51
|
Affiliation(s)
- Tao Jin
- Iowa State University; Department of Chemical and Biological Engineering; 2114 Sweeney Hall, 618 Bissell Rd. Ames, IA 50011 USA
| | - Jieni Lian
- Iowa State University; Department of Chemical and Biological Engineering; 2114 Sweeney Hall, 618 Bissell Rd. Ames, IA 50011 USA
| | - Laura R. Jarboe
- Iowa State University; Department of Chemical and Biological Engineering; 2114 Sweeney Hall, 618 Bissell Rd. Ames, IA 50011 USA
| |
Collapse
|
52
|
Rau MH, Calero P, Lennen RM, Long KS, Nielsen AT. Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals. Microb Cell Fact 2016; 15:176. [PMID: 27737709 PMCID: PMC5064937 DOI: 10.1186/s12934-016-0577-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/03/2016] [Indexed: 01/17/2023] Open
Abstract
Background Economically viable biobased production of bulk chemicals and biofuels typically requires high product titers. During microbial bioconversion this often leads to product toxicity, and tolerance is therefore a critical element in the engineering of production strains. Results Here, a systems biology approach was employed to understand the chemical stress response of Escherichia coli, including a genome-wide screen for mutants with increased fitness during chemical stress. Twelve chemicals with significant production potential were selected, consisting of organic solvent-like chemicals (butanol, hydroxy-γ-butyrolactone, 1,4-butanediol, furfural), organic acids (acetate, itaconic acid, levulinic acid, succinic acid), amino acids (serine, threonine) and membrane-intercalating chemicals (decanoic acid, geraniol). The transcriptional response towards these chemicals revealed large overlaps of transcription changes within and between chemical groups, with functions such as energy metabolism, stress response, membrane modification, transporters and iron metabolism being affected. Regulon enrichment analysis identified key regulators likely mediating the transcriptional response, including CRP, RpoS, OmpR, ArcA, Fur and GadX. These regulators, the genes within their regulons and the above mentioned cellular functions therefore constitute potential targets for increasing E. coli chemical tolerance. Fitness determination of genome-wide transposon mutants (Tn-seq) subjected to the same chemical stress identified 294 enriched and 336 depleted mutants and experimental validation revealed up to 60 % increase in mutant growth rates. Mutants enriched in several conditions contained, among others, insertions in genes of the Mar-Sox-Rob regulon as well as transcription and translation related gene functions. Conclusions The combination of the transcriptional response and mutant screening provides general targets that can increase tolerance towards not only single, but multiple chemicals. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0577-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Holm Rau
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Patricia Calero
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Rebecca M Lennen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Katherine S Long
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Alex T Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark.
| |
Collapse
|
53
|
Clostridia: a flexible microbial platform for the production of alcohols. Curr Opin Chem Biol 2016; 35:65-72. [PMID: 27619003 DOI: 10.1016/j.cbpa.2016.08.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 11/22/2022]
Abstract
Solventogenic clostridia are native producers of ethanol and many higher alcohols employing a broad range of cheap renewable substrates, such as lignocellulosic materials and C1 gases (CO and CO2). These characteristics enable solventogenic clostridia to act as flexible microbial platforms for the production of liquid biofuels. With the rapid development of genetic tools in recent years, the intrinsic intractability of clostridia has been largely overcome, thus, engineering clostridia for production of chemicals and fuels has attracted increasing interests. Here, we provide an overview of recent progress in the production of alcohols based on solventogenic clostridia. Saccharolytic, cellulolytic and gas-fermenting clostridia are discussed, with a special focus on strategies for metabolic engineering to enable and to improve clostridia for the production of higher alcohols.
Collapse
|
54
|
Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances. Fungal Genet Biol 2016; 89:126-136. [DOI: 10.1016/j.fgb.2015.12.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/18/2015] [Accepted: 12/05/2015] [Indexed: 12/16/2022]
|
55
|
Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering. Appl Environ Microbiol 2016; 82:2156-2166. [PMID: 26826231 DOI: 10.1128/aem.03718-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/25/2016] [Indexed: 11/20/2022] Open
Abstract
Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production.
Collapse
|
56
|
Chen Y, Sheng J, Jiang T, Stevens J, Feng X, Wei N. Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:9. [PMID: 26766964 PMCID: PMC4710983 DOI: 10.1186/s13068-015-0418-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/15/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Lignocellulosic biomass is a promising source of renewable biofuels. However, pretreatment of lignocellulosic biomass generates fermentation inhibitors that adversely affect the growth of industrial microorganisms such as Saccharomyces cerevisiae and prevent economic production of lignocellulosic biofuels. A critical challenge on developing S. cerevisiae with improved inhibitor resistance lies in incomplete understanding of molecular basis for inhibitor stress response and limited information on effective genetic targets for increasing yeast resistance to mixed fermentation inhibitors. In this study, we applied comparative transcriptomic analysis to determine the molecular basis for acetic acid and/or furfural resistance in S. cerevisiae. RESULTS We recently developed a yeast strain YC1 with superior resistance to acetic acid, furfural, and their mixture through inverse metabolic engineering. In this study, we first determined transcriptional changes through RNA sequencing in YC1 versus the wild-type strain S-C1 under three different inhibitor conditions, including acetic acid alone, furfural alone, and mixture of acetic acid and furfural. The genes associated with stress responses of S. cerevisiae to single and mixed inhibitors were revealed. Specifically, we identified 184 consensus genes that were differentially regulated in response to the distinct inhibitor resistance between YC1 and S-C1. Bioinformatic analysis next revealed key transcription factors (TFs) that regulate these consensus genes. The top TFs identified, Sfp1p and Ace2p, were experimentally tested as overexpression targets for strain optimization. Overexpression of the SFP1 gene improved specific ethanol productivity by nearly four times, while overexpression of the ACE2 gene enhanced the rate by three times in the presence of acetic acid and furfural. Overexpression of SFP1 gene in the resistant strain YC1 further resulted in 42 % increase in ethanol productivity in the presence of acetic acid and furfural, suggesting the effect of Sfp1p in optimizing the yeast strain for improved tolerance to mixed fermentation inhibitor. CONCLUSIONS Transcriptional regulation underlying yeast resistance to acetic acid and furfural was determined. Two transcription factors, Sfp1p and Ace2p, were uncovered for the first time for their functions in improving yeast resistance to mixed fermentation inhibitors. The study demonstrated an omics-guided metabolic engineering framework, which could be developed as a promising strategy to improve complex microbial phenotypes.
Collapse
Affiliation(s)
- Yingying Chen
- />Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 106E Cushing Hall of Engineering, Notre Dame, South Bend, IN 46556 USA
| | - Jiayuan Sheng
- />Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Tao Jiang
- />Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Joseph Stevens
- />Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Xueyang Feng
- />Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Na Wei
- />Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 106E Cushing Hall of Engineering, Notre Dame, South Bend, IN 46556 USA
| |
Collapse
|
57
|
Putro JN, Soetaredjo FE, Lin SY, Ju YH, Ismadji S. Pretreatment and conversion of lignocellulose biomass into valuable chemicals. RSC Adv 2016. [DOI: 10.1039/c6ra09851g] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lignocellulose biomass can be utilized in many sectors of industry such as energy, chemical, and transportation. However, pretreatment is needed to break down the intricate bonding before converting it into wanted product.
Collapse
Affiliation(s)
- Jindrayani Nyoo Putro
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Felycia Edi Soetaredjo
- Department of Chemical Engineering
- Widya Mandala Surabaya Catholic University
- Surabaya 60114
- Indonesia
| | - Shi-Yow Lin
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Yi-Hsu Ju
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Suryadi Ismadji
- Department of Chemical Engineering
- Widya Mandala Surabaya Catholic University
- Surabaya 60114
- Indonesia
| |
Collapse
|
58
|
Chen Y, Nielsen J. Biobased organic acids production by metabolically engineered microorganisms. Curr Opin Biotechnol 2015; 37:165-172. [PMID: 26748037 DOI: 10.1016/j.copbio.2015.11.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/26/2015] [Accepted: 11/03/2015] [Indexed: 12/30/2022]
Abstract
Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed.
Collapse
Affiliation(s)
- Yun Chen
- Department of Biology & Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology & Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2970 Hørsholm, Denmark.
| |
Collapse
|
59
|
Martani F, Marano F, Bertacchi S, Porro D, Branduardi P. The Saccharomyces cerevisiae poly(A) binding protein Pab1 as a target for eliciting stress tolerant phenotypes. Sci Rep 2015; 5:18318. [PMID: 26658950 PMCID: PMC4677312 DOI: 10.1038/srep18318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/16/2015] [Indexed: 11/29/2022] Open
Abstract
When exploited as cell factories, Saccharomyces cerevisiae cells are exposed to harsh environmental stresses impairing titer, yield and productivity of the fermentative processes. The development of robust strains therefore represents a pivotal challenge for the implementation of cost-effective bioprocesses. Altering master regulators of general cellular rewiring represents a possible strategy to evoke shaded potential that may accomplish the desirable features. The poly(A) binding protein Pab1, as stress granules component, was here selected as the target for obtaining widespread alterations in mRNA metabolism, resulting in stress tolerant phenotypes. Firstly, we demonstrated that the modulation of Pab1 levels improves robustness against different stressors. Secondly, the mutagenesis of PAB1 and the application of a specific screening protocol on acetic acid enriched medium allowed the isolation of the further ameliorated mutant pab1 A60-9. These findings pave the way for a novel approach to unlock industrially promising phenotypes through the modulation of a post-transcriptional regulatory element.
Collapse
Affiliation(s)
- Francesca Martani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, 20126, Italy
| | - Francesca Marano
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, 20126, Italy
| | - Stefano Bertacchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, 20126, Italy
| | - Danilo Porro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, 20126, Italy.,SYSBIO - Centre of Systems Biology, Milano and Roma, Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, 20126, Italy
| |
Collapse
|
60
|
Hasunuma T, Ishii J, Kondo A. Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown. Curr Opin Chem Biol 2015; 29:1-9. [DOI: 10.1016/j.cbpa.2015.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/06/2015] [Accepted: 06/08/2015] [Indexed: 12/31/2022]
|
61
|
Identification of Genes Conferring Tolerance to Lignocellulose-Derived Inhibitors by Functional Selections in Soil Metagenomes. Appl Environ Microbiol 2015; 82:528-37. [PMID: 26546427 DOI: 10.1128/aem.02838-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/01/2015] [Indexed: 01/31/2023] Open
Abstract
The production of fuels or chemicals from lignocellulose currently requires thermochemical pretreatment to release fermentable sugars. These harsh conditions also generate numerous small-molecule inhibitors of microbial growth and fermentation, limiting production. We applied small-insert functional metagenomic selections to discover genes that confer microbial tolerance to these inhibitors, identifying both individual genes and general biological processes associated with tolerance to multiple inhibitory compounds. Having screened over 248 Gb of DNA cloned from 16 diverse soil metagenomes, we describe gain-of-function tolerance against acid, alcohol, and aldehyde inhibitors derived from hemicellulose and lignin, demonstrating that uncultured soil microbial communities hold tremendous genetic potential to address the toxicity of pretreated lignocellulose. We recovered genes previously known to confer tolerance to lignocellulosic inhibitors as well as novel genes that confer tolerance via unknown functions. For instance, we implicated galactose metabolism in overcoming the toxicity of lignin monomers and identified a decarboxylase that confers tolerance to ferulic acid; this enzyme has been shown to catalyze the production of 4-vinyl guaiacol, a valuable precursor to vanillin production. These metagenomic tolerance genes can enable the flexible design of hardy microbial catalysts, customized to withstand inhibitors abundant in specific bioprocessing applications.
Collapse
|
62
|
Systems strategies for developing industrial microbial strains. Nat Biotechnol 2015; 33:1061-72. [DOI: 10.1038/nbt.3365] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/23/2015] [Indexed: 12/11/2022]
|
63
|
Advancing metabolic engineering through systems biology of industrial microorganisms. Curr Opin Biotechnol 2015; 36:8-15. [PMID: 26318074 DOI: 10.1016/j.copbio.2015.08.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 11/21/2022]
Abstract
Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further.
Collapse
|
64
|
Mukhopadhyay A. Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol 2015; 23:498-508. [DOI: 10.1016/j.tim.2015.04.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 02/06/2023]
|
65
|
Wang X, Bai X, Chen DF, Chen FZ, Li BZ, Yuan YJ. Increasing proline and myo-inositol improves tolerance of Saccharomyces cerevisiae to the mixture of multiple lignocellulose-derived inhibitors. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:142. [PMID: 26379774 PMCID: PMC4570682 DOI: 10.1186/s13068-015-0329-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/28/2015] [Indexed: 05/14/2023]
Abstract
BACKGROUND The development of robust microbes with tolerance to the combined lignocellulose-derived inhibitors is critical for the efficient cellulosic ethanol production. However, the lack of understanding on the inhibition mechanism limited the rational engineering of tolerant strain. Here, through the metabolomic analysis of an adaptation process of Saccharomyces cerevisiae to representative inhibitors, i.e., furfural, acetic acid and phenol (FAP), we figured out the new candidates for improving inhibitor tolerance. RESULTS After metabolomic analysis, proline and myo-inositol were identified as the potential metabolites responsible for strain tolerance to inhibitors. The deletion of genes involved in proline or myo-inositol synthesis weakened strain tolerance against FAP stress. On the contrary, the addition of proline or myo-inositol in medium exerted a protective effect on cell growth under FAP stress. Furthermore, the enhancement of proline or myo-inositol synthesis by overexpressing key gene PRO1 or INO1 conferred yeast strain significantly increased FAP tolerance. All the recombinant strains finished the fermentation within 60 h under FAP stress, while the control strain was still in the lag phase. Meanwhile, it was found that the intracellular level of reactive oxygen species (ROS) under FAP condition was decreased with the increase of proline content, suggesting the function of proline as a ROS scavenger to protect strains from inhibitor damage. CONCLUSION Increasing proline and myo-inositol were uncovered as the new determinants for improving strain tolerance to FAP under the guidance of metabolomics. Meanwhile, this study displayed the powerful application of metabolomics to develop rational strategies to increase stress tolerance and provided valuable insights into the design of recombinant microbes for the complex traits.
Collapse
Affiliation(s)
- Xin Wang
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Xue Bai
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Dong-Fang Chen
- />School of Management and Economics, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Fu-Zan Chen
- />School of Management and Economics, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Bing-Zhi Li
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Ying-Jin Yuan
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072 People’s Republic of China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| |
Collapse
|
66
|
Ling H, Pratomo Juwono NK, Teo WS, Liu R, Leong SSJ, Chang MW. Engineering transcription factors to improve tolerance against alkane biofuels in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:231. [PMID: 26719765 PMCID: PMC4696261 DOI: 10.1186/s13068-015-0411-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/04/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Biologically produced alkanes can be used as 'drop in' to existing transportation infrastructure as alkanes are important components of gasoline and jet fuels. Despite the reported microbial production of alkanes, the toxicity of alkanes to microbial hosts could pose a bottleneck for high productivity. In this study, we aimed to improve the tolerance of Saccharomyces cerevisiae, a model eukaryotic host of industrial significance, to alkane biofuels. RESULTS To increase alkane tolerance in S. cerevisiae, we sought to exploit the pleiotropic drug resistance (Pdr) transcription factors Pdr1p and Pdr3p, which are master regulators of genes with pleiotropic drug resistance elements (PDREs)-containing upstream sequences. Wild-type and site-mutated Pdr1p and Pdr3p were expressed in S. cerevisiae BY4741 pdr1Δ pdr3Δ (BYL13). The point mutations of PDR1 (F815S) and PDR3 (Y276H) in BYL13 resulted in the highest tolerance to C10 alkane, and the expression of wild-type PDR3 in BYL13 led to the highest tolerance to C11 alkane. To identify and verify the correlation between the Pdr transcription factors and tolerance improvement, we analyzed the expression patterns of genes regulated by the Pdr transcription factors in the most tolerant strains against C10 and C11 alkanes. Quantitative PCR results showed that the Pdr transcription factors differentially regulated genes associated with multi-drug resistance, stress responses, and membrane modifications, suggesting different extents of intracellular alkane levels, reactive oxygen species (ROS) production and membrane integrity. We further showed that (i) the expression of Pdr1mt1 + Pdr3mt reduced intracellular C10 alkane by 67 % and ROS by 53 %, and significantly alleviated membrane damage; and (ii) the expression of the Pdr3wt reduced intracellular C11 alkane by 72 % and ROS by 21 %. Alkane transport assays also revealed that the reduction of alkane accumulation was due to higher export (C10 and C11 alkanes) and lower import (C11 alkane). CONCLUSIONS We improved yeast's tolerance to alkane biofuels by modulating the expression of the wild-type and site-mutated Pdr1p and Pdr3p, and extensively identified the correlation between Pdr transcription factors and tolerance improvement by analyzing gene patterns, alkane transport, ROS, and membrane integrity. These findings provide valuable insights into manipulating transcription factors in yeast for improved alkane tolerance and productivity.
Collapse
Affiliation(s)
- Hua Ling
- />Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore, Singapore
- />NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, 117456 Singapore, Singapore
| | - Nina Kurniasih Pratomo Juwono
- />Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore, Singapore
- />NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, 117456 Singapore, Singapore
| | - Wei Suong Teo
- />Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore, Singapore
- />NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, 117456 Singapore, Singapore
| | - Ruirui Liu
- />Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore, Singapore
- />NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, 117456 Singapore, Singapore
| | - Susanna Su Jan Leong
- />Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore, Singapore
- />NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, 117456 Singapore, Singapore
- />Singapore Institute of Technology, 10 Dover Drive, 138683 Singapore, Singapore
| | - Matthew Wook Chang
- />Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore, Singapore
- />NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, 117456 Singapore, Singapore
| |
Collapse
|
67
|
Sévin DC, Kuehne A, Zamboni N, Sauer U. Biological insights through nontargeted metabolomics. Curr Opin Biotechnol 2014; 34:1-8. [PMID: 25461505 DOI: 10.1016/j.copbio.2014.10.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 01/10/2023]
Abstract
Metabolomics is increasingly employed to investigate metabolism and its reciprocal crosstalk with cellular signaling and regulation. In recent years, several nontargeted metabolomics methods providing substantial metabolome coverage have been developed. Here, we review and compare the contributions of traditional targeted and nontargeted metabolomics in advancing different research areas ranging from biotechnology to human health. Although some studies demonstrated the power of nontargeted profiling in generating unexpected and yet highly important insights, we found that most mechanistic links were still revealed by hypothesis-driven targeted methods. Novel computational approaches for formal interpretation of complex metabolic patterns and integration of complementary molecular layers are required to tap the full potential of nontargeted metabolomics for data-driven, discovery-oriented research and rapidly nucleating novel biological insights.
Collapse
Affiliation(s)
- Daniel C Sévin
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland; PhD Program on Systems Biology, Life Science Zurich, Switzerland
| | - Andreas Kuehne
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland; PhD Program on Systems Biology, Life Science Zurich, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland.
| |
Collapse
|
68
|
Kasavi C, Eraslan S, Arga KY, Oner ET, Kirdar B. A system based network approach to ethanol tolerance in Saccharomyces cerevisiae. BMC SYSTEMS BIOLOGY 2014; 8:90. [PMID: 25103914 PMCID: PMC4236716 DOI: 10.1186/s12918-014-0090-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/15/2014] [Indexed: 01/23/2023]
Abstract
Background Saccharomyces cerevisiae has been widely used for bio-ethanol production and development of rational genetic engineering strategies leading both to the improvement of productivity and ethanol tolerance is very important for cost-effective bio-ethanol production. Studies on the identification of the genes that are up- or down-regulated in the presence of ethanol indicated that the genes may be involved to protect the cells against ethanol stress, but not necessarily required for ethanol tolerance. Results In the present study, a novel network based approach was developed to identify candidate genes involved in ethanol tolerance. Protein-protein interaction (PPI) network associated with ethanol tolerance (tETN) was reconstructed by integrating PPI data with Gene Ontology (GO) terms. Modular analysis of the constructed networks revealed genes with no previously reported experimental evidence related to ethanol tolerance and resulted in the identification of 17 genes with previously unknown biological functions. We have randomly selected four of these genes and deletion strains of two genes (YDR307W and YHL042W) were found to exhibit improved tolerance to ethanol when compared to wild type strain. The genome-wide transcriptomic response of yeast cells to the deletions of YDR307W and YHL042W in the absence of ethanol revealed that the deletion of YDR307W and YHL042W genes resulted in the transcriptional re-programming of the metabolism resulting from a mis-perception of the nutritional environment. Yeast cells perceived an excess amount of glucose and a deficiency of methionine or sulfur in the absence of YDR307W and YHL042W, respectively, possibly resulting from a defect in the nutritional sensing and signaling or transport mechanisms. Mutations leading to an increase in ribosome biogenesis were found to be important for the improvement of ethanol tolerance. Modulations of chronological life span were also identified to contribute to ethanol tolerance in yeast. Conclusions The system based network approach developed allows the identification of novel gene targets for improved ethanol tolerance and supports the highly complex nature of ethanol tolerance in yeast.
Collapse
Affiliation(s)
| | | | | | | | - Betul Kirdar
- Department of Chemical Engineering, Boğaziçi University, Istanbul, Turkey.
| |
Collapse
|
69
|
Teo WS, Chang MW. Bacterial XylRs and synthetic promoters function as genetically encoded xylose biosensors in Saccharomyces cerevisiae. Biotechnol J 2014; 10:315-22. [PMID: 24975936 DOI: 10.1002/biot.201400159] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/21/2014] [Accepted: 06/25/2014] [Indexed: 12/22/2022]
Abstract
Lignocellulosic biomass is a sustainable and abundant starting material for biofuel production. However, lignocellulosic hydrolysates contain not only glucose, but also other sugars including xylose which cannot be metabolized by the industrial workhorse Saccharomyces cerevisiae. Hence, engineering of xylose assimilating S. cerevisiae has been much studied, including strain optimization strategies. In this work, we constructed genetically encoded xylose biosensors that can control protein expression upon detection of xylose sugars. These were constructed with the constitutive expression of heterologous XylR repressors, which function as protein sensors, and cloning of synthetic promoters with XylR operator sites. Three XylR variants and the corresponding synthetic promoters were used: XylR from Tetragenococcus halophile, Clostridium difficile, and Lactobacillus pentosus. To optimize the biosensor, two promoters with different strengths were used to express the XylR proteins. The ability of XylR to repress yEGFP expression from the synthetic promoters was demonstrated. Furthermore, xylose sugars added exogenously to the cells were shown to regulate gene expression. We envision that the xylose biosensors can be used as a tool to engineer and optimize yeast that efficiently utilizes xylose as carbon source for growth and biofuel production.
Collapse
Affiliation(s)
- Wei Suong Teo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Synthetic Biology Research Consortium, National University of Singapore, Singapore
| | | |
Collapse
|