51
|
Güven A, Kalebic N, Long KR, Florio M, Vaid S, Brandl H, Stenzel D, Huttner WB. Extracellular matrix-inducing Sox9 promotes both basal progenitor proliferation and gliogenesis in developing neocortex. eLife 2020; 9:49808. [PMID: 32191207 PMCID: PMC7105383 DOI: 10.7554/elife.49808] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
Neocortex expansion is largely based on the proliferative capacity of basal progenitors (BPs), which is increased by extracellular matrix (ECM) components via integrin signaling. Here we show that the transcription factor Sox9 drives expression of ECM components and that laminin 211 increases BP proliferation in embryonic mouse neocortex. We show that Sox9 is expressed in human and ferret BPs and is required for BP proliferation in embryonic ferret neocortex. Conditional Sox9 expression in the mouse BP lineage, where it normally is not expressed, increases BP proliferation, reduces Tbr2 levels and induces Olig2 expression, indicative of premature gliogenesis. Conditional Sox9 expression also results in cell-non-autonomous stimulation of BP proliferation followed by increased upper-layer neuron production. Our findings demonstrate that Sox9 exerts concerted effects on transcription, BP proliferation, neuron production, and neurogenic vs. gliogenic BP cell fate, suggesting that Sox9 may have contributed to promote neocortical expansion.
Collapse
Affiliation(s)
- Ayse Güven
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nereo Kalebic
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Human Technopole, Milan, Italy
| | - Katherine R Long
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marta Florio
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Samir Vaid
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Holger Brandl
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Denise Stenzel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
52
|
Abstract
The neocortex is the largest part of the mammalian brain and is the seat of our higher cognitive functions. This outstanding neural structure increased massively in size and complexity during evolution in a process recapitulated today during the development of extant mammals. Accordingly, defects in neocortical development commonly result in severe intellectual and social deficits. Thus, understanding the development of the neocortex benefits from understanding its evolution and disease and also informs about their underlying mechanisms. Here, I briefly summarize the most recent and outstanding advances in our understanding of neocortical development and focus particularly on dorsal progenitors and excitatory neurons. I place special emphasis on the specification of neural stem cells in distinct classes and their proliferation and production of neurons and then discuss recent findings on neuronal migration. Recent discoveries on the genetic evolution of neocortical development are presented with a particular focus on primates. Progress on all these fronts is being accelerated by high-throughput gene expression analyses and particularly single-cell transcriptomics. I end with novel insights into the involvement of microglia in embryonic brain development and how improvements in cultured cerebral organoids are gradually consolidating them as faithful models of neocortex development in humans.
Collapse
Affiliation(s)
- Victor Borrell
- Institute of Neuroscience, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Miguel Hernández, Ramon y Cajal s/n, 03550 San Juan de Alicante, Spain
| |
Collapse
|
53
|
Sapir T, Barakat TS, Paredes MF, Lerman-Sagie T, Aronica E, Klonowski W, Nguyen L, Ben Zeev B, Bahi-Buisson N, Leventer R, Rachmian N, Reiner O. Building Bridges Between the Clinic and the Laboratory: A Meeting Review - Brain Malformations: A Roadmap for Future Research. Front Cell Neurosci 2019; 13:434. [PMID: 31611776 PMCID: PMC6776596 DOI: 10.3389/fncel.2019.00434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/09/2019] [Indexed: 01/08/2023] Open
Abstract
In the middle of March 2019, a group of scientists and clinicians (as well as those who wear both hats) gathered in the green campus of the Weizmann Institute of Science to share recent scientific findings, to establish collaborations, and to discuss future directions for better diagnosis, etiology modeling and treatment of brain malformations. One hundred fifty scientists from twenty-two countries took part in this meeting. Thirty-eight talks were presented and as many as twenty-five posters were displayed. This review is aimed at presenting some of the highlights that the audience was exposed to during the three-day meeting.
Collapse
Affiliation(s)
- Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mercedes F. Paredes
- Department of Neurology and Neuroscience Graduate Division, University of California, San Francisco, San Francisco, CA, United States
| | - Tally Lerman-Sagie
- Pediatric Neurology Unit, Fetal Neurology Clinic, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eleonora Aronica
- Department of (Neuro-)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Zwolle, Netherlands
| | - Wlodzimierz Klonowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Laurent Nguyen
- GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), C.H.U. Sart Tilman, University of Liège, Liège, Belgium
| | - Bruria Ben Zeev
- Sackler School of Medicine and Pediatric Neurology Unit, Edmond and Lilly Safra Pediatric Hospital, Tel Aviv University, Tel Aviv, Israel
| | - Nadia Bahi-Buisson
- INSERM UMR 1163, Imagine Institute, Paris Descartes University, Paris, France
- Necker Enfants Malades Hospital, Pediatrric Neurology APHP, Paris, France
| | - Richard Leventer
- Department of Neurology, Royal Children’s Hospital, Murdoch Children’s Research Institute, University of Melbourne, Parkville, VIC, Australia
- Department of Pediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Noa Rachmian
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
54
|
Niu W, Parent JM. Modeling genetic epilepsies in a dish. Dev Dyn 2019; 249:56-75. [DOI: 10.1002/dvdy.79] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Wei Niu
- Department of Neurology and Neuroscience Graduate ProgramUniversity of Michigan Medical Center and VA Ann Arbor Healthcare System Ann Arbor Michigan
| | - Jack M. Parent
- Department of Neurology and Neuroscience Graduate ProgramUniversity of Michigan Medical Center and VA Ann Arbor Healthcare System Ann Arbor Michigan
| |
Collapse
|
55
|
Blair JD, Bateup HS. New frontiers in modeling tuberous sclerosis with human stem cell-derived neurons and brain organoids. Dev Dyn 2019; 249:46-55. [PMID: 31070828 DOI: 10.1002/dvdy.60] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022] Open
Abstract
Recent advances in human stem cell and genome engineering have enabled the generation of genetically defined human cellular models for brain disorders. These models can be established from a patient's own cells and can be genetically engineered to generate isogenic, controlled systems for mechanistic studies. Given the challenges of obtaining and working with primary human brain tissue, these models fill a critical gap in our understanding of normal and abnormal human brain development and provide an important complement to animal models. Recently, there has been major progress in modeling the neuropathophysiology of the canonical "mTORopathy" tuberous sclerosis complex (TSC) with such approaches. Studies using two- and three-dimensional cultures of human neurons and glia have provided new insights into how mutations in the TSC1 and TSC2 genes impact human neural development and function. Here we discuss recent progress in human stem cell-based modeling of TSC and highlight challenges and opportunities for further efforts in this area.
Collapse
Affiliation(s)
- John D Blair
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, California.,Helen Wills Neuroscience Institute, University of California, Berkeley, California.,Chan Zuckerberg Biohub, San Francisco, California
| |
Collapse
|