discriminative abilities compared to other state-of-the-art models, improving their performance is essential, especially in healthcare-related problems. METHODS This paper presents an effective technique named model-based transformer (MBT). It is based on popular pre-trained transformer models, particularly, vision transformer, swin transformer for OCT image classification, and multiscale vision transformer for OCT video classification. The proposed approach is designed to represent OCT data by taking advantage of an approximate sparse representation technique. Then, it estimates the optimal features, and performs data classification. RESULTS The experiments are carried out using three real-world retinal datasets. The experimental results on OCT image and OCT video datasets show that the proposed method outperforms existing state-of-the-art deep learning approaches in terms of classification accuracy, precision, recall, and f1-score, kappa, AUC-ROC, and AUC-PR. It can also boost the performance of existing transformer models, including Vision transformer and Swin transformer for OCT image classification, and Multiscale Vision Transformers for OCT video classification. CONCLUSIONS This work presents an approach for the automated detection of retinal diseases. Although deep neural networks have proven great potential in ophthalmology applications, our findings demonstrate for the first time a new way to identify retinal pathologies using OCT videos instead of images. Moreover, our proposal can help researchers enhance the discriminative capacity of a variety of powerful deep learning models presented in published papers. This can be valuable for future directions in medical research and clinical practice.
Collapse
Affiliation(s)
- Badr Ait Hammou
- Department of Ophthalmology, Université de Montréal, Montreal, Québec, Canada; Centre Universitaire d'Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, CIUSSS de l'Est-de-l'Île-de-Montréal, Montréal, Québec, Canada.
| | - Fares Antaki
- Department of Ophthalmology, Université de Montréal, Montreal, Québec, Canada; Centre Universitaire d'Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, CIUSSS de l'Est-de-l'Île-de-Montréal, Montréal, Québec, Canada; Department of Ophthalmology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Marie-Carole Boucher
- Department of Ophthalmology, Université de Montréal, Montreal, Québec, Canada; Centre Universitaire d'Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, CIUSSS de l'Est-de-l'Île-de-Montréal, Montréal, Québec, Canada
| | - Renaud Duval
- Department of Ophthalmology, Université de Montréal, Montreal, Québec, Canada; Centre Universitaire d'Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, CIUSSS de l'Est-de-l'Île-de-Montréal, Montréal, Québec, Canada
| |
Collapse
|
54
|
Raghavendra PVSP, Charitha C, Begum KG, Prasath VBS. Deep Learning-Based Skin Lesion Multi-class Classification with Global Average Pooling Improvement. J Digit Imaging 2023; 36:2227-2248. [PMID: 37407845 PMCID: PMC10501971 DOI: 10.1007/s10278-023-00862-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Cancerous skin lesions are one of the deadliest diseases that have the ability in spreading across other body parts and organs. Conventionally, visual inspection and biopsy methods are widely used to detect skin cancers. However, these methods have some drawbacks, and the prediction is not highly accurate. This is where a dependable automatic recognition system for skin cancers comes into play. With the extensive usage of deep learning in various aspects of medical health, a novel computer-aided dermatologist tool has been suggested for the accurate identification and classification of skin lesions by deploying a novel deep convolutional neural network (DCNN) model that incorporates global average pooling along with preprocessing to discern the skin lesions. The proposed model is trained and tested on the HAM10000 dataset, which contains seven different classes of skin lesions as target classes. The black hat filtering technique has been applied to remove artifacts in the preprocessing stage along with the resampling techniques to balance the data. The performance of the proposed model is evaluated by comparing it with some of the transfer learning models such as ResNet50, VGG-16, MobileNetV2, and DenseNet121. The proposed model provides an accuracy of 97.20%, which is the highest among the previous state-of-art models for multi-class skin lesion classification. The efficacy of the proposed model is also validated by visualizing the results obtained using a graphical user interface (GUI).
Collapse
Affiliation(s)
| | - C. Charitha
- School of Electrical and Electronics Engineering, SASTRA Deemed to be University, 613401 Thanjavur, India
| | - K. Ghousiya Begum
- School of Electrical and Electronics Engineering, SASTRA Deemed to be University, 613401 Thanjavur, India
| | - V. B. S. Prasath
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45257 USA
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, Cincinnati, OH 45267 USA
- Department of Computer Science, University of Cincinnati, Cincinnati, OH 45221 USA
| |
Collapse
|
55
|
Kamalanathan A, Muthu B, Kuniyil Kaleena P. Artificial Intelligence (AI) Game Changer in Cancer Biology. MARVELS OF ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE IN LIFE SCIENCES 2023:62-87. [DOI: 10.2174/9789815136807123010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Healthcare is one of many industries where the most modern technologies,
such as artificial intelligence and machine learning, have shown a wide range of
applications. Cancer, one of the most prevalent non-communicable diseases in modern
times, accounts for a sizable portion of worldwide mortality. Investigations are
continuously being conducted to find ways to reduce cancer mortality and morbidity.
Artificial Intelligence (AI) is currently being used in cancer research, with promising
results. Two main features play a vital role in improving cancer prognosis: early
detection and proper diagnosis using imaging and molecular techniques. AI's use as a
tool in these sectors has demonstrated its capacity to precisely detect and diagnose,
which is one of AI's many applications in cancer research. The purpose of this chapter
is to review the literature and find AI applications in a range of cancers that are
commonly seen.
Collapse
Affiliation(s)
- Ashok Kamalanathan
- Department of Microbiology and Biotechnology, Faculty of Arts and Science, Bharath Institute
of Higher Education and Research (BIHER), Chennai- 600 073, Tamil Nadu, India
| | - Babu Muthu
- Department of Microbiology and Biotechnology, Faculty of Arts and Science, Bharath Institute
of Higher Education and Research (BIHER), Chennai- 600 073, Tamil Nadu, India
| | | |
Collapse
|
56
|
Schuh S, Schiele S, Thamm J, Kranz S, Welzel J, Blum A. Implementation of a dermatoscopy curriculum during residency at Augsburg University Hospital in Germany. J Dtsch Dermatol Ges 2023; 21:872-879. [PMID: 37235503 DOI: 10.1111/ddg.15115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/04/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND OBJECTIVES To date, there is no structured program for dermatoscopy training during residency in Germany. Whether and how much dermatoscopy training is acquired is left to the initiative of each resident, although dermatoscopy is one of the core competencies of dermatological training and daily practice. The aim of the study was to establish a structured dermatoscopy curriculum during residency at the University Hospital Augsburg. PATIENTS AND METHODS An online platform with dermatoscopy modules was created, accessible regardless of time and place. Practical skills were acquired under the personal guidance of a dermatoscopy expert. Participants were tested on their level of knowledge before and after completing the modules. Test scores on management decisions and correct dermatoscopic diagnosis were analyzed. RESULTS Results of 28 participants showed improvements in management decisions from pre- to posttest (74.0% vs. 89.4%) and in dermatoscopic accuracy (65.0% vs. 85.6%). Pre- vs. posttest differences in test score (7.05/10 vs. 8.94/10 points) and correct diagnosis were significant (p < 0.001). CONCLUSIONS The dermatoscopy curriculum increases the number of correct management decisions and dermatoscopy diagnoses. This will result in more skin cancers being detected, and fewer benign lesions being excised. The curriculum can be offered to other dermatology training centers and medical professionals.
Collapse
Affiliation(s)
- Sandra Schuh
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Stefan Schiele
- Institute of Mathematics, University of Augsburg, Augsburg, Germany
| | - Janis Thamm
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Stefanie Kranz
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Julia Welzel
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Andreas Blum
- Public, Private and Teaching Practice of Dermatology, Konstanz, Germany
| |
Collapse
|
57
|
Schuh S, Schiele S, Thamm J, Kranz S, Welzel J, Blum A. Implementierung eines Dermatoskopie-Curriculums in der Facharztausbildung am Universitätsklinikum Augsburg. J Dtsch Dermatol Ges 2023; 21:872-881. [PMID: 37574685 DOI: 10.1111/ddg.15115_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/04/2023] [Indexed: 08/15/2023]
Abstract
ZusammenfassungHintergrund und ZieleBislang gibt es in Deutschland kein strukturiertes Programm für die Dermatoskopieausbildung während der Facharztausbildung. Es bleibt der Initiative des einzelnen Assistenzarztes überlassen, ob und in welchem Umfang er sich in der Dermatoskopie weiterbildet, obwohl die Dermatoskopie zu den Kernkompetenzen der dermatologischen Ausbildung und der täglichen Praxis gehört. Ziel der Studie war die Etablierung eines strukturierten Dermatoskopie‐Curriculums während der dermatologischen Facharztausbildung am Universitätsklinikum Augsburg.Patienten und MethodikEs wurde eine Online‐Plattform mit Dermatoskopie‐Modulen geschaffen, auf die von überall und jederzeit zugegriffen werden kann. Praktische Fertigkeiten wurden unter individueller Anleitung eines Dermatoskopie‐Experten erworben. Die Teilnehmer wurden vor und nach Abschluss der Module auf ihren Wissensstand getestet. Die Testergebnisse zum therapeutischen Management und zur korrekten dermatoskopischen Diagnose wurden analysiert.ErgebnisseDie Ergebnisse der 28 Teilnehmer verbesserten sich vom Eingangs‐ zum Abschlusstest bei der Managemententscheidung (74,0% vs. 89,4%) und bei der dermatoskopischen Genauigkeit (65,0% vs. 85,6%). Die Unterschiede zwischen Eingangs‐ und Abschlusstest bei der Gesamtpunktzahl (7,05/10 vs. 8,94/10 Punkte) und bei der richtigen Diagnose waren signifikant (p < 0,001).SchlussfolgerungenDas Dermatoskopie‐Curriculum verbessert die Managemententscheidungen und die dermatoskopische Diagnostik der Teilnehmer. Das wird dazu führen, dass mehr Hautkrebsfälle erkannt werden und weniger gutartige Läsionen reseziert werden müssen. Das Curriculum kann anderen dermatologischen Ausbildungszentren und Gesundheitsberufen angeboten werden.
Collapse
Affiliation(s)
- Sandra Schuh
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Augsburg
| | | | - Janis Thamm
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Augsburg
| | - Stefanie Kranz
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Augsburg
| | - Julia Welzel
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Augsburg
| | - Andreas Blum
- Hautarzt- und Lehrpraxis für Dermatologie, Konstanz
| |
Collapse
|
58
|
Winkler JK, Blum A, Kommoss K, Enk A, Toberer F, Rosenberger A, Haenssle HA. Assessment of Diagnostic Performance of Dermatologists Cooperating With a Convolutional Neural Network in a Prospective Clinical Study: Human With Machine. JAMA Dermatol 2023; 159:621-627. [PMID: 37133847 PMCID: PMC10157508 DOI: 10.1001/jamadermatol.2023.0905] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/05/2023] [Indexed: 05/04/2023]
Abstract
Importance Studies suggest that convolutional neural networks (CNNs) perform equally to trained dermatologists in skin lesion classification tasks. Despite the approval of the first neural networks for clinical use, prospective studies demonstrating benefits of human with machine cooperation are lacking. Objective To assess whether dermatologists benefit from cooperation with a market-approved CNN in classifying melanocytic lesions. Design, Setting, and Participants In this prospective diagnostic 2-center study, dermatologists performed skin cancer screenings using naked-eye examination and dermoscopy. Dermatologists graded suspect melanocytic lesions by the probability of malignancy (range 0-1, threshold for malignancy ≥0.5) and indicated management decisions (no action, follow-up, excision). Next, dermoscopic images of suspect lesions were assessed by a market-approved CNN, Moleanalyzer Pro (FotoFinder Systems). The CNN malignancy scores (range 0-1, threshold for malignancy ≥0.5) were transferred to dermatologists with the request to re-evaluate lesions and revise initial decisions in consideration of CNN results. Reference diagnoses were based on histopathologic examination in 125 (54.8%) lesions or, in the case of nonexcised lesions, on clinical follow-up data and expert consensus. Data were collected from October 2020 to October 2021. Main Outcomes and Measures Primary outcome measures were diagnostic sensitivity and specificity of dermatologists alone and dermatologists cooperating with the CNN. Accuracy and receiver operator characteristic area under the curve (ROC AUC) were considered as additional measures. Results A total of 22 dermatologists detected 228 suspect melanocytic lesions (190 nevi, 38 melanomas) in 188 patients (mean [range] age, 53.4 [19-91] years; 97 [51.6%] male patients). Diagnostic sensitivity and specificity significantly improved when dermatologists additionally integrated CNN results into decision-making (mean sensitivity from 84.2% [95% CI, 69.6%-92.6%] to 100.0% [95% CI, 90.8%-100.0%]; P = .03; mean specificity from 72.1% [95% CI, 65.3%-78.0%] to 83.7% [95% CI, 77.8%-88.3%]; P < .001; mean accuracy from 74.1% [95% CI, 68.1%-79.4%] to 86.4% [95% CI, 81.3%-90.3%]; P < .001; and mean ROC AUC from 0.895 [95% CI, 0.836-0.954] to 0.968 [95% CI, 0.948-0.988]; P = .005). In addition, the CNN alone achieved a comparable sensitivity, higher specificity, and higher diagnostic accuracy compared with dermatologists alone in classifying melanocytic lesions. Moreover, unnecessary excisions of benign nevi were reduced by 19.2%, from 104 (54.7%) of 190 benign nevi to 84 nevi when dermatologists cooperated with the CNN (P < .001). Most lesions were examined by dermatologists with 2 to 5 years (96, 42.1%) or less than 2 years of experience (78, 34.2%); others (54, 23.7%) were evaluated by dermatologists with more than 5 years of experience. Dermatologists with less dermoscopy experience cooperating with the CNN had the most diagnostic improvement compared with more experienced dermatologists. Conclusions and Relevance In this prospective diagnostic study, these findings suggest that dermatologists may improve their performance when they cooperate with the market-approved CNN and that a broader application of this human with machine approach could be beneficial for dermatologists and patients.
Collapse
Affiliation(s)
- Julia K. Winkler
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Andreas Blum
- Public, Private and Teaching Practice of Dermatology, Konstanz, Germany
| | - Katharina Kommoss
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Alexander Enk
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Ferdinand Toberer
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Albert Rosenberger
- Institute of Genetic Epidemiology, University Medical Center, Georg-August University of Goettingen, Goettingen, Germany
| | - Holger A. Haenssle
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
59
|
Deniz-Garcia A, Fabelo H, Rodriguez-Almeida AJ, Zamora-Zamorano G, Castro-Fernandez M, Alberiche Ruano MDP, Solvoll T, Granja C, Schopf TR, Callico GM, Soguero-Ruiz C, Wägner AM. Quality, Usability, and Effectiveness of mHealth Apps and the Role of Artificial Intelligence: Current Scenario and Challenges. J Med Internet Res 2023; 25:e44030. [PMID: 37140973 PMCID: PMC10196903 DOI: 10.2196/44030] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/19/2023] [Accepted: 03/10/2023] [Indexed: 03/12/2023] Open
Abstract
The use of artificial intelligence (AI) and big data in medicine has increased in recent years. Indeed, the use of AI in mobile health (mHealth) apps could considerably assist both individuals and health care professionals in the prevention and management of chronic diseases, in a person-centered manner. Nonetheless, there are several challenges that must be overcome to provide high-quality, usable, and effective mHealth apps. Here, we review the rationale and guidelines for the implementation of mHealth apps and the challenges regarding quality, usability, and user engagement and behavior change, with a special focus on the prevention and management of noncommunicable diseases. We suggest that a cocreation-based framework is the best method to address these challenges. Finally, we describe the current and future roles of AI in improving personalized medicine and provide recommendations for developing AI-based mHealth apps. We conclude that the implementation of AI and mHealth apps for routine clinical practice and remote health care will not be feasible until we overcome the main challenges regarding data privacy and security, quality assessment, and the reproducibility and uncertainty of AI results. Moreover, there is a lack of both standardized methods to measure the clinical outcomes of mHealth apps and techniques to encourage user engagement and behavior changes in the long term. We expect that in the near future, these obstacles will be overcome and that the ongoing European project, Watching the risk factors (WARIFA), will provide considerable advances in the implementation of AI-based mHealth apps for disease prevention and health promotion.
Collapse
Affiliation(s)
- Alejandro Deniz-Garcia
- Endocrinology and Nutrition Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain
| | - Himar Fabelo
- Complejo Hospitalario Universitario Insular - Materno Infantil, Fundación Canaria Instituto de Investigación Sanitaria de Canarias, Las Palmas de Gran Canaria, Spain
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Antonio J Rodriguez-Almeida
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Garlene Zamora-Zamorano
- Endocrinology and Nutrition Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Maria Castro-Fernandez
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Maria Del Pino Alberiche Ruano
- Endocrinology and Nutrition Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Terje Solvoll
- Norwegian Centre for E-health Research, University Hospital of North-Norway, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Conceição Granja
- Norwegian Centre for E-health Research, University Hospital of North-Norway, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Thomas Roger Schopf
- Norwegian Centre for E-health Research, University Hospital of North-Norway, Tromsø, Norway
| | - Gustavo M Callico
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Cristina Soguero-Ruiz
- Departamento de Teoría de la Señal y Comunicaciones y Sistemas Telemáticos y Computación, Universidad Rey Juan Carlos, Madrid, Spain
| | - Ana M Wägner
- Endocrinology and Nutrition Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
60
|
Gangl C, Krychtiuk K. Digital health-high tech or high touch? Wien Med Wochenschr 2023; 173:115-124. [PMID: 36602630 PMCID: PMC9813878 DOI: 10.1007/s10354-022-00991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/07/2022] [Indexed: 01/06/2023]
Abstract
Digital transformation in medicine refers to the implementation of information technology-driven developments in the healthcare system and their impact on the way we teach, share, and practice medicine. We would like to provide an overview of current developments and opportunities but also of the risks of digital transformation in medicine. Therefore, we examine the possibilities wearables and digital biomarkers provide for early detection and monitoring of diseases and discuss the potential of artificial intelligence applications in medicine. Furthermore, we outline new opportunities offered by telemedicine applications and digital therapeutics, discuss the aspects of social media in healthcare, and provide an outlook on "Health 4.0."
Collapse
Affiliation(s)
- Clemens Gangl
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Konstantin Krychtiuk
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| |
Collapse
|
61
|
O'Brien B, Zhao K, Gibson TA, Smith DF, Ryan D, Whitfield J, Smith CD, Bromley M. Artificial intelligence for basal cell carcinoma: diagnosis and distinction from histological mimics. Pathology 2023; 55:342-349. [PMID: 36641379 DOI: 10.1016/j.pathol.2022.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022]
Abstract
We trained an artificial intelligence (AI) algorithm to identify basal cell carcinoma (BCC), and to distinguish BCC from histological mimics. A total of 1061 glass slides were collected: 616 containing BCC and 445 without BCC. BCC slides were collected prospectively, reflecting the range of specimen types and morphological variety encountered in routine pathology practice. Benign and malignant histological mimics of BCC were selected prospectively and retrospectively, including cases considered diagnostically challenging for pathologists. Glass slides were digitally scanned to create a whole slide image (WSI), which was divided into patches representing a tissue area of 65,535 μm2. Pathologists annotated the data, yielding 87,205 patches labelled BCC present and 1,688,697 patches labelled BCC absent. The COMPASS model (COntext-aware Multi-scale tool for Pathologists Assessing SlideS) based on Convolutional Neural Networks, was trained to provide a probability of BCC being present at the patch level and the slide level. The test set comprised 246 slides, 147 of which contained BCC. The COMPASS AI model demonstrated high accuracy, classifying WSIs as containing BCC with a sensitivity of 98.0% and a specificity of 97.0%, representing 240 WSIs classified correctly, three false positives, and three false negatives. Using BCC as a proof of concept, we demonstrate how AI can account for morphological variation within an entity, and accurately distinguish from histologically similar entities. Our study highlights the potential for AI in routine pathology practice.
Collapse
Affiliation(s)
- Blake O'Brien
- Sullivan Nicolaides Pathology, Bowen Hills, Qld, Australia. Blake_O'
| | - Kun Zhao
- Sullivan Nicolaides Pathology, Bowen Hills, Qld, Australia
| | | | - Daniel F Smith
- Sullivan Nicolaides Pathology, Bowen Hills, Qld, Australia
| | - David Ryan
- Sullivan Nicolaides Pathology, Bowen Hills, Qld, Australia
| | | | | | - Mark Bromley
- Sullivan Nicolaides Pathology, Bowen Hills, Qld, Australia
| |
Collapse
|
62
|
Vega C, Schneider R, Satagopam V. Analysis: Flawed Datasets of Monkeypox Skin Images. J Med Syst 2023; 47:37. [PMID: 36933065 PMCID: PMC10024024 DOI: 10.1007/s10916-023-01928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/26/2023] [Indexed: 03/19/2023]
Abstract
The self-proclaimed first publicly available dataset of Monkeypox skin images consists of medically irrelevant images extracted from Google and photography repositories through a process denominated web-scrapping. Yet, this did not stop other researchers from employing it to build Machine Learning (ML) solutions aimed at computer-aided diagnosis of Monkeypox and other viral infections presenting skin lesions. Neither did it stop the reviewers or editors from publishing these subsequent works in peer-reviewed journals. Several of these works claimed extraordinary performance in the classification of Monkeypox, Chickenpox and Measles, employing ML and the aforementioned dataset. In this work, we analyse the initiator work that has catalysed the development of several ML solutions, and whose popularity is continuing to grow. Further, we provide a rebuttal experiment that showcases the risks of such methodologies, proving that the ML solutions do not necessarily obtain their performance from the features relevant to the diseases at issue.
Collapse
Affiliation(s)
- Carlos Vega
- Bioinformatics Core, University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Av. du Swing 6, Belvaux, 4367, Luxembourg.
| | - Reinhard Schneider
- Bioinformatics Core, University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Av. du Swing 6, Belvaux, 4367, Luxembourg
| | - Venkata Satagopam
- Bioinformatics Core, University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Av. du Swing 6, Belvaux, 4367, Luxembourg
| |
Collapse
|
63
|
Escalé-Besa A, Yélamos O, Vidal-Alaball J, Fuster-Casanovas A, Miró Catalina Q, Börve A, Ander-Egg Aguilar R, Fustà-Novell X, Cubiró X, Rafat ME, López-Sanchez C, Marin-Gomez FX. Exploring the potential of artificial intelligence in improving skin lesion diagnosis in primary care. Sci Rep 2023; 13:4293. [PMID: 36922556 PMCID: PMC10015524 DOI: 10.1038/s41598-023-31340-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Dermatological conditions are a relevant health problem. Machine learning (ML) models are increasingly being applied to dermatology as a diagnostic decision support tool using image analysis, especially for skin cancer detection and disease classification. The objective of this study was to perform a prospective validation of an image analysis ML model, which is capable of screening 44 skin diseases, comparing its diagnostic accuracy with that of General Practitioners (GPs) and teledermatology (TD) dermatologists in a real-life setting. Prospective, diagnostic accuracy study including 100 consecutive patients with a skin problem who visited a participating GP in central Catalonia, Spain, between June 2021 and October 2021. The skin issue was first assessed by the GPs. Then an anonymised skin disease picture was taken and uploaded to the ML application, which returned a list with the Top-5 possible diagnosis in order of probability. The same image was then sent to a dermatologist via TD for diagnosis, as per clinical practice. The GPs Top-3, ML model's Top-5 and dermatologist's Top-3 assessments were compared to calculate the accuracy, sensitivity, specificity and diagnostic accuracy of the ML models. The overall Top-1 accuracy of the ML model (39%) was lower than that of GPs (64%) and dermatologists (72%). When the analysis was limited to the diagnoses on which the algorithm had been explicitly trained (n = 82), the balanced Top-1 accuracy of the ML model increased (48%) and in the Top-3 (75%) was comparable to the GPs Top-3 accuracy (76%). The Top-5 accuracy of the ML model (89%) was comparable to the dermatologist Top-3 accuracy (90%). For the different diseases, the sensitivity of the model (Top-3 87% and Top-5 96%) is higher than that of the clinicians (Top-3 GPs 76% and Top-3 dermatologists 84%) only in the benign tumour pathology group, being on the other hand the most prevalent category (n = 53). About the satisfaction of professionals, 92% of the GPs considered it as a useful diagnostic support tool (DST) for the differential diagnosis and in 60% of the cases as an aid in the final diagnosis of the skin lesion. The overall diagnostic accuracy of the model in this study, under real-life conditions, is lower than that of both GPs and dermatologists. This result aligns with the findings of few existing prospective studies conducted under real-life conditions. The outcomes emphasize the significance of involving clinicians in the training of the model and the capability of ML models to assist GPs, particularly in differential diagnosis. Nevertheless, external testing in real-life conditions is crucial for data validation and regulation of these AI diagnostic models before they can be used in primary care.
Collapse
Affiliation(s)
- Anna Escalé-Besa
- Centre d'Atenció Primària Navàs-Balsareny, Institut Català de la Salut, Navàs, Spain
- Health Promotion in Rural Areas Research Group, Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain
| | - Oriol Yélamos
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Dermatology Associate Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Josep Vidal-Alaball
- Health Promotion in Rural Areas Research Group, Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain.
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain.
- Factulty of Medicine, University of Vic-Central University of Catalonia, Vic, Spain.
| | - Aïna Fuster-Casanovas
- Health Promotion in Rural Areas Research Group, Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain
| | - Queralt Miró Catalina
- Health Promotion in Rural Areas Research Group, Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain
| | - Alexander Börve
- iDoc24 Inc, San Francisco, CA, USA
- Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska, Gothenburg, Sweden
| | | | | | - Xavier Cubiró
- Servei de Dermatologia, Hospital Universitari Mollet, Mollet del Vallès, Barcelona, Spain
| | | | - Cristina López-Sanchez
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Dermatology Associate Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Francesc X Marin-Gomez
- Health Promotion in Rural Areas Research Group, Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain
- Servei d'Atenció Primària Osona, Gerència Territorial de la Catalunya Central, Institut Català de La Salut, Vic, Spain
| |
Collapse
|
64
|
Rezk E, Eltorki M, El-Dakhakhni W. Interpretable Skin Cancer Classification based on Incremental Domain Knowledge Learning. JOURNAL OF HEALTHCARE INFORMATICS RESEARCH 2023; 7:59-83. [PMID: 36910915 PMCID: PMC9995827 DOI: 10.1007/s41666-023-00127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/02/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
The recent advances in artificial intelligence have led to the rapid development of computer-aided skin cancer diagnosis applications that perform on par with dermatologists. However, the black-box nature of such applications makes it difficult for physicians to trust the predicted decisions, subsequently preventing the proliferation of such applications in the clinical workflow. In this work, we aim to address this challenge by developing an interpretable skin cancer diagnosis approach using clinical images. Accordingly, a skin cancer diagnosis model consolidated with two interpretability methods is developed. The first interpretability method integrates skin cancer diagnosis domain knowledge, characterized by a skin lesion taxonomy, into model development, whereas the other method focuses on visualizing the decision-making process by highlighting the dominant of interest regions of skin lesion images. The proposed model is trained and validated on clinical images since the latter are easily obtainable by non-specialist healthcare providers. The results demonstrate the effectiveness of incorporating lesion taxonomy in improving model classification accuracy, where our model can predict the skin lesion origin as melanocytic or non-melanocytic with an accuracy of 87%, predict lesion malignancy with 77% accuracy, and provide disease diagnosis with an accuracy of 71%. In addition, the implemented interpretability methods assist understand the model's decision-making process and detecting misdiagnoses. This work is a step toward achieving interpretability in skin cancer diagnosis using clinical images. The developed approach can assist general practitioners to make an early diagnosis, thus reducing the redundant referrals that expert dermatologists receive for further investigations.
Collapse
Affiliation(s)
- Eman Rezk
- School of Computational Science and Engineering, McMaster University, Hamilton, ON Canada
| | - Mohamed Eltorki
- Faculty of Health Sciences, McMaster University, Hamilton, ON Canada
| | - Wael El-Dakhakhni
- School of Computational Science and Engineering, McMaster University, Hamilton, ON Canada
| |
Collapse
|
65
|
Adepu AK, Sahayam S, Jayaraman U, Arramraju R. Melanoma classification from dermatoscopy images using knowledge distillation for highly imbalanced data. Comput Biol Med 2023; 154:106571. [PMID: 36709518 DOI: 10.1016/j.compbiomed.2023.106571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/17/2022] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Melanoma is a deadly malignant skin cancer that generally grows and spreads rapidly. Early detection of melanoma can improve the prognosis of a patient. However, large-scale screening for melanoma is arduous due to human error and the unavailability of trained experts. Accurate automatic melanoma classification from dermoscopy images can help mitigate such issues. However, the classification task is challenging due to class-imbalance, high inter-class, and low intra-class similarity problems. It results in poor sensitivity scores when it comes to the disease classification task. The work proposes a novel knowledge-distilled lightweight Deep-CNN-based framework for melanoma classification to tackle the high inter-class and low intra-class similarity problems. To handle the high class-imbalance problem, the work proposes using Cost-Sensitive Learning with Focal Loss, to achieve better sensitivity scores. As a pre-processing step, an in-painting algorithm is used to remove artifacts from dermoscopy images. New CutOut variants, namely, Sprinkled and microscopic Cutout augmentations, have been employed as regularizers to avoid over-fitting. The robustness of the model has been studied through stratified K-fold cross-validation. Ablation studies with test time augmentation (TTA) and the addition of various noises like salt & pepper, pepper-only, and Gaussian noises have been studied. All the models trained in the work have been evaluated on the SIIM-ISIC Melanoma Classification Challenge - ISIC-2020 dataset. With our EfficientNet-B5 (FL) teacher model, the EfficientNet-B2 student model achieved an Area under the Curve (AUC) of 0.9295, and a sensitivity of 0.8087 on the ISIC-2020 test data. The sensitivity value of 0.8087 for melanoma classification is the current state-of-the-art result in the literature for the ISIC-2020 dataset which is a significant 49.48% increase from the best non-distilled standalone model, EfficientNet B5 (FL) teacher with 0.5410.
Collapse
Affiliation(s)
- Anil Kumar Adepu
- Department of Computer Science and Engineering, Indian Institute of Information Technology Design and Manufacturing Kancheepuram, Chennai 600127 , Tamil Nadu, India.
| | - Subin Sahayam
- Department of Computer Science and Engineering, Indian Institute of Information Technology Design and Manufacturing Kancheepuram, Chennai 600127 , Tamil Nadu, India.
| | - Umarani Jayaraman
- Department of Computer Science and Engineering, Indian Institute of Information Technology Design and Manufacturing Kancheepuram, Chennai 600127 , Tamil Nadu, India.
| | - Rashmika Arramraju
- Apollo Institute of Medical Sciences and Research, Hyderabad 500096, Telangana, India.
| |
Collapse
|
66
|
AI-Powered Diagnosis of Skin Cancer: A Contemporary Review, Open Challenges and Future Research Directions. Cancers (Basel) 2023; 15:cancers15041183. [PMID: 36831525 PMCID: PMC9953963 DOI: 10.3390/cancers15041183] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Skin cancer continues to remain one of the major healthcare issues across the globe. If diagnosed early, skin cancer can be treated successfully. While early diagnosis is paramount for an effective cure for cancer, the current process requires the involvement of skin cancer specialists, which makes it an expensive procedure and not easily available and affordable in developing countries. This dearth of skin cancer specialists has given rise to the need to develop automated diagnosis systems. In this context, Artificial Intelligence (AI)-based methods have been proposed. These systems can assist in the early detection of skin cancer and can consequently lower its morbidity, and, in turn, alleviate the mortality rate associated with it. Machine learning and deep learning are branches of AI that deal with statistical modeling and inference, which progressively learn from data fed into them to predict desired objectives and characteristics. This survey focuses on Machine Learning and Deep Learning techniques deployed in the field of skin cancer diagnosis, while maintaining a balance between both techniques. A comparison is made to widely used datasets and prevalent review papers, discussing automated skin cancer diagnosis. The study also discusses the insights and lessons yielded by the prior works. The survey culminates with future direction and scope, which will subsequently help in addressing the challenges faced within automated skin cancer diagnosis.
Collapse
|
67
|
Malignant melanoma diagnosis applying a machine learning method based on the combination of nonlinear and texture features. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
68
|
Hrinivich WT, Wang T, Wang C. Editorial: Interpretable and explainable machine learning models in oncology. Front Oncol 2023; 13:1184428. [PMID: 37035194 PMCID: PMC10075249 DOI: 10.3389/fonc.2023.1184428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- William Thomas Hrinivich
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Chunhao Wang
- Department of Radiation Oncology, Duke University, Durham, NC, United States
- *Correspondence: Chunhao Wang,
| |
Collapse
|
69
|
Dogar GM, Shahzad M, Fraz MM. Attention augmented distance regression and classification network for nuclei instance segmentation and type classification in histology images. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
70
|
Ding H, Yang Y, Li X, Cheung GSP, Matinlinna JP, Burrow M, Tsoi JKH. A simple AI-enabled method for quantifying bacterial adhesion on dental materials. Biomater Investig Dent 2022; 9:75-83. [PMID: 36081491 PMCID: PMC9448434 DOI: 10.1080/26415275.2022.2114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Hao Ding
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yunzhen Yang
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xin Li
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Stomatology Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Gary Shun-Pan Cheung
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jukka Pekka Matinlinna
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Michael Burrow
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - James Kit-Hon Tsoi
- Dental Materials Science, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
71
|
Kostick-Quenet KM, Gerke S. AI in the hands of imperfect users. NPJ Digit Med 2022; 5:197. [PMID: 36577851 PMCID: PMC9795935 DOI: 10.1038/s41746-022-00737-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022] Open
Abstract
As the use of artificial intelligence and machine learning (AI/ML) continues to expand in healthcare, much attention has been given to mitigating bias in algorithms to ensure they are employed fairly and transparently. Less attention has fallen to addressing potential bias among AI/ML's human users or factors that influence user reliance. We argue for a systematic approach to identifying the existence and impacts of user biases while using AI/ML tools and call for the development of embedded interface design features, drawing on insights from decision science and behavioral economics, to nudge users towards more critical and reflective decision making using AI/ML.
Collapse
Affiliation(s)
| | - Sara Gerke
- Penn State Dickinson Law, Carlisle, PA, USA
| |
Collapse
|
72
|
Nyemeesha V, Kavitha M, Mohammed Ismail B. Detection and Classification of Skin Cancer Using Unmanned Transfer Learning Based Probabilistic Multi-Layer Dense Networks. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS 2022. [DOI: 10.1142/s1469026822500274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Skin cancer is one of the most dangerous cancers that may occur for different age groups of people. As a result, early identification of skin cancer has the potential to save millions of lives. In Traditional machine learning approaches, there are various drawbacks in detection and classification of skin lesions. As a result, to achieve the robust performance, initially the joint trilateral and bilateral filter (JTBF) with convolutional auto encoder and decoder (CAED)-based preprocessing method is used to enhance the skin lesion and also removes hair from lesions. Then, transfer learning-based probabilistic multi-layer dense networks (PMDN) method-based unmanned Transfer learning segmentation method is adapted for accurately detecting the cancer region on skin lesions. Further, transfer learning convolution neural network (TL-CNN) is used to extract the features from the segmented region, which extracts the detailed inter-disease-dependent (IDD) and intra-disease specific (IDS) features. Finally, Alexa Net model is trained and tested with the IDD, IDS features and classifies the eight different skin cancer types. The complexity of the transfer learning networks is optimized by the using the Adam optimizer. Finally, the simulation results show that the proposed model resulted in superior segmentation, feature extraction, and classification performances as compared to conventional approaches. Further, the proposed method achieved 99.937% segmentation accuracy, 99.47% feature extraction accuracy, and 99.27% classification accuracy on ISIC-2019 public challenge dataset.
Collapse
Affiliation(s)
- V. Nyemeesha
- Department of Computer Science Engineering, Koneru Lakshmaiah Education Foundation Greenfields, Vaddeswaram, Guntur 522502, Andhra Pradesh, India
| | - M. Kavitha
- Department of Computer Science Engineering, Koneru Lakshmaiah Education Foundation Greenfields, Vaddeswaram, Guntur 522502, Andhra Pradesh, India
| | - B. Mohammed Ismail
- Department of Computer Science Engineering, Koneru Lakshmaiah Education Foundation Greenfields, Vaddeswaram, Guntur 522502, Andhra Pradesh, India
- Department of Artificial Intelligence & Machine Learning, P.A. College of Engineering, Affiliated to Visvesvaraya Technological University Belagavi, Mangalore, Karnataka, India
| |
Collapse
|
73
|
Jartarkar SR, Cockerell CJ, Patil A, Kassir M, Babaei M, Weidenthaler‐Barth B, Grabbe S, Goldust M. Artificial intelligence in Dermatopathology. J Cosmet Dermatol 2022; 22:1163-1167. [PMID: 36548174 DOI: 10.1111/jocd.15565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Ever evolving research in medical field has reached an exciting stage with advent of newer technologies. With the introduction of digital microscopy, pathology has transitioned to become more digitally oriented speciality. The potential of artificial intelligence (AI) in dermatopathology is to aid the diagnosis, and it requires dermatopathologists' guidance for efficient functioning of artificial intelligence. METHOD Comprehensive literature search was performed using electronic online databases "PubMed" and "Google Scholar." Articles published in English language were considered for the review. RESULTS Convolutional neural network, a type of deep neural network, is considered as an ideal tool in image recognition, processing, classification, and segmentation. Implementation of AI in tumor pathology is involved in the diagnosis, grading, staging, and prognostic prediction as well as in identification of genetic or pathological features. In this review, we attempt to discuss the use of AI in dermatopathology, the attitude of patients and clinicians, its challenges, limitation, and potential opportunities in future implementation.
Collapse
Affiliation(s)
- Shishira R. Jartarkar
- Department of Dermatology Vydehi Institute of Medical Sciences and Research Centre University‐RGUHS Bengaluru India
| | - Clay J. Cockerell
- Departments of Dermatology and Pathology The University of Texas Southwestern Medical Center Dallas Texas USA
| | - Anant Patil
- Department of Pharmacology Dr. DY Patil Medical College Navi Mumbai India
| | | | - Mahsa Babaei
- School of Medicine Stanford University California USA
| | - Beate Weidenthaler‐Barth
- Department of Dermatology University Medical Center of the Johannes Gutenberg University Mainz Germany
| | - Stephan Grabbe
- Department of Dermatology University Medical Center of the Johannes Gutenberg University Mainz Germany
| | - Mohamad Goldust
- Department of Dermatology University Medical Center Mainz Mainz Germany
| |
Collapse
|
74
|
Deep Learning for Skin Melanocytic Tumors in Whole-Slide Images: A Systematic Review. Cancers (Basel) 2022; 15:cancers15010042. [PMID: 36612037 PMCID: PMC9817526 DOI: 10.3390/cancers15010042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The rise of Artificial Intelligence (AI) has shown promising performance as a support tool in clinical pathology workflows. In addition to the well-known interobserver variability between dermatopathologists, melanomas present a significant challenge in their histological interpretation. This study aims to analyze all previously published studies on whole-slide images of melanocytic tumors that rely on deep learning techniques for automatic image analysis. Embase, Pubmed, Web of Science, and Virtual Health Library were used to search for relevant studies for the systematic review, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. Articles from 2015 to July 2022 were included, with an emphasis placed on the used artificial intelligence methods. Twenty-eight studies that fulfilled the inclusion criteria were grouped into four groups based on their clinical objectives, including pathologists versus deep learning models (n = 10), diagnostic prediction (n = 7); prognosis (n = 5), and histological features (n = 6). These were then analyzed to draw conclusions on the general parameters and conditions of AI in pathology, as well as the necessary factors for better performance in real scenarios.
Collapse
|
75
|
Shinde RK, Alam MS, Hossain MB, Md Imtiaz S, Kim J, Padwal AA, Kim N. Squeeze-MNet: Precise Skin Cancer Detection Model for Low Computing IoT Devices Using Transfer Learning. Cancers (Basel) 2022; 15:cancers15010012. [PMID: 36612010 PMCID: PMC9817940 DOI: 10.3390/cancers15010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer remains a deadly disease. We developed a lightweight, accurate, general-purpose deep learning algorithm for skin cancer classification. Squeeze-MNet combines a Squeeze algorithm for digital hair removal during preprocessing and a MobileNet deep learning model with predefined weights. The Squeeze algorithm extracts important image features from the image, and the black-hat filter operation removes noise. The MobileNet model (with a dense neural network) was developed using the International Skin Imaging Collaboration (ISIC) dataset to fine-tune the model. The proposed model is lightweight; the prototype was tested on a Raspberry Pi 4 Internet of Things device with a Neo pixel 8-bit LED ring; a medical doctor validated the device. The average precision (AP) for benign and malignant diagnoses was 99.76% and 98.02%, respectively. Using our approach, the required dataset size decreased by 66%. The hair removal algorithm increased the accuracy of skin cancer detection to 99.36% with the ISIC dataset. The area under the receiver operating curve was 98.9%.
Collapse
Affiliation(s)
- Rupali Kiran Shinde
- Department of Information and Communication Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | | | - Md. Biddut Hossain
- Department of Information and Communication Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Shariar Md Imtiaz
- Department of Information and Communication Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - JoonHyun Kim
- Department of Information and Communication Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | | | - Nam Kim
- Department of Information and Communication Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
- Correspondence:
| |
Collapse
|
76
|
Jartarkar SR. Artificial intelligence: Its role in dermatopathology. Indian J Dermatol Venereol Leprol 2022:1-4. [PMID: 36688886 DOI: 10.25259/ijdvl_725_2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/01/2022] [Indexed: 12/15/2022]
Abstract
Artificial intelligence (AI), a major frontier in the field of medical research, can potentially lead to a paradigm shift in clinical practice. A type of artificial intelligence system known as convolutional neural network points to the possible utility of deep learning in dermatopathology. Though pathology has been traditionally restricted to microscopes and glass slides, recent advancement in digital pathological imaging has led to a transition making it a potential branch for the implementation of artificial intelligence. The current application of artificial intelligence in dermatopathology is to complement the diagnosis and requires a well-trained dermatopathologist's guidance for better designing and development of deep learning algorithms. Here we review the recent advances of artificial intelligence in dermatopathology, its applications in disease diagnosis and in research, along with its limitations and future potential.
Collapse
Affiliation(s)
- Shishira R Jartarkar
- Department of Dermatology, Venereology and Leprosy, Vydehi Institute of Medical Sciences and Research Centre, Whitefield, Bengaluru, Karnataka, India
| |
Collapse
|
77
|
Auriemma Citarella A, Di Biasi L, De Marco F, Tortora G. ENTAIL: yEt aNoTher amyloid fIbrils cLassifier. BMC Bioinformatics 2022; 23:517. [PMID: 36456900 PMCID: PMC9714056 DOI: 10.1186/s12859-022-05070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND This research aims to increase our knowledge of amyloidoses. These disorders cause incorrect protein folding, affecting protein functionality (on structure). Fibrillar deposits are the basis of some wellknown diseases, such as Alzheimer, Creutzfeldt-Jakob diseases and type II diabetes. For many of these amyloid proteins, the relative precursors are known. Discovering new protein precursors involved in forming amyloid fibril deposits would improve understanding the pathological processes of amyloidoses. RESULTS A new classifier, called ENTAIL, was developed using over than 4000 molecular descriptors. ENTAIL was based on the Naive Bayes Classifier with Unbounded Support and Gaussian Kernel Type, with an accuracy on the test set of 81.80%, SN of 100%, SP of 63.63% and an MCC of 0.683 on a balanced dataset. CONCLUSIONS The analysis carried out has demonstrated how, despite the various configurations of the tests, performances are superior in terms of performance on a balanced dataset.
Collapse
Affiliation(s)
| | - Luigi Di Biasi
- grid.11780.3f0000 0004 1937 0335Department of Computer Science, University of Salerno, Fisciano, Italy
| | - Fabiola De Marco
- grid.11780.3f0000 0004 1937 0335Department of Computer Science, University of Salerno, Fisciano, Italy
| | - Genoveffa Tortora
- grid.11780.3f0000 0004 1937 0335Department of Computer Science, University of Salerno, Fisciano, Italy
| |
Collapse
|
78
|
Attention Cost-Sensitive Deep Learning-Based Approach for Skin Cancer Detection and Classification. Cancers (Basel) 2022; 14:cancers14235872. [PMID: 36497355 PMCID: PMC9735681 DOI: 10.3390/cancers14235872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Deep learning-based models have been employed for the detection and classification of skin diseases through medical imaging. However, deep learning-based models are not effective for rare skin disease detection and classification. This is mainly due to the reason that rare skin disease has very a smaller number of data samples. Thus, the dataset will be highly imbalanced, and due to the bias in learning, most of the models give better performances. The deep learning models are not effective in detecting the affected tiny portions of skin disease in the overall regions of the image. This paper presents an attention-cost-sensitive deep learning-based feature fusion ensemble meta-classifier approach for skin cancer detection and classification. Cost weights are included in the deep learning models to handle the data imbalance during training. To effectively learn the optimal features from the affected tiny portions of skin image samples, attention is integrated into the deep learning models. The features from the finetuned models are extracted and the dimensionality of the features was further reduced by using a kernel-based principal component (KPCA) analysis. The reduced features of the deep learning-based finetuned models are fused and passed into ensemble meta-classifiers for skin disease detection and classification. The ensemble meta-classifier is a two-stage model. The first stage performs the prediction of skin disease and the second stage performs the classification by considering the prediction of the first stage as features. Detailed analysis of the proposed approach is demonstrated for both skin disease detection and skin disease classification. The proposed approach demonstrated an accuracy of 99% on skin disease detection and 99% on skin disease classification. In all the experimental settings, the proposed approach outperformed the existing methods and demonstrated a performance improvement of 4% accuracy for skin disease detection and 9% accuracy for skin disease classification. The proposed approach can be used as a computer-aided diagnosis (CAD) tool for the early diagnosis of skin cancer detection and classification in healthcare and medical environments. The tool can accurately detect skin diseases and classify the skin disease into their skin disease family.
Collapse
|
79
|
Integrated Design of Optimized Weighted Deep Feature Fusion Strategies for Skin Lesion Image Classification. Cancers (Basel) 2022; 14:cancers14225716. [PMID: 36428808 PMCID: PMC9688253 DOI: 10.3390/cancers14225716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022] Open
Abstract
This study mainly focuses on pre-processing the HAM10000 and BCN20000 skin lesion datasets to select important features that will drive for proper skin cancer classification. In this work, three feature fusion strategies have been proposed by utilizing three pre-trained Convolutional Neural Network (CNN) models, namely VGG16, EfficientNet B0, and ResNet50 to select the important features based on the weights of the features and are coined as Adaptive Weighted Feature Set (AWFS). Then, two other strategies, Model-based Optimized Weighted Feature Set (MOWFS) and Feature-based Optimized Weighted Feature Set (FOWFS), are proposed by optimally and adaptively choosing the weights using a meta-heuristic artificial jellyfish (AJS) algorithm. The MOWFS-AJS is a model-specific approach whereas the FOWFS-AJS is a feature-specific approach for optimizing the weights chosen for obtaining optimal feature sets. The performances of those three proposed feature selection strategies are evaluated using Decision Tree (DT), Naïve Bayesian (NB), Multi-Layer Perceptron (MLP), and Support Vector Machine (SVM) classifiers and the performance are measured through accuracy, precision, sensitivity, and F1-score. Additionally, the area under the receiver operating characteristics curves (AUC-ROC) is plotted and it is observed that FOWFS-AJS shows the best accuracy performance based on the SVM with 94.05% and 94.90%, respectively, for HAM 10000 and BCN 20000 datasets. Finally, the experimental results are also analyzed using a non-parametric Friedman statistical test and the computational times are recorded; the results show that, out of those three proposed feature selection strategies, the FOWFS-AJS performs very well because its quick converging nature is inculcated with the help of AJS.
Collapse
|
80
|
Foahom Gouabou AC, Collenne J, Monnier J, Iguernaissi R, Damoiseaux JL, Moudafi A, Merad D. Computer Aided Diagnosis of Melanoma Using Deep Neural Networks and Game Theory: Application on Dermoscopic Images of Skin Lesions. Int J Mol Sci 2022; 23:ijms232213838. [PMID: 36430315 PMCID: PMC9696950 DOI: 10.3390/ijms232213838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Early detection of melanoma remains a daily challenge due to the increasing number of cases and the lack of dermatologists. Thus, AI-assisted diagnosis is considered as a possible solution for this issue. Despite the great advances brought by deep learning and especially convolutional neural networks (CNNs), computer-aided diagnosis (CAD) systems are still not used in clinical practice. This may be explained by the dermatologist's fear of being misled by a false negative and the assimilation of CNNs to a "black box", making their decision process difficult to understand by a non-expert. Decision theory, especially game theory, is a potential solution as it focuses on identifying the best decision option that maximizes the decision-maker's expected utility. This study presents a new framework for automated melanoma diagnosis. Pursuing the goal of improving the performance of existing systems, our approach also attempts to bring more transparency in the decision process. The proposed framework includes a multi-class CNN and six binary CNNs assimilated to players. The players' strategies is to first cluster the pigmented lesions (melanoma, nevus, and benign keratosis), using the introduced method of evaluating the confidence of the predictions, into confidence level (confident, medium, uncertain). Then, a subset of players has the strategy to refine the diagnosis for difficult lesions with medium and uncertain prediction. We used EfficientNetB5 as the backbone of our networks and evaluated our approach on the public ISIC dataset consisting of 8917 lesions: melanoma (1113), nevi (6705) and benign keratosis (1099). The proposed framework achieved an area under the receiver operating curve (AUROC) of 0.93 for melanoma, 0.96 for nevus and 0.97 for benign keratosis. Furthermore, our approach outperformed existing methods in this task, improving the balanced accuracy (BACC) of the best compared method from 77% to 86%. These results suggest that our framework provides an effective and explainable decision-making strategy. This approach could help dermatologists in their clinical practice for patients with atypical and difficult-to-diagnose pigmented lesions. We also believe that our system could serve as a didactic tool for less experienced dermatologists.
Collapse
Affiliation(s)
| | - Jules Collenne
- LIS, CNRS, Aix Marseille University, 13288 Marseille, France
| | - Jilliana Monnier
- LIS, CNRS, Aix Marseille University, 13288 Marseille, France
- Research Cancer Centre of Marseille, Inserm, CNRS, Aix-Marseille University, 13273 Marseille, France
- Dermatology and Skin Cancer Department, La Timone Hospital, AP-HM, Aix-Marseille University, 13385 Marseille, France
| | | | | | | | - Djamal Merad
- LIS, CNRS, Aix Marseille University, 13288 Marseille, France
- Correspondence: (A.C.F.G.); (D.M.)
| |
Collapse
|
81
|
Hamamoto R, Koyama T, Kouno N, Yasuda T, Yui S, Sudo K, Hirata M, Sunami K, Kubo T, Takasawa K, Takahashi S, Machino H, Kobayashi K, Asada K, Komatsu M, Kaneko S, Yatabe Y, Yamamoto N. Introducing AI to the molecular tumor board: one direction toward the establishment of precision medicine using large-scale cancer clinical and biological information. Exp Hematol Oncol 2022; 11:82. [PMID: 36316731 PMCID: PMC9620610 DOI: 10.1186/s40164-022-00333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
Since U.S. President Barack Obama announced the Precision Medicine Initiative in his New Year's State of the Union address in 2015, the establishment of a precision medicine system has been emphasized worldwide, particularly in the field of oncology. With the advent of next-generation sequencers specifically, genome analysis technology has made remarkable progress, and there are active efforts to apply genome information to diagnosis and treatment. Generally, in the process of feeding back the results of next-generation sequencing analysis to patients, a molecular tumor board (MTB), consisting of experts in clinical oncology, genetic medicine, etc., is established to discuss the results. On the other hand, an MTB currently involves a large amount of work, with humans searching through vast databases and literature, selecting the best drug candidates, and manually confirming the status of available clinical trials. In addition, as personalized medicine advances, the burden on MTB members is expected to increase in the future. Under these circumstances, introducing cutting-edge artificial intelligence (AI) technology and information and communication technology to MTBs while reducing the burden on MTB members and building a platform that enables more accurate and personalized medical care would be of great benefit to patients. In this review, we introduced the latest status of elemental technologies that have potential for AI utilization in MTB, and discussed issues that may arise in the future as we progress with AI implementation.
Collapse
Affiliation(s)
- Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan.
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Nobuji Kouno
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Surgery, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8303, Japan
| | - Tomohiro Yasuda
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Research and Development Group, Hitachi, Ltd., 1-280 Higashi-koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Shuntaro Yui
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Research and Development Group, Hitachi, Ltd., 1-280 Higashi-koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Kazuki Sudo
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Makoto Hirata
- Department of Genetic Medicine and Services, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kuniko Sunami
- Department of Laboratory Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takashi Kubo
- Department of Laboratory Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ken Takasawa
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Satoshi Takahashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Hidenori Machino
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Kazuma Kobayashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Ken Asada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Masaaki Komatsu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Molecular Pathology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
82
|
Oversampled Two-dimensional Deep Learning Model for Septenary Classification of Skin Lesion Disease. NATIONAL ACADEMY SCIENCE LETTERS 2022. [DOI: 10.1007/s40009-022-01175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
83
|
Nguyen VD, Bui ND, Do HK. Skin Lesion Classification on Imbalanced Data Using Deep Learning with Soft Attention. SENSORS (BASEL, SWITZERLAND) 2022; 22:7530. [PMID: 36236628 PMCID: PMC9572097 DOI: 10.3390/s22197530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Today, the rapid development of industrial zones leads to an increased incidence of skin diseases because of polluted air. According to a report by the American Cancer Society, it is estimated that in 2022 there will be about 100,000 people suffering from skin cancer and more than 7600 of these people will not survive. In the context that doctors at provincial hospitals and health facilities are overloaded, doctors at lower levels lack experience, and having a tool to support doctors in the process of diagnosing skin diseases quickly and accurately is essential. Along with the strong development of artificial intelligence technologies, many solutions to support the diagnosis of skin diseases have been researched and developed. In this paper, a combination of one Deep Learning model (DenseNet, InceptionNet, ResNet, etc) with Soft-Attention, which unsupervisedly extract a heat map of main skin lesions. Furthermore, personal information including age and gender are also used. It is worth noting that a new loss function that takes into account the data imbalance is also proposed. Experimental results on data set HAM10000 show that using InceptionResNetV2 with Soft-Attention and the new loss function gives 90 percent accuracy, mean of precision, F1-score, recall, and AUC of 0.81, 0.81, 0.82, and 0.99, respectively. Besides, using MobileNetV3Large combined with Soft-Attention and the new loss function, even though the number of parameters is 11 times less and the number of hidden layers is 4 times less, it achieves an accuracy of 0.86 and 30 times faster diagnosis than InceptionResNetV2.
Collapse
Affiliation(s)
- Viet Dung Nguyen
- School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Dai Co Viet, Ha Noi 100000, Vietnam
| | - Ngoc Dung Bui
- Faculty of Information Technology, University of Transport and Communications, Ha Noi 100000, Vietnam
| | - Hoang Khoi Do
- School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Dai Co Viet, Ha Noi 100000, Vietnam
| |
Collapse
|
84
|
Analysis of Skin Cancer and Patient Healthcare Using Data Mining Techniques. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2250275. [PMID: 36199959 PMCID: PMC9529455 DOI: 10.1155/2022/2250275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022]
Abstract
Skin cancer is the uncontrolled growth of irregular cancer cells in the human-skin's outer layer. Skin cells commonly grow in an uneven pattern on exposed skin surfaces. The majority of melanomas, aside from this variety, form in areas that are rarely exposed to sunlight. Harmful sunlight, which results in a mutation in the DNA and irreparable DNA damage, is the primary cause of skin cancer. This demonstrates a close connection between skin cancer and molecular biology and genetics. Males and females both experience the same incidence rate. Avoiding revelation to ultraviolet (UV) emissions can lower the risk rate. This needed to be known about in order to be prevented from happening. To identify skin cancer, an improved image analysis technique was put forth in this work. The skin alterations are routinely monitored by this proposed skin cancer categorization approach. Therefore, early detection of suspicious skin changes can aid in the early discovery of skin cancer, increasing the likelihood of a favourable outcome. Due to the blessing of diagnostic technology and recent advancements in cancer treatment, the survival rate of patients with skin cancer has grown. The strategy for detecting skin cancer using image processing technologies is presented in this paper. The system receives the image of the skin lesion as an input and analyses it using cutting-edge image processing methods to determine whether skin cancer is present. The Lesion Image Analysis Tools use texture, size, and shape assessment for image segmentation and feature phases to check for various cancer criteria including asymmetries, borders, pigment, and diameter. The image is classified as Normal skin and a lesion caused by skin cancer using the derived feature parameters.
Collapse
|
85
|
Mukhlif AA, Al-Khateeb B, Mohammed MA. An extensive review of state-of-the-art transfer learning techniques used in medical imaging: Open issues and challenges. JOURNAL OF INTELLIGENT SYSTEMS 2022. [DOI: 10.1515/jisys-2022-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Deep learning techniques, which use a massive technology known as convolutional neural networks, have shown excellent results in a variety of areas, including image processing and interpretation. However, as the depth of these networks grows, so does the demand for a large amount of labeled data required to train these networks. In particular, the medical field suffers from a lack of images because the procedure for obtaining labeled medical images in the healthcare field is difficult, expensive, and requires specialized expertise to add labels to images. Moreover, the process may be prone to errors and time-consuming. Current research has revealed transfer learning as a viable solution to this problem. Transfer learning allows us to transfer knowledge gained from a previous process to improve and tackle a new problem. This study aims to conduct a comprehensive survey of recent studies that dealt with solving this problem and the most important metrics used to evaluate these methods. In addition, this study identifies problems in transfer learning techniques and highlights the problems of the medical dataset and potential problems that can be addressed in future research. According to our review, many researchers use pre-trained models on the Imagenet dataset (VGG16, ResNet, Inception v3) in many applications such as skin cancer, breast cancer, and diabetic retinopathy classification tasks. These techniques require further investigation of these models, due to training them on natural, non-medical images. In addition, many researchers use data augmentation techniques to expand their dataset and avoid overfitting. However, not enough studies have shown the effect of performance with or without data augmentation. Accuracy, recall, precision, F1 score, receiver operator characteristic curve, and area under the curve (AUC) were the most widely used measures in these studies. Furthermore, we identified problems in the datasets for melanoma and breast cancer and suggested corresponding solutions.
Collapse
Affiliation(s)
- Abdulrahman Abbas Mukhlif
- Computer Science Department, College of Computer Science and Information Technology, University of Anbar , 31001 , Ramadi , Anbar , Iraq
| | - Belal Al-Khateeb
- Computer Science Department, College of Computer Science and Information Technology, University of Anbar , 31001 , Ramadi , Anbar , Iraq
| | - Mazin Abed Mohammed
- Computer Science Department, College of Computer Science and Information Technology, University of Anbar , 31001 , Ramadi , Anbar , Iraq
| |
Collapse
|
86
|
La Salvia M, Torti E, Leon R, Fabelo H, Ortega S, Balea-Fernandez F, Martinez-Vega B, Castaño I, Almeida P, Carretero G, Hernandez JA, Callico GM, Leporati F. Neural Networks-Based On-Site Dermatologic Diagnosis through Hyperspectral Epidermal Images. SENSORS (BASEL, SWITZERLAND) 2022; 22:7139. [PMID: 36236240 PMCID: PMC9571453 DOI: 10.3390/s22197139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Cancer originates from the uncontrolled growth of healthy cells into a mass. Chromophores, such as hemoglobin and melanin, characterize skin spectral properties, allowing the classification of lesions into different etiologies. Hyperspectral imaging systems gather skin-reflected and transmitted light into several wavelength ranges of the electromagnetic spectrum, enabling potential skin-lesion differentiation through machine learning algorithms. Challenged by data availability and tiny inter and intra-tumoral variability, here we introduce a pipeline based on deep neural networks to diagnose hyperspectral skin cancer images, targeting a handheld device equipped with a low-power graphical processing unit for routine clinical testing. Enhanced by data augmentation, transfer learning, and hyperparameter tuning, the proposed architectures aim to meet and improve the well-known dermatologist-level detection performances concerning both benign-malignant and multiclass classification tasks, being able to diagnose hyperspectral data considering real-time constraints. Experiments show 87% sensitivity and 88% specificity for benign-malignant classification and specificity above 80% for the multiclass scenario. AUC measurements suggest classification performance improvement above 90% with adequate thresholding. Concerning binary segmentation, we measured skin DICE and IOU higher than 90%. We estimated 1.21 s, at most, consuming 5 Watts to segment the epidermal lesions with the U-Net++ architecture, meeting the imposed time limit. Hence, we can diagnose hyperspectral epidermal data assuming real-time constraints.
Collapse
Affiliation(s)
- Marco La Salvia
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Emanuele Torti
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Raquel Leon
- Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain
| | - Himar Fabelo
- Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain
| | - Samuel Ortega
- Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain
- Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima), 6122 Tromsø, Norway
| | - Francisco Balea-Fernandez
- Department of Psychology, Sociology and Social Work, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain
| | - Beatriz Martinez-Vega
- Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain
| | - Irene Castaño
- Department of Dermatology, Hospital Universitario de Gran Canaria Doctor Negrín, Barranco de la Ballena, s/n, 35010 Las Palmas de Gran Canaria, Spain
| | - Pablo Almeida
- Department of Dermatology, Complejo Hospitalario Universitario Insular-Materno Infantil, Avenida Maritima del Sur, s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Gregorio Carretero
- Department of Dermatology, Hospital Universitario de Gran Canaria Doctor Negrín, Barranco de la Ballena, s/n, 35010 Las Palmas de Gran Canaria, Spain
| | - Javier A. Hernandez
- Department of Dermatology, Complejo Hospitalario Universitario Insular-Materno Infantil, Avenida Maritima del Sur, s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Gustavo M. Callico
- Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain
| | - Francesco Leporati
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
87
|
Identifying out of distribution samples for skin cancer and malaria images. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
88
|
Wang Y, Fariah Haq N, Cai J, Kalia S, Lui H, Jane Wang Z, Lee TK. Multi-channel content based image retrieval method for skin diseases using similarity network fusion and deep community analysis. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
89
|
An Efficient Deep Learning-Based Skin Cancer Classifier for an Imbalanced Dataset. Diagnostics (Basel) 2022; 12:diagnostics12092115. [PMID: 36140516 PMCID: PMC9497837 DOI: 10.3390/diagnostics12092115] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 12/12/2022] Open
Abstract
Efficient skin cancer detection using images is a challenging task in the healthcare domain. In today’s medical practices, skin cancer detection is a time-consuming procedure that may lead to a patient’s death in later stages. The diagnosis of skin cancer at an earlier stage is crucial for the success rate of complete cure. The efficient detection of skin cancer is a challenging task. Therefore, the numbers of skilful dermatologists around the globe are not enough to deal with today’s healthcare. The huge difference between data from various healthcare sector classes leads to data imbalance problems. Due to data imbalance issues, deep learning models are often trained on one class more than others. This study proposes a novel deep learning-based skin cancer detector using an imbalanced dataset. Data augmentation was used to balance various skin cancer classes to overcome the data imbalance. The Skin Cancer MNIST: HAM10000 dataset was employed, which consists of seven classes of skin lesions. Deep learning models are widely used in disease diagnosis through images. Deep learning-based models (AlexNet, InceptionV3, and RegNetY-320) were employed to classify skin cancer. The proposed framework was also tuned with various combinations of hyperparameters. The results show that RegNetY-320 outperformed InceptionV3 and AlexNet in terms of the accuracy, F1-score, and receiver operating characteristic (ROC) curve both on the imbalanced and balanced datasets. The performance of the proposed framework was better than that of conventional methods. The accuracy, F1-score, and ROC curve value obtained with the proposed framework were 91%, 88.1%, and 0.95, which were significantly better than those of the state-of-the-art method, which achieved 85%, 69.3%, and 0.90, respectively. Our proposed framework may assist in disease identification, which could save lives, reduce unnecessary biopsies, and reduce costs for patients, dermatologists, and healthcare professionals.
Collapse
|
90
|
Zhou J, Wu Z, Jiang Z, Huang K, Guo K, Zhao S. Background selection schema on deep learning-based classification of dermatological disease. Comput Biol Med 2022; 149:105966. [PMID: 36029748 DOI: 10.1016/j.compbiomed.2022.105966] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/28/2022] [Accepted: 08/13/2022] [Indexed: 11/03/2022]
Abstract
Skin diseases are one of the most common ailments affecting humans. Artificial intelligence based on deep learning can significantly improve the efficiency of identifying skin disorders and alleviate the scarcity of medical resources. However, the distribution of background information in dermatological datasets is imbalanced, causing generalized deep learning models to perform poorly in skin disease classification. We propose a deep learning schema that combines data preprocessing, data augmentation, and residual networks to study the influence of color-based background selection on a deep model's capacity to learn foreground lesion subject attributes in a skin disease classification problem. First, clinical photographs are annotated by dermatologists, and then the original background information is masked with unique colors to generate several subsets with distinct background colors. Sample-balanced training and test sets are generated using random over/undersampling and data augmentation techniques. Finally, the deep learning networks are independently trained on diverse subsets of backdrop colors to compare the performance of classifiers based on different background information. Extensive experiments demonstrate that color-based background information significantly affects the classification of skin diseases and that classifiers trained on the green subset achieve state-of-the-art performance for classifying black and red skin lesions.
Collapse
Affiliation(s)
- Jiancun Zhou
- School of Computer Science and Engineering, Central South University, Changsha 410083, China; College of Information and Electronic Engineering, Hunan City University, Yiyang 413000, China
| | - Zheng Wu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Zixi Jiang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Kai Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Kehua Guo
- School of Computer Science and Engineering, Central South University, Changsha 410083, China.
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, China.
| |
Collapse
|
91
|
Luo Y, Zhang J, Yang Y, Rao Y, Chen X, Shi T, Xu S, Jia R, Gao X. Deep learning-based fully automated differential diagnosis of eyelid basal cell and sebaceous carcinoma using whole slide images. Quant Imaging Med Surg 2022; 12:4166-4175. [PMID: 35919066 PMCID: PMC9338367 DOI: 10.21037/qims-22-98] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022]
Abstract
Background The differential diagnosis of eyelid basal cell carcinoma (BCC) and sebaceous carcinoma (SC) is highly dependent on pathologist’s experience. Herein, we proposed a fully automated differential diagnostic method, which used deep learning (DL) to accurately classify eyelid BCC and SC based on whole slide images (WSIs). Methods We used 116 haematoxylin and eosin (H&E)-stained sections from 116 eyelid BCC patients and 180 H&E-stained sections from 129 eyelid SC patients treated at the Shanghai Ninth People’s Hospital from 2017 to 2019. The method comprises two stages: patch prediction by the DenseNet-161 architecture-based DL model and WSI differentiation by an average-probability strategy-based integration module, and its differential performance was assessed by the carcinoma differentiation accuracy and F1 score. We compared the classification performance of the method with that of three pathologists, two junior and one senior. To validate the auxiliary value of the method, we compared the pathologists’ BCC and SC classification with and without the assistance of our proposed method. Results Our proposed method achieved an accuracy of 0.983, significantly higher than that of the three pathologists (0.644 and 0.729 for the two junior pathologists and 0.831 for the senior pathologist). With the method’s assistance, the pathologists’ accuracy increased significantly (P<0.05), by 28.8% and 15.2%, respectively, for the two junior pathologists and by 11.8% for the senior pathologist. Conclusions Our proposed method accurately classifies eyelid BCC and SC and effectively improves the diagnostic accuracy of pathologists. It may therefore facilitate the development of appropriate and timely therapeutic plans.
Collapse
Affiliation(s)
- Yingxiu Luo
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jiayi Zhang
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, China
| | - Yidi Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yamin Rao
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyu Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tianlei Shi
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, China
| | - Shiqiong Xu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xin Gao
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, China.,Jinan Guoke Medical Engineering and Technology Development Co., Ltd., Jinan, China
| |
Collapse
|
92
|
Zareen SS, Guangmin S, Li Y, Kundi M, Qadri S, Qadri SF, Ahmad M, Khan AH. A Machine Vision Approach for Classification of Skin Cancer Using Hybrid Texture Features. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:4942637. [PMID: 35898782 PMCID: PMC9313960 DOI: 10.1155/2022/4942637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022]
Abstract
The main purpose of this study is to observe the importance of machine vision (MV) approach for the identification of five types of skin cancers, namely, actinic-keratosis, benign, solar-lentigo, malignant, and nevus. The 1000 (200 × 5) benchmark image datasets of skin cancers are collected from the International Skin Imaging Collaboration (ISIC). The acquired ISIC image datasets were transformed into texture feature dataset that was a combination of first-order histogram and gray level co-occurrence matrix (GLCM) features. For the skin cancer image, a total of 137,400 (229 × 3 x 200) texture features were acquired on three nonover-lapping regions of interest (ROIs). Principal component analysis (PCA) clustering approach was employed for reducing the dimension of feature dataset. Each image acquired twenty most discriminate features based on two different approaches of statistical features such as average correlation coefficient plus probability of error (ACC + POE) and Fisher (Fis). Furthermore, a correlation-based feature selection (CFS) approach was employed for feature reduction, and optimized 12 features were acquired. Furthermore, a classification algorithm naive bayes (NB), Bayes Net (BN), LMT Tree, and multilayer perception (MLP) using 10 K-fold cross-validation approach were employed on optimized feature datasets and the overall accuracy achieved by MLP is 97.1333%.
Collapse
Affiliation(s)
- Syeda Shamaila Zareen
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Sun Guangmin
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Yu Li
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Mahwish Kundi
- Department of Informatics, University of Leicester, Leicester, UK
| | - Salman Qadri
- Department of Computer Science, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Syed Furqan Qadri
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou 311121, China
| | - Mubashir Ahmad
- Faculty of Computer Science and Technology, University of Lahore, Sargodha, Pakistan
| | - Ali Haider Khan
- Department of Computer Science, School of Systems & Technology, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
93
|
Wu Y, Chen B, Zeng A, Pan D, Wang R, Zhao S. Skin Cancer Classification With Deep Learning: A Systematic Review. Front Oncol 2022; 12:893972. [PMID: 35912265 PMCID: PMC9327733 DOI: 10.3389/fonc.2022.893972] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023] Open
Abstract
Skin cancer is one of the most dangerous diseases in the world. Correctly classifying skin lesions at an early stage could aid clinical decision-making by providing an accurate disease diagnosis, potentially increasing the chances of cure before cancer spreads. However, achieving automatic skin cancer classification is difficult because the majority of skin disease images used for training are imbalanced and in short supply; meanwhile, the model's cross-domain adaptability and robustness are also critical challenges. Recently, many deep learning-based methods have been widely used in skin cancer classification to solve the above issues and achieve satisfactory results. Nonetheless, reviews that include the abovementioned frontier problems in skin cancer classification are still scarce. Therefore, in this article, we provide a comprehensive overview of the latest deep learning-based algorithms for skin cancer classification. We begin with an overview of three types of dermatological images, followed by a list of publicly available datasets relating to skin cancers. After that, we review the successful applications of typical convolutional neural networks for skin cancer classification. As a highlight of this paper, we next summarize several frontier problems, including data imbalance, data limitation, domain adaptation, model robustness, and model efficiency, followed by corresponding solutions in the skin cancer classification task. Finally, by summarizing different deep learning-based methods to solve the frontier challenges in skin cancer classification, we can conclude that the general development direction of these approaches is structured, lightweight, and multimodal. Besides, for readers' convenience, we have summarized our findings in figures and tables. Considering the growing popularity of deep learning, there are still many issues to overcome as well as chances to pursue in the future.
Collapse
Affiliation(s)
- Yinhao Wu
- School of Intelligent Systems Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Bin Chen
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - An Zeng
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, China
| | - Dan Pan
- School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Ruixuan Wang
- School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Shen Zhao
- School of Intelligent Systems Engineering, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
94
|
Rogers T, McCrary MR, Yeung H, Krueger L, Chen SC. Dermoscopic Photographs Impact Confidence and Management of Remotely Triaged Skin Lesions. Dermatol Pract Concept 2022; 12:e2022129. [PMID: 36159122 PMCID: PMC9464534 DOI: 10.5826/dpc.1203a129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction Improving remote triage is crucial given expansions in tele-dermatology and with limited in-person care during COVID-19. In addition to clinical pictures, dermoscopic images may provide utility for triage. Objectives To determine if dermoscopic images enhance confidence, triage accuracy, and triage prioritization for tele-dermatology. Methods In this preliminary parallel convergent mixed-methods study, a cohort of dermatologists and residents assessed skin lesions using clinical and dermoscopic images. For each case, participants viewed a clinical image and determined diagnostic category, management, urgency, and decision-making confidence. They subsequently viewed the associated dermoscopy and answered the same questions. A moderated focus group discussion followed to explore perceptions on the role of dermoscopy in tele-dermatology. Results Dermoscopy improved recognition of malignancies by 23% and significantly reduced triage urgency measures for non-malignant lesions. Participants endorsed specific utilities of tele-dermoscopy, such as for evaluating pigmented lesions, with limitations including poor image quality. Conclusions Dermoscopic images may be useful when remotely triaging skin lesions. Standardized imaging protocols are needed.
Collapse
Affiliation(s)
- Tova Rogers
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Howa Yeung
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA,Regional Telehealth Service, VISN 7, Duluth, Georgia, USA
| | - Loren Krueger
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Suephy C Chen
- Regional Telehealth Service, VISN 7, Duluth, Georgia, USA,Department of Dermatology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
95
|
Aslanyan S, Gumeniuk K, Lysenko D. Modern views on skin biopsy in the diagnostic algorithm of dermatooncological diseases. УКРАЇНСЬКИЙ РАДІОЛОГІЧНИЙ ТА ОНКОЛОГІЧНИЙ ЖУРНАЛ 2022. [DOI: 10.46879/ukroj.2.2022.62-71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background. Malignant neoplasms of the skin are fairly common tumors in the world population and among the population of Ukraine. The main method of diagnosing skintumors is a biopsy, which allows establishing a diagnosis at an early stage and ensures the cure of most patients.
Purpose. To evaluate modern recommendations for skin biopsy in the diagnosis of dermato-onсological diseases.
Materials and methods. The search for sources of information was conducted using the MEDLINE/PubMed, EMBASE/ExcerptaMedica, CochraneLibrary, PubMed та Google Scholar databases using the following keywords: skin biopsy, skin tumors, diagnosis, melanoma. Among the identified sources, works without statistical analysis, descriptions of individual cases, articles without conclusions, and sources with duplicate results were excluded. The search depth was 10 years.
Results. As a result of the conducted search, 57 publications were found that corresponded to the declared purpose. The most common methods are: puncture, shaving, excisional and incisional biopsy. Most guidelines recommend full-thickness excisional biopsy as the preferred procedure for the diagnosis of suspected melanoma. It is indicated that a statistically significant mortality rate was found in the puncture biopsy group. Most observations showed no significant differences in melanoma recurrence between excisional biopsy and puncture groups. Given the clinical diversity of melanoma, there is no uniformity in the types of biopsies performed to diagnose melanoma. The most inaccurate method turned out to be the punch biopsy method, which is associated with an increased risk of underdiagnosis of melanoma.
Conclusions. A skin biopsy is a mandatory first step to establish a definitive diagnosis of a skin tumor. Excisional complete biopsy is the most justified in most cases of diagnosis. Rational biopsy technique remains an issue that needs further study.
Collapse
|
96
|
Meirelles AL, Kurc T, Saltz J, Teodoro G. Effective active learning in digital pathology: A case study in tumor infiltrating lymphocytes. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 220:106828. [PMID: 35500506 DOI: 10.1016/j.cmpb.2022.106828] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/09/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Deep learning methods have demonstrated remarkable performance in pathology image analysis, but they require a large amount of annotated training data from expert pathologists. The aim of this study is to minimize the data annotation need in these analyses. METHODS Active learning (AL) is an iterative approach to training deep learning models. It was used in our context with a Tumor Infiltrating Lymphocytes (TIL) classification task to minimize annotation. State-of-the-art AL methods were evaluated with the TIL application and we have proposed and evaluated a more efficient and effective AL acquisition method. The proposed method uses data grouping based on imaging features and model prediction uncertainty to select meaningful training samples (image patches). RESULTS An experimental evaluation with a collection of cancer tissue images shows that: (i) Our approach reduces the number of patches required to attain a given AUC as compared to other approaches, and (ii) our optimization (subpooling) leads to AL execution time improvement of about 2.12×. CONCLUSIONS This strategy enabled TIL based deep learning analyses using smaller annotation demand. We expect this approach may be used to build other analyses in digital pathology with fewer training samples.
Collapse
Affiliation(s)
- André Ls Meirelles
- Department of Computer Science, University of Brasília, Brasília, 70910-900, Brazil
| | - Tahsin Kurc
- Biomedical Informatics Department, Stony Brook University, Stony Brook, 11794-8322, USA
| | - Joel Saltz
- Biomedical Informatics Department, Stony Brook University, Stony Brook, 11794-8322, USA
| | - George Teodoro
- Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
97
|
Bratchenko IA, Bratchenko LA, Khristoforova YA, Moryatov AA, Kozlov SV, Zakharov VP. Classification of skin cancer using convolutional neural networks analysis of Raman spectra. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 219:106755. [PMID: 35349907 DOI: 10.1016/j.cmpb.2022.106755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Skin cancer is the most common malignancy in whites accounting for about one third of all cancers diagnosed per year. Portable Raman spectroscopy setups for skin cancer "optical biopsy" are utilized to detect tumors based on their spectral features caused by the comparative presence of different chemical components. However, low signal-to-noise ratio in such systems may prevent accurate tumors classification. Thus, there is a challenge to develop methods for efficient skin tumors classification. METHODS We compare the performance of convolutional neural networks and the projection on latent structures with discriminant analysis for discriminating skin cancer using the analysis of Raman spectra with a high autofluorescence background stimulated by a 785 nm laser. We have registered the spectra of 617 cases of skin neoplasms (615 patients, 70 melanomas, 122 basal cell carcinomas, 12 squamous cell carcinomas and 413 benign tumors) in vivo with a portable Raman setup and created classification models both for convolutional neural networks and projection on latent structures approaches. To check the classification models stability, a 10-fold cross-validation was performed for all created models. To avoid models overfitting, the data was divided into a training set (80% of spectral dataset) and a test set (20% of spectral dataset). RESULTS The results for different classification tasks demonstrate that the convolutional neural networks significantly (p<0.01) outperforms the projection on latent structures. For the convolutional neural networks implementation we obtained ROC AUCs of 0.96 (0.94 - 0.97; 95% CI), 0.90 (0.85-0.94; 95% CI), and 0.92 (0.87 - 0.97; 95% CI) for classifying a) malignant vs benign tumors, b) melanomas vs pigmented tumors and c) melanomas vs seborrheic keratosis respectively. CONCLUSIONS The performance of the convolutional neural networks classification of skin tumors based on Raman spectra analysis is higher or comparable to the accuracy provided by trained dermatologists. The increased accuracy with the convolutional neural networks implementation is due to a more precise accounting of low intensity Raman bands in the intense autofluorescence background. The achieved high performance of skin tumors classifications with convolutional neural networks analysis opens a possibility for wide implementation of Raman setups in clinical setting.
Collapse
Affiliation(s)
- Ivan A Bratchenko
- Department of Laser and Biotechnical Systems, Samara University, 34 Moskovskoe Shosse, Samara, 443086, Russian Federation.
| | - Lyudmila A Bratchenko
- Department of Laser and Biotechnical Systems, Samara University, 34 Moskovskoe Shosse, Samara, 443086, Russian Federation
| | - Yulia A Khristoforova
- Department of Laser and Biotechnical Systems, Samara University, 34 Moskovskoe Shosse, Samara, 443086, Russian Federation
| | - Alexander A Moryatov
- Department of Oncology, Samara State Medical University, 159 Tashkentskaya Street, Samara, 443095, Russian Federation; Department of Visual Localization Tumors, Samara Regional Clinical Oncology Dispensary, 50 Solnechnaya Street, Samara, 443095, Russian Federation
| | - Sergey V Kozlov
- Department of Oncology, Samara State Medical University, 159 Tashkentskaya Street, Samara, 443095, Russian Federation; Department of Visual Localization Tumors, Samara Regional Clinical Oncology Dispensary, 50 Solnechnaya Street, Samara, 443095, Russian Federation
| | - Valery P Zakharov
- Department of Laser and Biotechnical Systems, Samara University, 34 Moskovskoe Shosse, Samara, 443086, Russian Federation
| |
Collapse
|
98
|
Meirelles ALS, Kurc T, Kong J, Ferreira R, Saltz JH, Teodoro G. Building Efficient CNN Architectures for Histopathology Images Analysis: A Case-Study in Tumor-Infiltrating Lymphocytes Classification. Front Med (Lausanne) 2022; 9:894430. [PMID: 35712087 PMCID: PMC9197439 DOI: 10.3389/fmed.2022.894430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Deep learning methods have demonstrated remarkable performance in pathology image analysis, but they are computationally very demanding. The aim of our study is to reduce their computational cost to enable their use with large tissue image datasets. Methods We propose a method called Network Auto-Reduction (NAR) that simplifies a Convolutional Neural Network (CNN) by reducing the network to minimize the computational cost of doing a prediction. NAR performs a compound scaling in which the width, depth, and resolution dimensions of the network are reduced together to maintain a balance among them in the resulting simplified network. We compare our method with a state-of-the-art solution called ResRep. The evaluation is carried out with popular CNN architectures and a real-world application that identifies distributions of tumor-infiltrating lymphocytes in tissue images. Results The experimental results show that both ResRep and NAR are able to generate simplified, more efficient versions of ResNet50 V2. The simplified versions by ResRep and NAR require 1.32× and 3.26× fewer floating-point operations (FLOPs), respectively, than the original network without a loss in classification power as measured by the Area under the Curve (AUC) metric. When applied to a deeper and more computationally expensive network, Inception V4, NAR is able to generate a version that requires 4× lower than the original version with the same AUC performance. Conclusions NAR is able to achieve substantial reductions in the execution cost of two popular CNN architectures, while resulting in small or no loss in model accuracy. Such cost savings can significantly improve the use of deep learning methods in digital pathology. They can enable studies with larger tissue image datasets and facilitate the use of less expensive and more accessible graphics processing units (GPUs), thus reducing the computing costs of a study.
Collapse
Affiliation(s)
| | - Tahsin Kurc
- Biomedical Informatics Department, Stony Brook University, Stony Brook, NY, United States
| | - Jun Kong
- Department of Mathematics and Statistics and Computer Science, Georgia State University, Atlanta, GA, United States
| | - Renato Ferreira
- Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Joel H. Saltz
- Biomedical Informatics Department, Stony Brook University, Stony Brook, NY, United States
| | - George Teodoro
- Department of Computer Science, Universidade de Brasília, Brasília, Brazil
- Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
99
|
Shokrani H, Shokrani A, Jouyandeh M, Seidi F, Gholami F, Kar S, Munir MT, Kowalkowska-Zedler D, Zarrintaj P, Rabiee N, Saeb MR. Green Polymer Nanocomposites for Skin Tissue Engineering. ACS APPLIED BIO MATERIALS 2022; 5:2107-2121. [PMID: 35504039 DOI: 10.1021/acsabm.2c00313] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fabrication of an appropriate skin scaffold needs to meet several standards related to the mechanical and biological properties. Fully natural/green scaffolds with acceptable biodegradability, biocompatibility, and physiological properties quite often suffer from poor mechanical properties. Therefore, for appropriate skin tissue engineering and to mimic the real functions, we need to use synthetic polymers and/or additives as complements to green polymers. Green nanocomposites (either nanoscale natural macromolecules or biopolymers containing nanoparticles) are a class of scaffolds with acceptable biomedical properties window (drug delivery and cardiac, nerve, bone, cartilage as well as skin tissue engineering), enabling one to achieve the required level of skin regeneration and wound healing. In this review, we have collected, summarized, screened, analyzed, and interpreted the properties of green nanocomposites used in skin tissue engineering and wound dressing. We particularly emphasize the mechanical and biological properties that skin cells need to meet when seeded on the scaffold. In this regard, the latest state of the art studies directed at fabrication of skin tissue and bionanocomposites as well as their mechanistic features are discussed, whereas some unspoken complexities and challenges for future developments are highlighted.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, 11155-9567 Tehran, Iran
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, 11155-4563 Tehran, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Fatemeh Gholami
- New Technologies - Research Centre, University of West Bohemia, Veleslavínova 42, 301 00 Plzeň, Czech Republic
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Muhammad Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Daria Kowalkowska-Zedler
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Payam Zarrintaj
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran 145888-9694, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
100
|
Automated Detection of Infection in Diabetic Foot Ulcer Images Using Convolutional Neural Network. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2349849. [PMID: 35432819 PMCID: PMC9007637 DOI: 10.1155/2022/2349849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022]
Abstract
A bacterial or bone infection in the feet causes diabetic foot infection (DFI), which results in reddish skin in the wound and surrounding area. DFI is the most prevalent and dangerous type of diabetic mellitus. It will mainly occur in people with heart disease, renal illness, or eye disease. The clinical signs and symptoms of local inflammation are used to diagnose diabetic foot infection. In assessing diabetic foot ulcers, the infection has significant clinical implications in predicting the likelihood of amputation. In this work, a diabetic foot infection network (DFINET) is proposed to assess infection and no infection from diabetic foot ulcer images. A DFINET consists of 22 layers with a unique parallel convolution layer with ReLU, a normalization layer, and a fully connected layer with a dropout connection. Experiments have shown that the DFINET, when combined with this technique and improved image augmentation, should yield promising results in infection recognition, with an accuracy of 91.98%, and a Matthews correlation coefficient of 0.84 on binary classification. Such enhancements to existing methods shows that the suggested approach can assist medical experts in automated detection of DFI.
Collapse
|