51
|
Strigini M, Leulier F. The role of the microbial environment in Drosophila post-embryonic development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:39-52. [PMID: 26827889 DOI: 10.1016/j.dci.2016.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 05/14/2023]
Abstract
Development, growth and maturation of animals are under genetic and environmental control. Multicellular organisms interact throughout their lives with a variety of environment- and body-associated microorganisms. It has now been appreciated that the very conspicuous and varied microbial population associated with the food and the gastro-intestinal tract is a critical factor that can influence growth. Beyond the phenomenology, the mechanisms underlying the beneficial effects of microbes on development are being revealed from studies in Drosophila melanogaster, a particularly well suited system for a mechanistic understanding of host/microbiota interactions. Association of otherwise germ-free eggs with specific bacterial strains isolated from Drosophila gut samples can accelerate growth in larvae raised on restrictive diets. We review advances made possible by the exploitation of such simplified gnotobiotic systems in the search for the genes, molecules and physiological adaptations responsible for this effect in both host and microbes. Transposon mutagenesis and gene-trait match studies in bacteria can identify the key microbial genes and metabolites required for the beneficial effect, acetic acid being one of them. In the fly, functional genomic analysis, transcriptomics and metabolomics point to the modulation of systemic insulin and steroid hormone signalling as well as the regulation of intestinal physiology, including the enhancement of intestinal protease activity, as crucial mediators of the host's response.
Collapse
Affiliation(s)
- Maura Strigini
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Allée d'Italie 46, F-69364 Lyon, Cedex 07, France.
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Allée d'Italie 46, F-69364 Lyon, Cedex 07, France.
| |
Collapse
|
52
|
Camargo FP, Araujo ACV, Moraes EMD, Dos Santos ACA. A comparison between cactophilic yeast communities isolated from Cereus hildmannianus and Praecereus euchlorus necrotic cladodes. Fungal Biol 2016; 120:1175-83. [DOI: 10.1016/j.funbio.2016.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/20/2016] [Accepted: 06/06/2016] [Indexed: 11/16/2022]
|
53
|
Mansourian S, Corcoran J, Enjin A, Löfstedt C, Dacke M, Stensmyr MC. Fecal-Derived Phenol Induces Egg-Laying Aversion in Drosophila. Curr Biol 2016; 26:2762-2769. [PMID: 27641770 DOI: 10.1016/j.cub.2016.07.065] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/06/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
Abstract
Feces is an abundant, rich source of energy, utilized by a myriad of organisms, not least by members of the order Diptera, i.e., flies. How Drosophila melanogaster reacts to fecal matter remains unclear. Here, we examined oviposition behavior toward a range of fecal samples from mammals native to the putative Southeast African homeland of the fly. We show that D. melanogaster display a strong oviposition aversion toward feces from carnivorous mammals but indifference or even attraction toward herbivore dung. We identify a set of four predictor volatiles, which can be used to differentiate fecal from non-fecal matter, as well as separate carnivore from herbivore feces. Of these volatiles, phenol-indicative of carnivore feces-confers egg-laying aversion and is detected by a single class of sensory neurons expressing Or46a. The Or46a-expressing neurons are necessary and sufficient for oviposition site aversion. We further demonstrate that carnivore feces-unlike herbivore dung-contain a high rate of pathogenic bacteria taxa. These harmful bacteria produce phenol from L-tyrosine, an amino acid specifically enriched in high protein diets, such as consumed by carnivores. Finally, we demonstrate that carnivore feces, as well as phenol, is also avoided by a ball-rolling species of dung beetle, suggesting that phenol is a widespread avoidance signal because of its association with pathogenic bacteria.
Collapse
Affiliation(s)
| | - Jacob Corcoran
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Anders Enjin
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | | | - Marie Dacke
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | | |
Collapse
|
54
|
Andersson MN, Corcoran JA, Zhang DD, Hillbur Y, Newcomb RD, Löfstedt C. A Sex Pheromone Receptor in the Hessian Fly Mayetiola destructor (Diptera, Cecidomyiidae). Front Cell Neurosci 2016; 10:212. [PMID: 27656130 PMCID: PMC5013046 DOI: 10.3389/fncel.2016.00212] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/24/2016] [Indexed: 11/13/2022] Open
Abstract
The Hessian fly, Mayetiola destructor Say (Diptera, Cecidomyiidae), is a pest of wheat and belongs to a group of gall-inducing herbivores. This species has a unique life history and several ecological features that differentiate it from other Diptera such as Drosophila melanogaster and blood-feeding mosquitoes. These features include a short, non-feeding adult life stage (1-2 days) and the use of a long-range sex pheromone produced and released by adult females. Sex pheromones are detected by members of the odorant receptor (OR) family within the Lepidoptera, but no receptors for similar long-range sex pheromones have been characterized from the Diptera. Previously, 122 OR genes have been annotated from the Hessian fly genome, with many of them showing sex-biased expression in the antennae. Here we have expressed, in HEK293 cells, five MdesORs that display male-biased expression in antennae, and we have identified MdesOR115 as a Hessian fly sex pheromone receptor. MdesOR115 responds primarily to the sex pheromone component (2S,8E,10E)-8,10-tridecadien-2-yl acetate, and secondarily to the corresponding Z,E-isomer. Certain sensory neuron membrane proteins (i.e., SNMP1) are important for responses of pheromone receptors in flies and moths. The Hessian fly genome is unusual in that it encodes six SNMP1 paralogs, of which five are expressed in antennae. We co-expressed each of the five antennal SNMP1 paralogs together with each of the five candidate sex pheromone receptors from the Hessian fly and found that they do not influence the response of MdesOR115, nor do they confer responsiveness in any of the non-responsive ORs to any of the sex pheromone components identified to date in the Hessian fly. Using Western blots, we detected protein expression of MdesOrco, all MdesSNMPs, and all MdesORs except for MdesOR113, potentially explaining the lack of response from this OR. In conclusion, we report the first functional characterization of an OR from the Cecidomyiidae, extending the role of ORs as long-range sex pheromone detectors from the Lepidoptera into the Diptera.
Collapse
Affiliation(s)
| | | | | | - Ylva Hillbur
- International Institute of Tropical Agriculture Ibadan, Nigeria
| | - Richard D Newcomb
- The New Zealand Institute for Plant and Food Research Ltd Auckland, New Zealand
| | | |
Collapse
|
55
|
Crowley-Gall A, Date P, Han C, Rhodes N, Andolfatto P, Layne JE, Rollmann SM. Population differences in olfaction accompany host shift in Drosophila mojavensis. Proc Biol Sci 2016; 283:20161562. [PMID: 27581882 PMCID: PMC5013806 DOI: 10.1098/rspb.2016.1562] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 11/12/2022] Open
Abstract
Evolutionary shifts in plant-herbivore interactions provide a model for understanding the link among the evolution of behaviour, ecological specialization and incipient speciation. Drosophila mojavensis uses different host cacti across its range, and volatile chemicals emitted by the host are the primary cue for host plant identification. In this study, we show that changes in host plant use between distinct D. mojavensis populations are accompanied by changes in the olfactory system. Specifically, we observe differences in olfactory receptor neuron specificity and sensitivity, as well as changes in sensillar subtype abundance, between populations. Additionally, RNA-seq analyses reveal differential gene expression between populations for members of the odorant receptor gene family. Hence, alterations in host preference are associated with changes in development, regulation and function at the olfactory periphery.
Collapse
Affiliation(s)
- Amber Crowley-Gall
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Priya Date
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Clair Han
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Nicole Rhodes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Peter Andolfatto
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - John E Layne
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Stephanie M Rollmann
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
56
|
Miazzi F, Hansson BS, Wicher D. Odor-induced cAMP production in Drosophila melanogaster olfactory sensory neurons. ACTA ACUST UNITED AC 2016; 219:1798-803. [PMID: 27045092 DOI: 10.1242/jeb.137901] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/30/2016] [Indexed: 12/22/2022]
Abstract
Insect odorant receptors are seven transmembrane domain proteins that form cation channels, whose functional properties such as receptor sensitivity are subject to regulation by intracellular signaling cascades. Here, we used the cAMP fluorescent indicator Epac1-camps to investigate the occurrence of odor-induced cAMP production in olfactory sensory neurons (OSNs) of Drosophila melanogaster We show that stimulation of the receptor complex with an odor mixture or with the synthetic agonist VUAA1 induces a cAMP response. Moreover, we show that while the intracellular Ca(2+) concentration influences cAMP production, the OSN-specific receptor OrX is necessary to elicit cAMP responses in Ca(2+)-free conditions. These results provide direct evidence of a relationship between odorant receptor stimulation and cAMP production in olfactory sensory neurons in the fruit fly antenna and show that this method can be used to further investigate the role that this second messenger plays in insect olfaction.
Collapse
Affiliation(s)
- Fabio Miazzi
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Str. 8, Jena D-07745, Germany
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Str. 8, Jena D-07745, Germany
| | - Dieter Wicher
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Str. 8, Jena D-07745, Germany
| |
Collapse
|
57
|
Borges RM. On the Air: Broadcasting and Reception of Volatile Messages in Brood-Site Pollination Mutualisms. SIGNALING AND COMMUNICATION IN PLANTS 2016. [DOI: 10.1007/978-3-319-33498-1_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
58
|
Chertemps T, Younus F, Steiner C, Durand N, Coppin CW, Pandey G, Oakeshott JG, Maïbèche M. An antennal carboxylesterase from Drosophila melanogaster, esterase 6, is a candidate odorant-degrading enzyme toward food odorants. Front Physiol 2015; 6:315. [PMID: 26594178 PMCID: PMC4633494 DOI: 10.3389/fphys.2015.00315] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/19/2015] [Indexed: 01/04/2023] Open
Abstract
Reception of odorant molecules within insect olfactory organs involves several sequential steps, including their transport through the sensillar lymph, interaction with the respective sensory receptors, and subsequent inactivation. Odorant-degrading enzymes (ODEs) putatively play a role in signal dynamics by rapid degradation of odorants in the vicinity of the receptors, but this hypothesis is mainly supported by in vitro results. We have recently shown that an extracellular carboxylesterase, esterase-6 (EST-6), is involved in the physiological and behavioral dynamics of the response of Drosophila melanogaster to its volatile pheromone ester, cis-vaccenyl acetate. However, as the expression pattern of the Est-6 gene in the antennae is not restricted to the pheromone responding sensilla, we tested here if EST-6 could play a broader function in the antennae. We found that recombinant EST-6 is able to efficiently hydrolyse several volatile esters that would be emitted by its natural food in vitro. Electrophysiological comparisons of mutant Est-6 null flies and a control strain (on the same genetic background) showed that the dynamics of the antennal response to these compounds is influenced by EST-6, with the antennae of the null mutants showing prolonged activity in response to them. Antennal responses to the strongest odorant, pentyl acetate, were then studied in more detail, showing that the repolarization dynamics were modified even at low doses but without modification of the detection threshold. Behavioral choice experiments with pentyl acetate also showed differences between genotypes; attraction to this compound was observed at a lower dose among the null than control flies. As EST-6 is able to degrade various bioactive odorants emitted by food and plays a role in the response to these compounds, we hypothesize a role as an ODE for this enzyme toward food volatiles.
Collapse
Affiliation(s)
- Thomas Chertemps
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, CNRS, IRD, UPEC Paris, France
| | - Faisal Younus
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water Flagship Canberra, ACT, Australia ; Research School of Chemistry, ANU College of Physical and Mathematical Sciences, Australian National University Canberra, ACT, Australia
| | - Claudia Steiner
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, CNRS, IRD, UPEC Paris, France
| | - Nicolas Durand
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, CNRS, IRD, UPEC Paris, France
| | - Chris W Coppin
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water Flagship Canberra, ACT, Australia
| | - Gunjan Pandey
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water Flagship Canberra, ACT, Australia
| | - John G Oakeshott
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water Flagship Canberra, ACT, Australia
| | - Martine Maïbèche
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de l'Environnement de Paris, INRA, CNRS, IRD, UPEC Paris, France
| |
Collapse
|
59
|
Benton R. Multigene Family Evolution: Perspectives from Insect Chemoreceptors. Trends Ecol Evol 2015; 30:590-600. [DOI: 10.1016/j.tree.2015.07.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/17/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
|
60
|
Andersson MN, Löfstedt C, Newcomb RD. Insect olfaction and the evolution of receptor tuning. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00053] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|