51
|
Single-Pulse Transcranial Magnetic Stimulation-Evoked Potential Amplitudes and Latencies in the Motor and Dorsolateral Prefrontal Cortex among Young, Older Healthy Participants, and Schizophrenia Patients. J Pers Med 2021; 11:jpm11010054. [PMID: 33477346 PMCID: PMC7830964 DOI: 10.3390/jpm11010054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/14/2023] Open
Abstract
Background: The combination of transcranial magnetic stimulation (TMS) with electroencephalography (EEG) allows for non-invasive investigation of cortical response and connectivity in human cortex. This study aimed to examine the amplitudes and latencies of each TMS-evoked potential (TEP) component induced by single-pulse TMS (spTMS) to the left motor (M1) and dorsolateral prefrontal cortex (DLPFC) among healthy young participants (YNG), older participants (OLD), and patients with schizophrenia (SCZ). Methods: We compared the spatiotemporal characteristics of TEPs induced by spTMS among the groups. Results: Compared to YNG, M1-spTMS induced lower amplitudes of N45 and P180 in OLD and a lower amplitude of P180 in SCZ, whereas the DLPFC-spTMS induced a lower N45 in OLD. Further, OLD demonstrated latency delays in P60 after M1-spTMS and in N45-P60 over the right central region after left DLPFC-spTMS, whereas SCZ demonstrated latency delays in N45-P60 over the midline and right central regions after DLPFC-spTMS. Conclusions: These findings suggest that inhibitory and excitatory mechanisms mediating TEPs may be altered in OLD and SCZ. The amplitude and latency changes of TEPs with spTMS may reflect underlying neurophysiological changes in OLD and SCZ, respectively. The spTMS administered to M1 and the DLPFC can probe cortical functions by examining TEPs. Thus, TMS-EEG can be used to study changes in cortical connectivity and signal propagation from healthy to pathological brains.
Collapse
|
52
|
Cerebral Cortical Activity Following Non-invasive Cerebellar Stimulation-a Systematic Review of Combined TMS and EEG Studies. THE CEREBELLUM 2020; 19:309-335. [PMID: 31907864 DOI: 10.1007/s12311-019-01093-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cerebellum sends dense projections to both motor and non-motor regions of the cerebral cortex via the cerebellarthalamocortical tract. The integrity of this tract is crucial for healthy motor and cognitive function. This systematic review examines research using transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to the cerebellum with combined cortical electroencephalography (EEG) to explore the temporal features of cerebellar-cortical connectivity. A detailed discussion of the outcomes and limitations of the studies meeting review criteria is presented. Databases were searched between 1 December 2017 and 6 December 2017, with Scopus alerts current as of 23 July 2019. Of the 407 studies initially identified, 10 met review criteria. Findings suggested that cerebellar-cortical assessment is suited to combined TMS and EEG, although work is required to ensure experimental procedures are optimal for eliciting a reliable cerebellar response from stimulation. A distinct variation in methodologies and outcome measures employed across studies, and small sample sizes limited the conclusions that could be drawn regarding the electrophysiological signatures of cerebellar-cortical communication. This review highlights the need for stringent protocols and methodologies for cerebellar-cortical assessments via combined TMS and EEG. With these in place, combined TMS and EEG will provide a valuable means for exploring cerebellar connectivity with a wide range of cortical sites. Assessments have the potential to aid in the understanding of motor and cognitive function in both healthy and clinical groups, and provide insights into long-range neural communication generally.
Collapse
|
53
|
Balderston NL, Roberts C, Beydler EM, Deng ZD, Radman T, Luber B, Lisanby SH, Ernst M, Grillon C. A generalized workflow for conducting electric field-optimized, fMRI-guided, transcranial magnetic stimulation. Nat Protoc 2020; 15:3595-3614. [PMID: 33005039 PMCID: PMC8123368 DOI: 10.1038/s41596-020-0387-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/22/2020] [Indexed: 12/27/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive method to stimulate the cerebral cortex that has applications in psychiatry, such as in the treatment of depression and anxiety. Although many TMS targeting methods that use figure-8 coils exist, many do not account for individual differences in anatomy or are not generalizable across target sites. This protocol combines functional magnetic resonance imaging (fMRI) and iterative electric-field (E-field) modeling in a generalized approach to subject-specific TMS targeting that is capable of optimizing the stimulation site and TMS coil orientation. To apply this protocol, the user should (i) operationally define a region of interest (ROI), (ii) generate the head model from the structural MRI data, (iii) preprocess the functional MRI data, (iv) identify the single-subject stimulation site within the ROI, and (iv) conduct E-field modeling to identify the optimal coil orientation. In comparison with standard targeting methods, this approach demonstrates (i) reduced variability in the stimulation site across subjects, (ii) reduced scalp-to-cortical-target distance, and (iii) reduced variability in optimal coil orientation. Execution of this protocol requires intermediate-level skills in structural and functional MRI processing. This protocol takes ~24 h to complete and demonstrates how constrained fMRI targeting combined with iterative E-field modeling can be used as a general method to optimize both the TMS coil site and its orientation.
Collapse
Affiliation(s)
- Nicholas L Balderston
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
| | - Camille Roberts
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Emily M Beydler
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Radman
- Noninvasive Neuromodulation Unit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Monique Ernst
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Christian Grillon
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
54
|
Abstract
The development of the use of transcranial magnetic stimulation (TMS) in the study of psychological functions has entered a new phase of sophistication. This is largely due to an increasing physiological knowledge of its effects and to its being used in combination with other experimental techniques. This review presents the current state of our understanding of the mechanisms of TMS in the context of designing and interpreting psychological experiments. We discuss the major conceptual advances in behavioral studies using TMS. There are meaningful physiological and technical achievements to review, as well as a wealth of new perceptual and cognitive experiments. In doing so we summarize the different uses and challenges of TMS in mental chronometry, perception, awareness, learning, and memory.
Collapse
Affiliation(s)
- David Pitcher
- Department of Psychology, University of York, York YO10 5DD, United Kingdom;
| | - Beth Parkin
- Department of Psychology, University of Westminster, London W1W 6UW, United Kingdom;
| | - Vincent Walsh
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom;
| |
Collapse
|
55
|
Li Y, Luo H, Yu Q, Yin L, Li K, Li Y, Fu J. Cerebral Functional Manipulation of Repetitive Transcranial Magnetic Stimulation in Cognitive Impairment Patients After Stroke: An fMRI Study. Front Neurol 2020; 11:977. [PMID: 33013646 PMCID: PMC7506052 DOI: 10.3389/fneur.2020.00977] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Objective: Recently, the area of repetitive transcranial magnetic stimulation (rTMS) targeting neurological rehabilitation has been advanced as a potential treatment for post-stroke cognitive impairment (PSCI). However, the underlying mechanisms remains to be elusived. This study aims to figure out cerebral functional manipulation of rTMS in patients with PSCI through using the resting-state functional magnetic resonance imaging (rs-fMRI). Methods: Thirty patients with PSCI were recruited and randomly allocated into two groups: the rTMS intervention group and control group. The rTMS intervention group was given 20 min of 5 Hz rTMS (or control) over left dorsolateral prefrontal cortex (DLPFC) besides routine cognitive intervention training for 3 consecutive weeks, five times per week, on weekdays. Cognition performance was assessed by the Minimum Mental State Examination (MMSE) and Montreal cognitive assessment (MoCA). Neural activity and functional connectivity (FC) changes were acquired by rs-fMRI with fractional amplitude of low-frequency fluctuation (fALFF) and seed-based correlation analysis. Results: Cognition improvements were observed both in rTMS intervention group and control group (P < 0.01), while the rTMS group got more significant improvent than control group (P < 0.05). To be specified, compared with the control group, the rTMS group got higher fALFF values in these brain regions including superior temporal gyrus, inferior frontal gyrus and parahippocampal gyrus, while lower fALFF values in middle temporal gyrus, middle frontal gyrus and fusiform gyrus. In addition, the rTMS group showed increased FC between LDPFC and toprecuneus, inferior temporal gyrus, middle and inferior frontal gyrus and marginal gyrus, while decreased FC between LDPFC and middle temporal gyrus and thalamus. Conclusion: The increase and decrease of neural activity and FC in cognition-related regions detected by rs-fMRI are good indicators to clarify the underlining mechanisms of rTMS on PSCI.
Collapse
Affiliation(s)
- Yamei Li
- Department of Rehabilitation Medicine, School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Luo
- Department of Rehabilitation Medicine, School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Yu
- Department of Rehabilitation Medicine, School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Longlin Yin
- Department of Radiology, School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuide Li
- Department of Radiology, School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Fu
- Department of Rehabilitation Medicine, School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
56
|
Goldsworthy MR, Rogasch NC, Ballinger S, Graetz L, Van Dam JM, Harris R, Yu S, Pitcher JB, Baune BT, Ridding MC. Age-related decline of neuroplasticity to intermittent theta burst stimulation of the lateral prefrontal cortex and its relationship with late-life memory performance. Clin Neurophysiol 2020; 131:2181-2191. [DOI: 10.1016/j.clinph.2020.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 04/09/2020] [Accepted: 06/01/2020] [Indexed: 01/08/2023]
|
57
|
Raffin E, Harquel S, Passera B, Chauvin A, Bougerol T, David O. Probing regional cortical excitability via input-output properties using transcranial magnetic stimulation and electroencephalography coupling. Hum Brain Mapp 2020; 41:2741-2761. [PMID: 32379389 PMCID: PMC7294059 DOI: 10.1002/hbm.24975] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 02/04/2020] [Accepted: 02/23/2020] [Indexed: 01/28/2023] Open
Abstract
The modular organization of the cortex refers to subsets of highly interconnected nodes, sharing specific cytoarchitectural and dynamical properties. These properties condition the level of excitability of local pools of neurons. In this study, we described TMS evoked potentials (TEP) input-output properties to provide new insights into regional cortical excitability. We combined robotized TMS with EEG to disentangle region-specific TEP from threshold to saturation and describe their oscillatory contents. Twenty-two young healthy participants received robotized TMS pulses over the right primary motor cortex (M1), the right dorsolateral prefrontal cortex (DLPFC) and the right superior occipital lobe (SOL) at five stimulation intensities (40, 60, 80, 100, and 120% resting motor threshold) and one short-interval intracortical inhibition condition during EEG recordings. Ten additional subjects underwent the same experiment with a realistic sham TMS procedure. The results revealed interregional differences in the TEPs input-output functions as well as in the responses to paired-pulse conditioning protocols, when considering early local components (<80 ms). Each intensity in the three regions was associated with complex patterns of oscillatory activities. The quality of the regression of TEPs over stimulation intensity was used to derive a new readout for cortical excitability and dynamical properties, revealing lower excitability in the DLPFC, followed by SOL and M1. The realistic sham experiment confirmed that these early local components were not contaminated by multisensory stimulations. This study provides an entirely new analytic framework to characterize input-output relations throughout the cortex, paving the way to a more accurate definition of local cortical excitability.
Collapse
Affiliation(s)
- Estelle Raffin
- University of Grenoble Alpes, Inserm, U1216, Grenoble Institut NeurosciencesGrenobleFrance
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL)GenevaSwitzerland
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de RéadaptationSionSwitzerland
| | - Sylvain Harquel
- CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNCUniversity of Grenoble AlpesGrenobleFrance
- University of Grenoble‐Alpes, CNRS, CHU Grenoble Alpes, INSERM, CNRS, IRMaGeGrenobleFrance
| | - Brice Passera
- University of Grenoble Alpes, Inserm, U1216, Grenoble Institut NeurosciencesGrenobleFrance
- CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNCUniversity of Grenoble AlpesGrenobleFrance
| | - Alan Chauvin
- CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNCUniversity of Grenoble AlpesGrenobleFrance
- University of Grenoble‐Alpes, CNRS, CHU Grenoble Alpes, INSERM, CNRS, IRMaGeGrenobleFrance
| | - Thierry Bougerol
- University of Grenoble Alpes, Inserm, U1216, Grenoble Institut NeurosciencesGrenobleFrance
- CNRS, UMR5105, Laboratoire Psychologie et NeuroCognition, LPNCUniversity of Grenoble AlpesGrenobleFrance
| | - Olivier David
- University of Grenoble Alpes, Inserm, U1216, Grenoble Institut NeurosciencesGrenobleFrance
| |
Collapse
|
58
|
Zito GA, Anderegg LB, Apazoglou K, Müri RM, Wiest R, Holtforth MG, Aybek S. Transcranial magnetic stimulation over the right temporoparietal junction influences the sense of agency in healthy humans. J Psychiatry Neurosci 2020; 45:271-278. [PMID: 32329986 PMCID: PMC7828927 DOI: 10.1503/jpn.190099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/09/2019] [Accepted: 11/11/2019] [Indexed: 01/02/2023] Open
Abstract
Background The sense of agency is an important aspect of motor control. Impaired sense of agency has been linked to several medical conditions, including schizophrenia and functional neurological disorders. A complex brain network subserves the sense of agency, and the right temporoparietal junction is one of its main nodes. In this paper, we tested whether transcranial magnetic stimulation over the right temporoparietal junction elicited behavioural changes in the sense of agency. Methods In experiment 1, 15 healthy participants performed a behavioural task during functional MRI, with the goal of localizing the area relevant for the sense of agency in the right temporoparietal junction. In the task, the movement of a cursor (controlled by the participants) was artificially manipulated, and the sense of agency was either diminished (turbulence) or enhanced (magic). In experiment 2, we applied transcranial magnetic stimulation in 20 healthy participants in a sham-controlled, crossover trial with excitatory, inhibitory or sham (vertex) stimulation. We measured the summary agency score, an indicator of the sense of agency (lower values correspond to diminished sense of agency). Results Experiment 1 revealed a peak of activation during agency manipulation in the right temporoparietal junction (Montreal Neurological Institute coordinates x, y, z: 68, -26, 34). Experiment 2 showed that inhibition of the right temporoparietal junction significantly reduced the summary agency score in both turbulence (from -14.4 ± 11.4% to -22.5 ± 8.9%), and magic (from -0.7 ± 5.8% to -4.4 ± 4.4%). Limitations We found no excitatory effects, possibly because of a ceiling effect (because healthy participants have a normal sense of agency) or noneffectiveness of the excitatory protocol. Conclusion Our experiments showed that the network subserving the sense of agency was amenable to neuromodulation in healthy participants. This sets the ground for further research in patients with impaired sense of agency. Clinical trial identification: DRKS00012992 (German clinical trials registry).
Collapse
Affiliation(s)
- Giuseppe A Zito
- From the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Anderegg, Müri, Holtforth, Aybek); the Support Centre for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Wiest); Department of Neuroscience, Faculty of Medicine, University of Geneva, Switzerland (Apazoglou); the Perception and Eye Movement Laboratory, Department of Neurology and Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland (Müri); and the Institute of Psychology, University of Bern, Bern, Switzerland (Holtforth)
| | - Laura B Anderegg
- From the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Anderegg, Müri, Holtforth, Aybek); the Support Centre for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Wiest); Department of Neuroscience, Faculty of Medicine, University of Geneva, Switzerland (Apazoglou); the Perception and Eye Movement Laboratory, Department of Neurology and Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland (Müri); and the Institute of Psychology, University of Bern, Bern, Switzerland (Holtforth)
| | - Kallia Apazoglou
- From the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Anderegg, Müri, Holtforth, Aybek); the Support Centre for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Wiest); Department of Neuroscience, Faculty of Medicine, University of Geneva, Switzerland (Apazoglou); the Perception and Eye Movement Laboratory, Department of Neurology and Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland (Müri); and the Institute of Psychology, University of Bern, Bern, Switzerland (Holtforth)
| | - René M Müri
- From the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Anderegg, Müri, Holtforth, Aybek); the Support Centre for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Wiest); Department of Neuroscience, Faculty of Medicine, University of Geneva, Switzerland (Apazoglou); the Perception and Eye Movement Laboratory, Department of Neurology and Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland (Müri); and the Institute of Psychology, University of Bern, Bern, Switzerland (Holtforth)
| | - Roland Wiest
- From the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Anderegg, Müri, Holtforth, Aybek); the Support Centre for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Wiest); Department of Neuroscience, Faculty of Medicine, University of Geneva, Switzerland (Apazoglou); the Perception and Eye Movement Laboratory, Department of Neurology and Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland (Müri); and the Institute of Psychology, University of Bern, Bern, Switzerland (Holtforth)
| | - Martin Grosse Holtforth
- From the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Anderegg, Müri, Holtforth, Aybek); the Support Centre for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Wiest); Department of Neuroscience, Faculty of Medicine, University of Geneva, Switzerland (Apazoglou); the Perception and Eye Movement Laboratory, Department of Neurology and Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland (Müri); and the Institute of Psychology, University of Bern, Bern, Switzerland (Holtforth)
| | - Selma Aybek
- From the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Anderegg, Müri, Holtforth, Aybek); the Support Centre for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Switzerland (Zito, Wiest); Department of Neuroscience, Faculty of Medicine, University of Geneva, Switzerland (Apazoglou); the Perception and Eye Movement Laboratory, Department of Neurology and Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland (Müri); and the Institute of Psychology, University of Bern, Bern, Switzerland (Holtforth)
| |
Collapse
|
59
|
Casanova MF, Sokhadze EM, Casanova EL, Opris I, Abujadi C, Marcolin MA, Li X. Translational Neuroscience in Autism: From Neuropathology to Transcranial Magnetic Stimulation Therapies. Psychiatr Clin North Am 2020; 43:229-248. [PMID: 32439019 PMCID: PMC7245584 DOI: 10.1016/j.psc.2020.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The presence of heterotopias, increased regional density of neurons at the gray-white matter junction, and focal cortical dysplasias all suggest an abnormality of neuronal migration in autism spectrum disorder (ASD). The abnormality is borne from a dissonance in timing between radial and tangentially migrating neuroblasts to the developing cortical plate. The uncoupling of excitatory and inhibitory cortical cells disturbs the coordinated interactions of neurons within local networks, thus providing abnormal patterns of brainwave activity in the gamma bandwidth. In ASD, gamma oscillation abnormalities and autonomic markers offer measures of therapeutic progress and help in the identification of subgroups.
Collapse
Affiliation(s)
- Manuel F Casanova
- Department of Pediatrics, Division of Developmental Behavioral Pediatrics, Greenville Health System, 200 Patewood Drive, Suite A200, Greenville, SC 29615, USA.
| | - Estate M Sokhadze
- University of South Carolina School of Medicine Greenville, 200 Patewood Drive, Greenville, SC 29615, USA
| | - Emily L Casanova
- University of South Carolina School of Medicine Greenville, 200 Patewood Drive, Greenville, SC 29615, USA. https://twitter.com/EmLyWill
| | - Ioan Opris
- University of Miami, Miller School of Medicine, Department Miami Project to Cure Paralysis, Miami, FL 33136, USA
| | - Caio Abujadi
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marco Antonio Marcolin
- Department of Neurology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
60
|
de Goede AA, Cumplido-Mayoral I, van Putten MJAM. Spatiotemporal Dynamics of Single and Paired Pulse TMS-EEG Responses. Brain Topogr 2020; 33:425-437. [PMID: 32367427 PMCID: PMC7293671 DOI: 10.1007/s10548-020-00773-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/21/2020] [Indexed: 12/28/2022]
Abstract
For physiological brain function a particular balance between excitation and inhibition is essential. Paired pulse transcranial magnetic stimulation (TMS) can estimate cortical excitability and the relative contribution of inhibitory and excitatory networks. Combining TMS with electroencephalography (EEG) enables additional assessment of the spatiotemporal dynamics of neuronal responses in the stimulated brain. This study aims to evaluate the spatiotemporal dynamics and stability of single and paired pulse TMS-EEG responses, and assess long intracortical inhibition (LICI) at the cortical level. Twenty-five healthy subjects were studied twice, approximately one week apart. Manual coil positioning was applied in sixteen subjects and robot-guided positioning in nine. Both motor cortices were stimulated with 50 single pulses and 50 paired pulses at each of the five interstimulus intervals (ISIs): 100, 150, 200, 250 and 300 ms. To assess stability and LICI, the intraclass correlation coefficient and cluster-based permutation analysis were used. We found great resemblance in the topographical distribution of the characteristic TMS-EEG components for single and paired pulse TMS. Stimulation of the dominant and non-dominant hemisphere resulted in a mirrored spatiotemporal dynamics. No significant effect on the TMS-EEG responses was found for either stimulated hemisphere, time or coil positioning method, indicating the stability of both single and paired pulse TMS-EEG responses. For all ISIs, LICI was characterized by significant suppression of the late N100 and P180 components in the central areas, without affecting the early P30, N45 and P60 components. These observations in healthy subjects can serve as reference values for future neuropsychiatric and pharmacological studies.
Collapse
Affiliation(s)
- Annika A de Goede
- Department of Clinical Neurophysiology, Technical Medical Centre, University of Twente, P.O. Box 217, Technohal 3385, 7500 AE, Enschede, The Netherlands.
| | - Irene Cumplido-Mayoral
- Department of Clinical Neurophysiology, Technical Medical Centre, University of Twente, P.O. Box 217, Technohal 3385, 7500 AE, Enschede, The Netherlands.,Biomedical Engineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, Technical Medical Centre, University of Twente, P.O. Box 217, Technohal 3385, 7500 AE, Enschede, The Netherlands.,Department of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente, Enschede, The Netherlands
| |
Collapse
|
61
|
Freedberg M, Reeves JA, Hussain SJ, Zaghloul KA, Wassermann EM. Identifying site- and stimulation-specific TMS-evoked EEG potentials using a quantitative cosine similarity metric. PLoS One 2020; 15:e0216185. [PMID: 31929531 PMCID: PMC6957143 DOI: 10.1371/journal.pone.0216185] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/20/2019] [Indexed: 11/19/2022] Open
Abstract
The ability to interpret transcranial magnetic stimulation (TMS)-evoked electroencephalography (EEG) potentials (TEPs) is limited by artifacts, such as auditory evoked responses produced by discharge of the TMS coil. TEPs generated from direct cortical stimulation should vary in their topographical activity pattern according to stimulation site and differ from responses to sham stimulation. Responses that do not show these effects are likely to be artifactual. In 20 healthy volunteers, we delivered active and sham TMS to the right prefrontal, left primary motor, and left posterior parietal cortex and compared the waveform similarity of TEPs between stimulation sites and active and sham TMS using a cosine similarity-based analysis method. We identified epochs after the stimulus when the spatial pattern of TMS-evoked activation showed greater than random similarity between stimulation sites and sham vs. active TMS, indicating the presence of a dominant artifact. To do this, we binarized the derivatives of the TEPs recorded from 30 EEG channels and calculated cosine similarity between conditions at each time point with millisecond resolution. Only TEP components occurring before approximately 80 ms differed across stimulation sites and between active and sham, indicating site and condition-specific responses. We therefore conclude that, in the absence of noise masking or other measures to decrease neural artifact, TEP components before about 80 ms can be safely interpreted as stimulation location-specific responses to TMS, but components beyond this latency should be interpreted with caution due to high similarity in their topographical activity pattern.
Collapse
Affiliation(s)
- Michael Freedberg
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
- * E-mail:
| | - Jack A. Reeves
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States of America
| | - Sara J. Hussain
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States of America
| | - Kareem A. Zaghloul
- Functional and Restorative Neurosurgery Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States of America
| | - Eric M. Wassermann
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States of America
| |
Collapse
|
62
|
Noda Y. Toward the establishment of neurophysiological indicators for neuropsychiatric disorders using transcranial magnetic stimulation-evoked potentials: A systematic review. Psychiatry Clin Neurosci 2020; 74:12-34. [PMID: 31587446 DOI: 10.1111/pcn.12936] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/14/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022]
Abstract
Transcranial magnetic stimulation (TMS) can depolarize the neurons directly under the coil when applied to the cerebral cortex, and modulate the neural circuit associated with the stimulation site, which makes it possible to measure the neurophysiological index to evaluate excitability and inhibitory functions. Concurrent TMS and electroencephalography (TMS-EEG) has been developed to assess the neurophysiological characteristics of cortical regions other than the motor cortical region noninvasively. The aim of this review is to comprehensively discuss TMS-EEG research in the healthy brain focused on excitability, inhibition, and plasticity following neuromodulatory TMS paradigms from a neurophysiological perspective. A search was conducted in PubMed to identify articles that examined humans and that were written in English and published by September 2018. The search terms were as follows: (TMS OR 'transcranial magnetic stimulation') AND (EEG OR electroencephalog*) NOT (rTMS OR 'repetitive transcranial magnetic stimulation' OR TBS OR 'theta burst stimulation') AND (healthy). The study presents an overview of TMS-EEG methodology and neurophysiological indices and reviews previous findings from TMS-EEG in healthy individuals. Furthermore, this review discusses the potential application of TMS-EEG neurophysiology in the clinical setting to study healthy and diseased brain conditions in the future. Combined TMS-EEG is a powerful tool to probe and map neural circuits in the human brain noninvasively and represents a promising approach for determining the underlying pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Multidisciplinary Translational Research Lab, Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
63
|
Zhang W, Zhang S, Zhu M, Tang J, Zhao X, Wang Y, Liu Y, Zhang L, Xu H. Changes of Structural Brain Network Following Repetitive Transcranial Magnetic Stimulation in Children With Bilateral Spastic Cerebral Palsy: A Diffusion Tensor Imaging Study. Front Pediatr 2020; 8:617548. [PMID: 33520901 PMCID: PMC7844328 DOI: 10.3389/fped.2020.617548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/09/2020] [Indexed: 11/28/2022] Open
Abstract
Introduction: Bilateral spastic cerebral palsy (BSCP) is the most common subtype of cerebral palsy (CP), which is characterized by various motor and cognitive impairments, as well as emotional instability. However, the neural basis of these problems and how repetitive transcranial magnetic stimulation (rTMS) can make potential impacts on the disrupted structural brain network in BSCP remain unclear. This study was aimed to explore the topological characteristics of the structural brain network in BSCP following the treatment of rTMS. Methods: Fourteen children with BSCP underwent 4 weeks of TMS and 15 matched healthy children (HC) were enrolled. Diffusion tensor imaging (DTI) data were acquired from children with bilateral spastic cerebral palsy before treatment (CP1), children with bilateral spastic cerebral palsy following treatment (CP2) and HC. The graph theory analysis was applied to construct the structural brain network. Then nodal clustering coefficient (C i ) and shortest path length (L i ) were measured and compared among groups. Results: Brain regions with significant group differences in C i were located in the left precental gyrus, middle frontal gyrus, calcarine fissure, cuneus, lingual gyrus, postcentral gyrus, inferior parietal gyri, angular gyrus, precuneus, paracentral lobule and the right inferior frontal gyrus (triangular part), insula, posterior cingulate gyrus, precuneus, paracentral lobule, pallidum. In addition, significant differences were detected in the L i of the left precental gyrus, lingual gyrus, superior occipital gyrus, middle occipital gyrus, superior parietal gyrus, precuneus and the right median cingulate gyrus, posterior cingulate gyrus, hippocampus, putamen, thalamus. Post hoc t-test revealed that the CP2 group exhibited increased C i in the right inferior frontal gyrus, pallidum and decreased L i in the right putamen, thalamus when compared with the CP1 group. Conclusion: Significant differences of node-level metrics were found in various brain regions of BSCP, which indicated a disruption in structural brain connectivity in BSCP. The alterations of the structural brain network provided a basis for understanding of the pathophysiological mechanisms of motor and cognitive impairments in BSCP. Moreover, the right inferior frontal gyrus, putamen, thalamus could potentially be biomarkers for predicting the efficacy of TMS.
Collapse
Affiliation(s)
- Wenxin Zhang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Shang Zhang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Min Zhu
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Tang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoke Zhao
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Wang
- Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yuting Liu
- Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Zhang
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Xu
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
64
|
Older Adults Differentially Modulate Transcranial Magnetic Stimulation-Electroencephalography Measures of Cortical Inhibition during Maximal Single-joint Exercise. Neuroscience 2019; 425:181-193. [PMID: 31809730 DOI: 10.1016/j.neuroscience.2019.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022]
Abstract
The effects of muscle fatigue are known to be altered in older adults, and age-related changes in the brain are likely to be a contributing factor. However, the neural mechanisms underlying these changes are not known. The aim of the current study was to use transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) to investigate age-related changes in cortical excitability with muscle fatigue. In 23 young (mean age ± SD: 22 ± 2 years) and 17 older (mean age ± SD: 68.3 ± 5.6 years) adults, single-pulse TMS-EEG was applied before, during and after the performance of fatiguing, intermittent isometric abduction of the index finger. Motor-evoked potential (MEP) measures of cortical excitability were increased during (estimated mean difference, 123.3%; P < 0.0001) and after (estimated mean difference, 117.5%; P = 0.001) fatigue and this was not different between groups (P > 0.5). For TMS-EEG, the amplitude of the P30 and P180 potentials were unaffected by fatigue in older participants (P > 0.05). In contrast, the amplitude of the N45 potential in older adults was significantly reduced both during (positive cluster: mean voltage difference = 0.7 µV, P < 0.005; negative cluster: mean voltage difference = 0.9 µV, P < 0.0005) and after (mean voltage difference = 0.5 µV, P < 0.005) fatiguing exercise, whereas this response was absent in young participants. These results suggest that performance of maximal intermittent isometric exercise in old but not young adults is associated with modulation of cortical inhibition likely mediated by activation of gamma-aminobutyric acid type A receptors.
Collapse
|
65
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
66
|
Biabani M, Fornito A, Mutanen TP, Morrow J, Rogasch NC. Characterizing and minimizing the contribution of sensory inputs to TMS-evoked potentials. Brain Stimul 2019; 12:1537-1552. [DOI: 10.1016/j.brs.2019.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 12/17/2022] Open
|
67
|
Transcranial Magnetic Stimulation-Electroencephalography Measures of Cortical Neuroplasticity Are Altered after Mild Traumatic Brain Injury. J Neurotrauma 2019; 36:2774-2784. [DOI: 10.1089/neu.2018.6353] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
68
|
Zifman N, Levy-Lamdan O, Suzin G, Efrati S, Tanne D, Fogel H, Dolev I. Introducing a Novel Approach for Evaluation and Monitoring of Brain Health Across Life Span Using Direct Non-invasive Brain Network Electrophysiology. Front Aging Neurosci 2019; 11:248. [PMID: 31551761 PMCID: PMC6745309 DOI: 10.3389/fnagi.2019.00248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022] Open
Abstract
Objective Evaluation and monitoring of brain health throughout aging by direct electrophysiological imaging (DELPHI) which analyzes TMS (transcranial magnetic stimulation) evoked potentials. Methods Transcranial magnetic stimulation evoked potentials formation, coherence and history dependency, measured using electroencephalogram (EEG), was extracted from 80 healthy subjects in different age groups, 25–85 years old, and 20 subjects diagnosed with mild dementia (MD), over 70 years old. Subjects brain health was evaluated using MRI scans, neurocognitive evaluation, and computerized testing and compared to DELPHI analysis of brain network functionality. Results A significant decrease in signal coherence is observed with age in connectivity maps, mostly in inter-hemispheric temporal, and parietal areas. MD patients display a pronounced decrease in global and inter-hemispheric frontal connectivity compared to healthy controls. Early and late signal slope ratio also display a significant, age dependent, change with pronounced early slope, phase shift, between normal healthy aging, and MD. History dependent analysis demonstrates a binary step function classification of healthy brain vs. abnormal aging subjects mostly for late slope. DELPHI measures demonstrate high reproducibility with reliability coefficients of around 0.9. Conclusion These results indicate that features of evoked response, as charge transfer, slopes of response, and plasticity are altered during abnormal aging and that these fundamental properties of network functionality can be directly evaluated and monitored using DELPHI.
Collapse
Affiliation(s)
- Noa Zifman
- QuantalX Neuroscience, Tel Aviv-Yafo, Israel
| | | | - Gil Suzin
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Ramle, Israel
| | - Shai Efrati
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Ramle, Israel.,Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - David Tanne
- Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv-Yafo, Israel.,Stroke and Cognition Institute, Rambam Healthcare Campus, Haifa, Israel
| | - Hilla Fogel
- QuantalX Neuroscience, Tel Aviv-Yafo, Israel
| | | |
Collapse
|
69
|
Chung SW, Thomson CJ, Lee S, Worsley RN, Rogasch NC, Kulkarni J, Thomson RH, Fitzgerald PB, Segrave RA. The influence of endogenous estrogen on high-frequency prefrontal transcranial magnetic stimulation. Brain Stimul 2019; 12:1271-1279. [DOI: 10.1016/j.brs.2019.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/03/2019] [Accepted: 05/06/2019] [Indexed: 01/06/2023] Open
|
70
|
Hui J, Tremblay S, Daskalakis ZJ. The Current and Future Potential of Transcranial Magnetic Stimulation With Electroencephalography in Psychiatry. Clin Pharmacol Ther 2019; 106:734-746. [DOI: 10.1002/cpt.1541] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jeanette Hui
- Temerty Centre for Therapeutic Brain Intervention Centre for Addiction and Mental Health Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
| | - Sara Tremblay
- Royal's Institute of Mental Health Research Ottawa Ontario Canada
- School of Psychology University of Ottawa Ottawa Ontario Canada
| | - Zafiris J. Daskalakis
- Temerty Centre for Therapeutic Brain Intervention Centre for Addiction and Mental Health Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
| |
Collapse
|
71
|
Popov MM, Pluzhnikov IV, Kaleda VG. [Procognitive effects of transcranial magnetic stimulation in the light of neurocognitive deficit in schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:120-126. [PMID: 31089106 DOI: 10.17116/jnevro2019119031120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a relatively new method of non-invasive therapy of mental and neurological diseases that has great potential of therapeutic and diagnostic application. In schizophrenia, TMS may exert a positive effect on cognitive deficit. However this issue remains open. The authors analyze recent studies focused on the dynamics of neurocognitive deficit in TMS therapy and consider clinical effects of TMS in schizophrenia. The analysis has shown that TMS is successfully implemented in treatment of auditory positive symptoms and studies on its effect on negative symptoms of schizophrenia are perspective. Procognitive effect was found in working memory domain, and partially in perception domain within the perception of faces and facial expressions. The data on regulative functions, attention, speech, and nondeclarative memory remains controversial. It has been concluded that further research is needed to clarify the place of TMS in schizophrenia therapy.
Collapse
Affiliation(s)
- M M Popov
- Mental Health Research Center, Moscow, Russia
| | | | - V G Kaleda
- Mental Health Research Center, Moscow, Russia
| |
Collapse
|
72
|
Romero MC, Davare M, Armendariz M, Janssen P. Neural effects of transcranial magnetic stimulation at the single-cell level. Nat Commun 2019; 10:2642. [PMID: 31201331 PMCID: PMC6572776 DOI: 10.1038/s41467-019-10638-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 05/17/2019] [Indexed: 11/09/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) can non-invasively modulate neural activity in humans. Despite three decades of research, the spatial extent of the cortical area activated by TMS is still controversial. Moreover, how TMS interacts with task-related activity during motor behavior is unknown. Here, we applied single-pulse TMS over macaque parietal cortex while recording single-unit activity at various distances from the center of stimulation during grasping. The spatial extent of TMS-induced activation is remarkably restricted, affecting the spiking activity of single neurons in an area of cortex measuring less than 2 mm in diameter. In task-related neurons, TMS evokes a transient excitation followed by reduced activity, paralleled by a significantly longer grasping time. Furthermore, TMS-induced activity and task-related activity do not summate in single neurons. These results furnish crucial experimental evidence for the neural effects of TMS at the single-cell level and uncover the neural underpinnings of behavioral effects of TMS. Transcranial Magnetic Stimulation (TMS) can modulate human brain activity, but the extent of the cortical area activated by TMS is unclear. Here, the authors show that TMS affects monkey single neuron activity in an area less than 2 mm diameter, while TMS-induced activity and task-related activity do not summate.
Collapse
Affiliation(s)
- Maria C Romero
- Laboratorium voor Neuro- en Psychofysiologie, Katholieke Universiteit Leuven, Leuven, Belgium. .,Onderzoeksgroep Bewegingscontrole & Neuroplasticiteit, Katholieke Universiteit Leuven, Leuven, Belgium. .,Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium.
| | - Marco Davare
- Onderzoeksgroep Bewegingscontrole & Neuroplasticiteit, Katholieke Universiteit Leuven, Leuven, Belgium. .,Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium.
| | - Marcelo Armendariz
- Laboratorium voor Neuro- en Psychofysiologie, Katholieke Universiteit Leuven, Leuven, Belgium.,Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Peter Janssen
- Laboratorium voor Neuro- en Psychofysiologie, Katholieke Universiteit Leuven, Leuven, Belgium.,Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
73
|
Hadas I, Sun Y, Lioumis P, Zomorrodi R, Jones B, Voineskos D, Downar J, Fitzgerald PB, Blumberger DM, Daskalakis ZJ. Association of Repetitive Transcranial Magnetic Stimulation Treatment With Subgenual Cingulate Hyperactivity in Patients With Major Depressive Disorder: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw Open 2019; 2:e195578. [PMID: 31167023 PMCID: PMC6551850 DOI: 10.1001/jamanetworkopen.2019.5578] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022] Open
Abstract
Importance Hyperactivity in the subgenual cingulate cortex (SGC) is associated with major depressive disorder (MDD) and anticorrelated with activity in the dorsolateral prefrontal cortex (DLPFC). This association was found to be predictive of responsiveness to repetitive transcranial magnetic stimulation (rTMS) treatment. Such findings suggest that DLPFC-SGC connectivity is important for understanding both the therapeutic mechanism of rTMS in patients with MDD and the underlying pathophysiology of MDD. Objective To evaluate SGC hyperactivity in patients with MDD before and after rTMS treatment. Design, Setting, and Participants In this diagnostic study, among participants recruited from the adult and geriatric mood and anxiety services at the Centre for Addiction and Mental Health, Toronto, Ontario, Canada, who had participated in a randomized clinical trial, baseline SGC activity of patients with MDD was compared with healthy controls. In patients with MDD, SGC activity was compared before and after active or sham high-frequency rTMS treatment. Data collection started in July 2008 and concluded in March 2012. Neurophysiological data analysis started in January 2017 and ended in May 2018. Main Outcomes and Measures Hyperactivity in the SGC before and after rTMS treatment was measured. Subgenual cingulate cortex hyperactivity activity was quantified using significant current density (SCD), and effective connectivity between the left DLPFC and SGC was computed using significant current scattering (SCS). Both measures were computed around TMS evoked potentials standard peak latencies prior to rTMS and after rTMS treatment, comparing patients with MMD treated with active and sham rTMS. Patients with MDD were assessed with the 17-item Hamilton Rating Scale for Depression. Results Of 121 patients with MDD in the initial trial, 30 (15 [50.0%] women) were compared with 30 healthy controls (15 [50.0%] women) at rTMS treatment baseline. The mean (SD) age of the cohort with MDD was 39.1 (10.9) years, and the mean (SD) age of healthy controls was 37.0 (11.0) years. Following rTMS treatment, 26 patients with MDD who had active rTMS treatment (21.5%) were compared with 17 patients with MDD who had sham treatment (14.0%). At baseline, the SGC mean (SD) SCD and mean (SD) SCS at 200 milliseconds after TMS pulse were higher in participants with MDD compared with healthy controls (SCD: 1.04 × 10-6 [1.41 × 10-6] μA/mm2 vs 3.8 × 10-7 [7.8 × 10-7] μA/mm2; z = -2.95; P = .004; SCS: 0.87 [0.86] mm vs 0.54 [0.87] mm; z = -2.27; P = .02). Baseline source current density was able to classify MDD with 77% accuracy. Scores on the 17-item Hamilton Rating Scale for Depression were correlated with current density at the SGC (ρ = 0.41; P = .03). After rTMS treatment, SGC mean (SD) SCD and mean (SD) SCS at 200 milliseconds after rTMS pulse were attenuated to approximately the standard TMS-evoked potential latencies in the active rTMS group compared with the sham rTMS group (SCD: 1.57 × 10-7 [3.67 × 10-7] μA/mm2 vs 7.00 × 10-7 [7.51 × 10-7] μA/mm2; z = -2.91; P = .004; SCS: 0.20 [0.44] mm vs 0.74 [0.73] mm; z = -2.78; P = .006). Additionally, the SGC SCS change was correlated with symptom improvement on the 17-item Hamilton Rating Scale for Depression in the active rTMS group (ρ = 0.58; P = .047). Conclusions and Relevance The findings of this study further implicate left DLPFC-SGC effective connectivity and SGC excitability in the pathophysiology of MDD and treatment with rTMS. These findings suggest that DLPFC-SGC connectivity may be a marker of rTMS treatment responsiveness. Trial Registration ClinicalTrials.gov identifier: NCT01515215.
Collapse
Affiliation(s)
- Itay Hadas
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Yinming Sun
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Pantelis Lioumis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Brett Jones
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Daphne Voineskos
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Jonathan Downar
- MRI-Guided rTMS Clinic, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Paul B. Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare, Camberwell, Victoria, Australia
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Melbourne, Victoria, Australia
| | - Daniel M. Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Zafiris J. Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
74
|
Määttä S, Säisänen L, Kallioniemi E, Lakka TA, Lintu N, Haapala EA, Koskenkorva P, Niskanen E, Ferreri F, Könönen M. Maturation changes the excitability and effective connectivity of the frontal lobe: A developmental TMS-EEG study. Hum Brain Mapp 2019; 40:2320-2335. [PMID: 30648321 DOI: 10.1002/hbm.24525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/07/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022] Open
Abstract
The combination of transcranial magnetic stimulation with simultaneous electroencephalography (TMS-EEG) offers direct neurophysiological insight into excitability and connectivity within neural circuits. However, there have been few developmental TMS-EEG studies to date, and they all have focused on primary motor cortex stimulation. In the present study, we used navigated high-density TMS-EEG to investigate the maturation of the superior frontal cortex (dorsal premotor cortex [PMd]), which is involved in a broad range of motor and cognitive functions known to develop with age. We demonstrated that reactivity to frontal cortex TMS decreases with development. We also showed that although frontal cortex TMS elicits an equally complex TEP waveform in all age groups, the statistically significant between-group differences in the topography of the TMS-evoked peaks and differences in current density maps suggest changes in effective connectivity of the right PMd with maturation. More generally, our results indicate that direct study of the brain's excitability and effective connectivity via TMS-EEG co-registration can also be applied to pediatric populations outside the primary motor cortex, and may provide useful information for developmental studies and studies on developmental neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sara Määttä
- Faculty of Health Sciences, Department of Clinical Neurophysiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio Campus, Finland.,Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Laura Säisänen
- Faculty of Health Sciences, Department of Clinical Neurophysiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio Campus, Finland.,Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Kallioniemi
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Timo A Lakka
- Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland.,Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland.,Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Niina Lintu
- Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Eero A Haapala
- Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Finland.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Päivi Koskenkorva
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Eini Niskanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Florinda Ferreri
- Department of Neuroscience, Unit of Neurology and Neurophysiology, University of Padua, Padua, Italy
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland.,Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
75
|
Tremblay S, Rogasch NC, Premoli I, Blumberger DM, Casarotto S, Chen R, Di Lazzaro V, Farzan F, Ferrarelli F, Fitzgerald PB, Hui J, Ilmoniemi RJ, Kimiskidis VK, Kugiumtzis D, Lioumis P, Pascual-Leone A, Pellicciari MC, Rajji T, Thut G, Zomorrodi R, Ziemann U, Daskalakis ZJ. Clinical utility and prospective of TMS–EEG. Clin Neurophysiol 2019; 130:802-844. [DOI: 10.1016/j.clinph.2019.01.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
|
76
|
Hill AT, Rogasch NC, Fitzgerald PB, Hoy KE. Impact of concurrent task performance on transcranial direct current stimulation (tDCS)-Induced changes in cortical physiology and working memory. Cortex 2019; 113:37-57. [DOI: 10.1016/j.cortex.2018.11.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/09/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022]
|
77
|
Otieno LA, Opie GM, Semmler JG, Ridding MC, Sidhu SK. Intermittent single-joint fatiguing exercise reduces TMS-EEG measures of cortical inhibition. J Neurophysiol 2019; 121:471-479. [DOI: 10.1152/jn.00628.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fatiguing intermittent single-joint exercise causes an increase in corticospinal excitability and a decrease in intracortical inhibition when measured with peripherally recorded motor evoked potentials (MEPs) after transcranial magnetic stimulation (TMS). Combined TMS and electroencephalography (TMS-EEG) allows for more direct recording of cortical responses through the TMS-evoked potential (TEP). The aim of this study was to investigate the changes in the excitatory and inhibitory components of the TEP during fatiguing single-joint exercise. Twenty-three young (22 ± 2 yr) healthy subjects performed intermittent 30-s maximum voluntary contractions of the right first dorsal interosseous muscle, followed by a 30-s relaxation period repeated for a total of 15 min. Six single-pulse TMSs and one peripheral nerve stimulation (PNS) to evoke maximal M wave (Mmax) were applied during each relaxation period. A total of 90 TMS pulses and 5 PNSs were applied before and after fatiguing exercise to record MEP and TEP. The amplitude of the MEP (normalized to Mmax) increased during fatiguing exercise ( P < 0.001). There were no changes in local and global P30, N45, and P180 of TEPs during the development of intermittent single-joint exercise-induced fatigue. Global analysis, however, revealed a decrease in N100 peak of the TEP during fatiguing exercise compared with before fatiguing exercise ( P = 0.02). The decrease in N100 suggests a fatigue-related decrease in global intracortical GABAB-mediated inhibition. The increase in corticospinal excitability typically observed during single-joint fatiguing exercise may be mediated by a global decrease in intracortical inhibition. NEW & NOTEWORTHY Fatiguing intermittent single-joint exercise causes an increase in corticospinal excitability and a decrease in intracortical inhibition when measured with transcranial magnetic stimulation (TMS)-evoked potentials from the muscle. The present study provides new and direct cortical evidence, using TMS-EEG to demonstrate that during single-joint fatiguing exercise there is a global decrease in intracortical GABAB-mediated inhibition.
Collapse
Affiliation(s)
- Lavender A. Otieno
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - George M. Opie
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - John G. Semmler
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michael C. Ridding
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Simranjit K. Sidhu
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
78
|
Busan P, Del Ben G, Russo LR, Bernardini S, Natarelli G, Arcara G, Manganotti P, Battaglini PP. Stuttering as a matter of delay in neural activation: A combined TMS/EEG study. Clin Neurophysiol 2019; 130:61-76. [DOI: 10.1016/j.clinph.2018.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 08/27/2018] [Accepted: 10/15/2018] [Indexed: 10/27/2022]
|
79
|
Gonzalez-Escamilla G, Chirumamilla VC, Meyer B, Bonertz T, von Grotthus S, Vogt J, Stroh A, Horstmann JP, Tüscher O, Kalisch R, Muthuraman M, Groppa S. Excitability regulation in the dorsomedial prefrontal cortex during sustained instructed fear responses: a TMS-EEG study. Sci Rep 2018; 8:14506. [PMID: 30267020 PMCID: PMC6162240 DOI: 10.1038/s41598-018-32781-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/11/2018] [Indexed: 01/25/2023] Open
Abstract
Threat detection is essential for protecting individuals from adverse situations, in which a network of amygdala, limbic regions and dorsomedial prefrontal cortex (dmPFC) regions are involved in fear processing. Excitability regulation in the dmPFC might be crucial for fear processing, while abnormal patterns could lead to mental illness. Notwithstanding, non-invasive paradigms to measure excitability regulation during fear processing in humans are missing. To address this challenge we adapted an approach for excitability characterization, combining electroencephalography (EEG) and transcranial magnetic stimulation (TMS) over the dmPFC during an instructed fear paradigm, to dynamically dissect its role in fear processing. Event-related (ERP) and TMS-evoked potentials (TEP) were analyzed to trace dmPFC excitability. We further linked the excitability regulation patterns to individual MRI-derived gray matter structural integrity of the fear network. Increased cortical excitability was demonstrated to threat (T) processing in comparison to no-threat (NT), reflected by increased amplitude of evoked potentials. Furthermore, TMS at dmPFC enhanced the evoked responses during T processing, while the structural integrity of the dmPFC and amygdala predicted the excitability regulation patterns to fear processing. The dmPFC takes a special role during fear processing by dynamically regulating excitability. The applied paradigm can be used to non-invasively track response abnormalities to threat stimuli in healthy subjects or patients with mental disorders.
Collapse
Affiliation(s)
- Gabriel Gonzalez-Escamilla
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Venkata C Chirumamilla
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Benjamin Meyer
- Neuroimaging Center Mainz, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Tamara Bonertz
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Sarah von Grotthus
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Johannes Vogt
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Albrecht Stroh
- Focus Program Translational Neurosciences, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Johann-Philipp Horstmann
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Oliver Tüscher
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Raffael Kalisch
- Neuroimaging Center Mainz, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany.
| |
Collapse
|
80
|
Chung SW, Sullivan CM, Rogasch NC, Hoy KE, Bailey NW, Cash RFH, Fitzgerald PB. The effects of individualised intermittent theta burst stimulation in the prefrontal cortex: A TMS-EEG study. Hum Brain Mapp 2018; 40:608-627. [PMID: 30251765 DOI: 10.1002/hbm.24398] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/08/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Recent studies have highlighted variability in response to theta burst stimulation (TBS) in humans. TBS paradigm was originally developed in rodents to mimic gamma bursts coupled with theta rhythms, and was shown to elicit long-term potentiation. The protocol was subsequently adapted for humans using standardised frequencies of stimulation. However, each individual has different rhythmic firing pattern. The present study sought to explore whether individualised intermittent TBS (Ind iTBS) could outperform the effects of two other iTBS variants. Twenty healthy volunteers received iTBS over left prefrontal cortex using 30 Hz at 6 Hz, 50 Hz at 5 Hz, or individualised frequency in separate sessions. Ind iTBS was determined using theta-gamma coupling during the 3-back task. Concurrent use of transcranial magnetic stimulation and electroencephalography (TMS-EEG) was used to track changes in cortical plasticity. We also utilised mood ratings using a visual analogue scale and assessed working memory via the 3-back task before and after stimulation. No group-level effect was observed following either 30 or 50 Hz iTBS in TMS-EEG. Ind iTBS significantly increased the amplitude of the TMS-evoked P60, and decreased N100 and P200 amplitudes. A significant positive correlation between neurophysiological change and change in mood rating was also observed. Improved accuracy in the 3-back task was observed following both 50 Hz and Ind iTBS conditions. These findings highlight the critical importance of frequency in the parameter space of iTBS. Tailored stimulation parameters appear more efficacious than standard paradigms in neurophysiological and mood changes. This novel approach presents a promising option and benefits may extend to clinical applications.
Collapse
Affiliation(s)
- Sung Wook Chung
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Caley M Sullivan
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Nigel C Rogasch
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Neil W Bailey
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Robin F H Cash
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia.,Epworth Clinic, Epworth Healthcare, Melbourne, Australia
| |
Collapse
|
81
|
Effects of single versus dual-site High-Definition transcranial direct current stimulation (HD-tDCS) on cortical reactivity and working memory performance in healthy subjects. Brain Stimul 2018; 11:1033-1043. [DOI: 10.1016/j.brs.2018.06.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/12/2018] [Accepted: 06/12/2018] [Indexed: 11/20/2022] Open
|
82
|
Lee S, Chung SW, Rogasch NC, Thomson CJ, Worsley RN, Kulkarni J, Thomson RH, Fitzgerald PB, Segrave RA. The influence of endogenous estrogen on transcranial direct current stimulation: A preliminary study. Eur J Neurosci 2018; 48:2001-2012. [PMID: 30044024 DOI: 10.1111/ejn.14085] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulatory technique. Responses to tDCS differ substantially between individuals. Sex hormones that modulate cortical excitability, such as estrogen, may contribute to this inter-individual variability. The influence of estrogen on tDCS after-effects has not yet been researched. This study aimed to investigate whether endogenous estrogen levels influence cortical response to tDCS. Data from 15 male and 14 female healthy adults were analyzed. Males completed one experimental session. Females completed two, one during the early follicular phase of the menstrual cycle when estrogen was low, one during the mid-luteal phase when estrogen was high. Each session comprised 15-min of anodal tDCS delivered to the left dorsolateral prefrontal cortex (DLPFC). Response to stimulation was assessed using electroencephalography with DLPFC transcranial magnetic stimulation (TMS) administered before, immediately after, and 20-min after tDCS. Changes in amplitudes of N120 and P200 components of TMS-evoked potentials over time were compared between males, women with low estrogen and women with high estrogen. Blood assays verified estrogen levels. Women with high estrogen demonstrated a significant increase in P200 amplitude at both time points and change over time was greater for the high estrogen group compared with males. No significant differences were observed between males and women with low estrogen, or between women with low and high estrogen. These preliminary results indicate that greater neuroplastic response to DLPFC tDCS is seen in highest compared with lowest estrogen states, suggesting that endogenous estrogen levels contribute to inter-individual variability of tDCS outcomes.
Collapse
Affiliation(s)
- Susan Lee
- Monash Alfred Psychiatry Research Centre, Melbourne, Victoria, Australia
| | - Sung W Chung
- Monash Alfred Psychiatry Research Centre, Melbourne, Victoria, Australia
| | - Nigel C Rogasch
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Clayton, Victoria, Australia
| | | | - Roisin N Worsley
- Monash Alfred Psychiatry Research Centre, Melbourne, Victoria, Australia
| | - Jayashri Kulkarni
- Monash Alfred Psychiatry Research Centre, Melbourne, Victoria, Australia
| | - Richard H Thomson
- Monash Alfred Psychiatry Research Centre, Melbourne, Victoria, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Melbourne, Victoria, Australia
| | - Rebecca A Segrave
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
83
|
Widhalm ML, Rose NS. How can transcranial magnetic stimulation be used to causally manipulate memory representations in the human brain? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2018; 10:e1469. [DOI: 10.1002/wcs.1469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/21/2018] [Accepted: 05/14/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Morgan L. Widhalm
- Department of Psychology University of Notre Dame Notre Dame Indiana
| | - Nathan S. Rose
- Department of Psychology University of Notre Dame Notre Dame Indiana
| |
Collapse
|
84
|
TMS evoked N100 reflects local GABA and glutamate balance. Brain Stimul 2018; 11:1071-1079. [PMID: 29759942 DOI: 10.1016/j.brs.2018.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/11/2017] [Accepted: 05/02/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Animal studies suggest that synchronized electrical activities in the brain are regulated by the primary inhibitory and excitatory neurotransmitters gamma-aminobutyric acid (GABA) and glutamate, respectively. Identifying direct evidence that this same basic chemical-electrical neuroscience principle operates in the human brains is critical for translation of neuroscience to pathological research. OBJECTIVE/HYPOTHESIS We hypothesize that the background neurochemical concentrations may affect the cortical excitability probed by transcranial magnetic stimulation (TMS). METHODS We used TMS with simultaneous evoked potential recording to probe the cortical excitability and determined how background frontal cortical GABA and glutamate levels measured using magnetic resonance spectroscopy (MRS) modulate frontal electrical activities. RESULTS We found that TMS-evoked N100 reflects a balance between GABA-inhibitory and glutamate-excitatory levels. About 46% of individual variances in frontal N100 can be explained by their glutamate/GABA ratio (r = -0.68, p = 0.001). Both glutamate (r = -0.51, p = 0.019) and GABA (r = 0.55, p = 0.01) significantly contributed to this relationship but in opposite directions. CONCLUSION The current finding encourages additional mechanistic studies to develop TMS evoked N100 as a potential electrophysiological biomarker for translating the known inhibitory GABAergic vs. excitatory glutamatergic chemical-electrical principle from animal brain studies to human brain studies.
Collapse
|
85
|
The effect of single and repeated prefrontal intermittent theta burst stimulation on cortical reactivity and working memory. Brain Stimul 2018; 11:566-574. [DOI: 10.1016/j.brs.2018.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/18/2017] [Accepted: 01/04/2018] [Indexed: 01/26/2023] Open
|
86
|
Opie GM, Sidhu SK, Rogasch NC, Ridding MC, Semmler JG. Cortical inhibition assessed using paired-pulse TMS-EEG is increased in older adults. Brain Stimul 2018; 11:545-557. [DOI: 10.1016/j.brs.2017.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/14/2017] [Accepted: 12/28/2017] [Indexed: 02/07/2023] Open
|
87
|
Test-retest reliability of transcranial magnetic stimulation EEG evoked potentials. Brain Stimul 2018; 11:536-544. [DOI: 10.1016/j.brs.2017.12.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 11/22/2022] Open
|
88
|
Association of the N100 TMS-evoked potential with attentional processes: A motor cortex TMS–EEG study. Brain Cogn 2018; 122:9-16. [DOI: 10.1016/j.bandc.2018.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/13/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022]
|
89
|
Noda Y, Barr MS, Zomorrodi R, Cash RFH, Rajji TK, Farzan F, Chen R, George TP, Daskalakis ZJ, Blumberger DM. Reduced Short-Latency Afferent Inhibition in Prefrontal but not Motor Cortex and Its Association With Executive Function in Schizophrenia: A Combined TMS-EEG Study. Schizophr Bull 2018; 44:193-202. [PMID: 28379529 PMCID: PMC5768054 DOI: 10.1093/schbul/sbx041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Cholinergic dysfunction is increasingly assumed to be involved in the pathophysiology of schizophrenia. Short-latency afferent inhibition (SAI) is a transcranial magnetic stimulation (TMS) paradigm that has been shown to assay central cholinergic activity from the motor cortex (M1). Recently, we established a method to index SAI from the dorsolateral prefrontal cortex (DLPFC), an area implicated in the pathophysiology of schizophrenia. We investigated SAI in M1 and DLPFC in schizophrenia. We hypothesized that modulation of N100 on TMS-evoked potentials (TEPs) from the DLPFC would be attenuated in patients with schizophrenia compared to healthy controls. METHODS SAI was examined in 12 patients, whose age was matched to controls, using TMS combined with electroencephalography (EEG). SAI was recorded with TMS applied to left M1 (M1-SAI) and DLPFC (DLPFC-SAI). For group comparison, we used the SAI data of healthy participants in our previous study. RESULTS In patients, N100 TEP was significantly attenuated with DLPFC-SAI, whereas P180 TEP was significantly increased with M1-SAI. Between patients and controls, there were significant differences in modulation of P180 TEP by M1-SAI (t22 = -2.748, P = .012; patients > controls) and N100 TEP by DLPFC-SAI (t22 = 5.456, P < .0001; patients < controls). Further, modulation of N100 TEP by DLPFC-SAI significantly correlated with executive function (r = -.740, P = .006, N = 12). CONCLUSION Our findings suggest that DLPFC-SAI but not M1-SAI were reduced in patients with schizophrenia and this was linked to deficits in cognition. This may reflect prefrontal cholinergic deficits and represent a biomarker for cholinergic and executive dysfunction in patients with schizophrenia.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Mera S Barr
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Addictions Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robin F H Cash
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Brain, Imaging and Behaviour—Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, Australia
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Brain, Imaging and Behaviour—Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Tony P George
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Addictions Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
90
|
Pharmacological Manipulation of Cortical Inhibition in the Dorsolateral Prefrontal Cortex. Neuropsychopharmacology 2018; 43:354-361. [PMID: 28553835 PMCID: PMC5729552 DOI: 10.1038/npp.2017.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 05/03/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022]
Abstract
Cortical inhibition (CI) occurs largely through GABA receptor-mediated inhibitory neurotransmission, which can be modulated by cholinergic, dopaminergic, and glutamatergic inputs. Transcranial magnetic stimulation (TMS) can be used to index CI through a paradigm known as long-interval CI (LICI). When TMS is combined with electroencephalography (EEG), LICI can index GABA receptor-mediated inhibitory neurotransmission in the dorsolateral prefrontal cortex (DLPFC). We conducted a hypothesis-driven pharmacological study to assess the role of cholinergic, dopaminergic, GABAergic, and glutamatergic neurotransmission on LICI from the DLPFC using TMS-EEG. In this randomized controlled, double-blind crossover within-subject study, 12 healthy participants received five sessions of LICI to the DLPFC in a random order, each preceded by the administration of placebo or one of the four active drugs. LICI was assessed after each drug administration and compared to LICI after placebo. Relative to placebo, baclofen resulted in a significant increase in LICI, while rivastigmine resulted in a significant decrease in LICI. Dextromethorphan and L-DOPA did not result in a significant change in LICI relative to placebo. Our study confirms that LICI in the DLPFC is largely mediated by GABAB receptor-mediated inhibitory neurotransmission and also suggests that cholinergic modulation decreases LICI in the DLPFC. Such findings may help guide future work examining the neurophysiological impact of these neurotransmitters in healthy and diseased states.
Collapse
|
91
|
Balderston NL, Liu J, Roberson-Nay R, Ernst M, Grillon C. The relationship between dlPFC activity during unpredictable threat and CO 2-induced panic symptoms. Transl Psychiatry 2017; 7:1266. [PMID: 29213110 PMCID: PMC5802456 DOI: 10.1038/s41398-017-0006-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
Panic disorder is characterized by sudden, repeated, and unexpected attacks of intense fear and overwhelming anxiety about when another attack may strike. Patients with panic disorder and healthy individuals with a history of panic attacks show a hypersensitivity to unpredictable threats, suggesting a possible link between panic and sustained anxiety. The purpose of this study was to determine the degree to which induced symptoms of panic relate to fear and anxiety, as well as activity in the neural systems that mediate and regulate these affective states. Psychological and physiological symptoms of panic were assessed during an 8-min 7.5% CO2 challenge task. Psychological, physiological, and neural symptoms of fear and anxiety were measured during two sessions (one psychophysiology and one functional magnetic resonance imaging where subjects experienced several blocks of no threat (N), predictable shock (P), and unpredictable shock (U; NPU threat task). We used a principle component analysis to characterize panic susceptibility (PS), and found that PS significantly predicted dorsolateral prefrontal cortex (dlPFC) activity to the unpredictable cue during the NPU threat task. When examining the weighted beta coefficients from this analysis, we observed that self-reported fear/anxiety during the CO2 challenge negatively loaded onto dlPFC activity during the NPU task. Consistent with this observation, dlPFC activity during the unpredictable cue was also negatively correlated with anxiety during the NPU sessions. Together, these results suggest that panic symptoms and anxiety are regulated by the same prefrontal cognitive control system.
Collapse
Affiliation(s)
- Nicholas L. Balderston
- 0000 0001 2297 5165grid.94365.3dSection on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Jeffrey Liu
- 0000 0001 2297 5165grid.94365.3dSection on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Roxann Roberson-Nay
- 0000 0004 0458 8737grid.224260.0Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA USA
| | - Monique Ernst
- 0000 0001 2297 5165grid.94365.3dSection on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Christian Grillon
- 0000 0001 2297 5165grid.94365.3dSection on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
92
|
Chung SW, Rogasch NC, Hoy KE, Sullivan CM, Cash RFH, Fitzgerald PB. Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS-EEG and working memory performance. Hum Brain Mapp 2017; 39:783-802. [PMID: 29124791 DOI: 10.1002/hbm.23882] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/09/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023] Open
Abstract
Intermittent theta burst stimulation (iTBS) is a noninvasive brain stimulation technique capable of increasing cortical excitability beyond the stimulation period. Due to the rapid induction of modulatory effects, prefrontal application of iTBS is gaining popularity as a therapeutic tool for psychiatric disorders such as depression. In an attempt to increase efficacy, higher than conventional intensities are currently being applied. The assumption that this increases neuromodulatory may be mechanistically false for iTBS. This study examined the influence of intensity on the neurophysiological and behavioural effects of iTBS in the prefrontal cortex. Sixteen healthy participants received iTBS over prefrontal cortex at either 50, 75 or 100% resting motor threshold in separate sessions. Single-pulse TMS and concurrent electroencephalography (EEG) was used to assess changes in cortical reactivity measured as TMS-evoked potentials and oscillations. The n-back task was used to assess changes in working memory performance. The data can be summarised as an inverse U-shape relationship between intensity and iTBS plastic effects, where 75% iTBS yielded the largest neurophysiological changes. Improvement in reaction time in the 3-back task was supported by the change in alpha power, however, comparison between conditions revealed no significant differences. The assumption that higher intensity results in greater neuromodulatory effects may be false, at least in healthy individuals, and should be carefully considered for clinical populations. Neurophysiological changes associated with working memory following iTBS suggest functional relevance. However, the effects of different intensities on behavioural performance remain elusive in the present healthy sample.
Collapse
Affiliation(s)
- Sung Wook Chung
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Nigel C Rogasch
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Caley M Sullivan
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Robin F H Cash
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia.,Epworth Clinic, Epworth Healthcare, Camberwell, VIC, Australia
| |
Collapse
|
93
|
Moszczynska A, Callan SP. Molecular, Behavioral, and Physiological Consequences of Methamphetamine Neurotoxicity: Implications for Treatment. J Pharmacol Exp Ther 2017; 362:474-488. [PMID: 28630283 PMCID: PMC11047030 DOI: 10.1124/jpet.116.238501] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 05/09/2017] [Indexed: 04/28/2024] Open
Abstract
Understanding the relationship between the molecular mechanisms underlying neurotoxicity of high-dose methamphetamine (METH) and related clinical manifestations is imperative for providing more effective treatments for human METH users. This article provides an overview of clinical manifestations of METH neurotoxicity to the central nervous system and neurobiology underlying the consequences of administration of neurotoxic METH doses, and discusses implications of METH neurotoxicity for treatment of human abusers of the drug.
Collapse
Affiliation(s)
- Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Sean Patrick Callan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
94
|
Hadar A, Hadas I, Lazarovits A, Alyagon U, Eliraz D, Zangen A. Answering the missed call: Initial exploration of cognitive and electrophysiological changes associated with smartphone use and abuse. PLoS One 2017; 12:e0180094. [PMID: 28678870 PMCID: PMC5497985 DOI: 10.1371/journal.pone.0180094] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/05/2017] [Indexed: 01/17/2023] Open
Abstract
Background Smartphone usage is now integral to human behavior. Recent studies associate extensive usage with a range of debilitating effects. We sought to determine whether excessive usage is accompanied by measurable neural, cognitive and behavioral changes. Method Subjects lacking previous experience with smartphones (n = 35) were compared to a matched group of heavy smartphone users (n = 16) on numerous behavioral and electrophysiological measures recorded using electroencephalogram (EEG) combined with transcranial magnetic stimulation (TMS) over the right prefrontal cortex (rPFC). In a second longitudinal intervention, a randomly selected sample of the original non-users received smartphones for 3 months while the others served as controls. All measurements were repeated following this intervention. Results Heavy users showed increased impulsivity, hyperactivity and negative social concern. We also found reduced early TMS evoked potentials in the rPFC of this group, which correlated with severity of self-reported inattention problems. Heavy users also obtained lower accuracy rates than nonusers in a numerical processing. Critically, the second part of the experiment revealed that both the numerical processing and social cognition domains are causally linked to smartphone usage. Conclusion Heavy usage was found to be associated with impaired attention, reduced numerical processing capacity, changes in social cognition, and reduced right prefrontal cortex (rPFC) excitability. Memory impairments were not detected. Novel usage over short period induced a significant reduction in numerical processing capacity and changes in social cognition.
Collapse
Affiliation(s)
- Aviad Hadar
- Department of Life Science and the Zlotowski Centre for Neuroscience, Ben-Gurion University, Beer-Sheva, Israel
- * E-mail: (AH); (AZ)
| | - Itay Hadas
- Department of Life Science and the Zlotowski Centre for Neuroscience, Ben-Gurion University, Beer-Sheva, Israel
| | - Avi Lazarovits
- Department of Life Science and the Zlotowski Centre for Neuroscience, Ben-Gurion University, Beer-Sheva, Israel
| | - Uri Alyagon
- Department of Life Science and the Zlotowski Centre for Neuroscience, Ben-Gurion University, Beer-Sheva, Israel
| | - Daniel Eliraz
- Department of Life Science and the Zlotowski Centre for Neuroscience, Ben-Gurion University, Beer-Sheva, Israel
| | - Abraham Zangen
- Department of Life Science and the Zlotowski Centre for Neuroscience, Ben-Gurion University, Beer-Sheva, Israel
- * E-mail: (AH); (AZ)
| |
Collapse
|
95
|
Chung SW, Lewis BP, Rogasch NC, Saeki T, Thomson RH, Hoy KE, Bailey NW, Fitzgerald PB. Demonstration of short-term plasticity in the dorsolateral prefrontal cortex with theta burst stimulation: A TMS-EEG study. Clin Neurophysiol 2017; 128:1117-1126. [DOI: 10.1016/j.clinph.2017.04.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
|
96
|
Noda Y, Zomorrodi R, Backhouse F, Cash RFH, Barr MS, Rajji TK, Chen R, Daskalakis ZJ, Blumberger DM. Reduced Prefrontal Short-Latency Afferent Inhibition in Older Adults and Its Relation to Executive Function: A TMS-EEG Study. Front Aging Neurosci 2017; 9:119. [PMID: 28512429 PMCID: PMC5411436 DOI: 10.3389/fnagi.2017.00119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/12/2017] [Indexed: 11/13/2022] Open
Abstract
Combining transcranial magnetic stimulation (TMS) with electroencephalography (EEG) allows for the assessment of various neurophysiological processes in the human cortex. One of these paradigms, short-latency afferent inhibition (SAI), is thought to be a sensitive measure of cholinergic activity. In a previous study, we demonstrated the temporal pattern of this paradigm from both the motor (M1) and dorsolateral prefrontal cortex (DLPFC) using simultaneous TMS-EEG recording. The SAI paradigm led to marked modulations at N100. In this study, we aimed to investigate the age-related effects on TMS-evoked potentials (TEPs) with the SAI from M1 and the DLPFC in younger (18-59 years old) and older (≥60 years old) participants. Older participants showed significantly lower N100 modulation in M1-SAI as well as DLPFC-SAI compared to the younger participants. Furthermore, the modulation of N100 by DLPFC-SAI in the older participants correlated with executive function as measured with the Trail making test. This paradigm has the potential to non-invasively identify cholinergic changes in cortical regions related to cognition in older participants.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthToronto, ON, Canada.,Department of Psychiatry, University of TorontoToronto, ON, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthToronto, ON, Canada
| | - Felicity Backhouse
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthToronto, ON, Canada
| | - Robin F H Cash
- Division of Neurology, Division of Brain, Imaging and Behaviour - Systems Neuroscience, Department of Medicine, Krembil Research Institute, University Health Network, University of TorontoToronto, ON, Canada.,Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University, The AlfredMelbourne, VIC, Australia
| | - Mera S Barr
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthToronto, ON, Canada.,Department of Psychiatry, University of TorontoToronto, ON, Canada.,Centre for Addiction and Mental Health, Campbell Family Mental Health Research InstituteToronto, ON, Canada
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthToronto, ON, Canada.,Department of Psychiatry, University of TorontoToronto, ON, Canada.,Centre for Addiction and Mental Health, Campbell Family Mental Health Research InstituteToronto, ON, Canada
| | - Robert Chen
- Division of Neurology, Division of Brain, Imaging and Behaviour - Systems Neuroscience, Department of Medicine, Krembil Research Institute, University Health Network, University of TorontoToronto, ON, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthToronto, ON, Canada.,Department of Psychiatry, University of TorontoToronto, ON, Canada.,Centre for Addiction and Mental Health, Campbell Family Mental Health Research InstituteToronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental HealthToronto, ON, Canada.,Department of Psychiatry, University of TorontoToronto, ON, Canada.,Centre for Addiction and Mental Health, Campbell Family Mental Health Research InstituteToronto, ON, Canada
| |
Collapse
|
97
|
Kobayashi B, Cook IA, Hunter AM, Minzenberg MJ, Krantz DE, Leuchter AF. Can neurophysiologic measures serve as biomarkers for the efficacy of repetitive transcranial magnetic stimulation treatment of major depressive disorder? Int Rev Psychiatry 2017; 29:98-114. [PMID: 28362541 DOI: 10.1080/09540261.2017.1297697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for Major Depressive Disorder (MDD). There are clinical data that support the efficacy of many different approaches to rTMS treatment, and it remains unclear what combination of stimulation parameters is optimal to relieve depressive symptoms. Because of the costs and complexity of studies that would be necessary to explore and compare the large number of combinations of rTMS treatment parameters, it would be useful to establish reliable surrogate biomarkers of treatment efficacy that could be used to compare different approaches to treatment. This study reviews the evidence that neurophysiologic measures of cortical excitability could be used as biomarkers for screening different rTMS treatment paradigms. It examines evidence that: (1) changes in excitability are related to the mechanism of action of rTMS; (2) rTMS has consistent effects on measures of excitability that could constitute reliable biomarkers; and (3) changes in excitability are related to the outcomes of rTMS treatment of MDD. An increasing body of evidence indicates that these neurophysiologic measures have the potential to serve as reliable biomarkers for screening different approaches to rTMS treatment of MDD.
Collapse
Affiliation(s)
- Brian Kobayashi
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - Ian A Cook
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA.,d Department of Bioengineering , University of California Los Angeles , Los Angeles , CA , USA
| | - Aimee M Hunter
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - Michael J Minzenberg
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - David E Krantz
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - Andrew F Leuchter
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| |
Collapse
|
98
|
Effects of Adolescent Cannabinoid Self-Administration in Rats on Addiction-Related Behaviors and Working Memory. Neuropsychopharmacology 2017; 42:989-1000. [PMID: 27582345 PMCID: PMC5506802 DOI: 10.1038/npp.2016.178] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/05/2016] [Accepted: 07/22/2016] [Indexed: 11/08/2022]
Abstract
Use of marijuana (Cannabis sativa) often begins in adolescence, and heavy adolescent marijuana use is often associated with impaired cognitive function in adulthood. However, clinical reports of long-lasting cognitive deficits, particularly in subjects who discontinue use in adulthood, are mixed. Moreover, dissociating innate differences in cognitive function from cannabis-induced deficits is challenging. Therefore, the current study sought to develop a rodent model of adolescent cannabinoid self-administration (SA), using the synthetic cannabinoid receptor agonist WIN55,212-2 (WIN), in order to assess measures of relapse/reinstatement of drug seeking and long-term effects on cognitive function assessed in a delay-match-to-sample working memory task and a spatial recognition task. Adolescent male rats readily self-administered WIN in 2-h or 6-h sessions/day, but did not demonstrate an escalation of intake with 6-h access. Rats exhibited significant cue-induced reinstatement of WIN seeking that increased with 21 days of abstinence (ie, 'incubation of craving'). Cognitive testing occurred in adulthood under drug-free conditions. Both 2-h and 6-h adolescent WIN SA groups exhibited significantly better working memory performance in adulthood relative to sucrose SA controls, and performance was associated with altered expression of proteins regulating GABAergic and glutamatergic signaling in the prefrontal cortex. Self-administered WIN did not produce either acute or chronic effects on short-term memory, but experimenter administration of WIN in adolescence, at doses previously reported in the literature, produced acute deficits in short-term memory that recovered with abstinence. Thus, SA of a rewarding cannabinoid in adolescence does not produce long-term cognitive dysfunction.
Collapse
|
99
|
Hill AT, Rogasch NC, Fitzgerald PB, Hoy KE. Effects of prefrontal bipolar and high-definition transcranial direct current stimulation on cortical reactivity and working memory in healthy adults. Neuroimage 2017; 152:142-157. [PMID: 28274831 DOI: 10.1016/j.neuroimage.2017.03.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 01/12/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a well-recognised neuromodulatory technology which has been shown to induce short-lasting changes in motor-cortical excitability. The recent and rapid expansion of tDCS into the cognitive domain, however, necessitates deeper mechanistic understanding of its neurophysiological effects over non-motor brain regions. The present study utilised transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) to probe the immediate and longer-term effects of both a bipolar (BP-tDCS) and more focal 4×1 High-Definition tDCS (HD-tDCS) montage applied over the left DLPFC on TMS-evoked potentials (TEPs) and oscillations in 19 healthy adult participants. 2-back working memory (WM) performance was also assessed as a marker of cognitive function. Region of interest (ROI) analyses taken from the F1 electrode directly adjacent to the stimulation site revealed increased P60 TEP amplitudes at this location 5min following BP-tDCS and 30min following HD-tDCS. Further global cluster based analyses of all scalp electrodes revealed widespread neuromodulatory changes following HD-tDCS, but not BP-tDCS, both five and 30min after stimulation, with reductions also detected in both beta and gamma oscillatory power over parieto-occipital channels 30min after stimulation. No significant changes in WM performance were observed following either HD-tDCS or BP-tDCS. This study highlights the capacity for single-session prefrontal anodal tDCS montages to modulate neurophysiological processes, as assessed with TMS-EEG.
Collapse
Affiliation(s)
- Aron T Hill
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Victoria, Australia.
| | - Nigel C Rogasch
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Victoria, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Victoria, Australia
| |
Collapse
|
100
|
Opie GM, Rogasch NC, Goldsworthy MR, Ridding MC, Semmler JG. Investigating TMS–EEG Indices of Long-Interval Intracortical Inhibition at Different Interstimulus Intervals. Brain Stimul 2017; 10:65-74. [DOI: 10.1016/j.brs.2016.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/02/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022] Open
|