51
|
Cordier L, Ullrich EM, Herpertz S, Zieglgänsberger W, Trojan J, Diers M. Differential effects of visually induced analgesia and attention depending on the pain stimulation site. Eur J Pain 2020; 25:375-384. [PMID: 33063397 DOI: 10.1002/ejp.1676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/27/2020] [Accepted: 06/04/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND The term 'visually induced analgesia' describes a reduced pain perception induced by watching the painful body part as opposed to watching a neutral object. In chronic back pain patients, experimental pain, movement-induced pain and habitual pain can be reduced with visual feedback. Visual feedback can also enhance the effects of both massage treatment and manual therapy. The impact of somatosensory attentional processes remains unclear. METHODS In the current study, participants received painful electrical stimuli to their thumb and back while being presented with either a real-time video of their thumb or back (factor feedback). In addition, using an oddball paradigm, they had to count the number of deviant stimuli, applied to either their back or thumb (factor attention) and rate the pain intensity. RESULTS We found a significant main effect for attention with decreased pain ratings during attention. There was no main effect for visual feedback and no significant interaction between visual feedback and attention. Post-hoc tests revealed that the lowest pain intensity ratings were achieved during visual feedback of the back/ thumb and counting at the back/ thumb. CONCLUSION These data suggest that the modulation of perceived acute pain by visually induced analgesia may be influenced by a simultaneous somatosensory attention task. SIGNIFICANCE Somatosensory attention reduced experimental pain intensity in the thumb and back in the presence of both congruent and incongruent visual feedback. We found no significant visual feedback effect on the complex interplay between visual feedback and somatosensory attention.
Collapse
Affiliation(s)
- Larissa Cordier
- Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Eva M Ullrich
- Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Stephan Herpertz
- Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Walter Zieglgänsberger
- Department of Clinical Neuropharmacology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jörg Trojan
- Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Martin Diers
- Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
52
|
Torta DME, Ninghetto M, Ricci R, Legrain V. Rating the Intensity of a Laser Stimulus, but Not Attending to Changes in Its Location or Intensity Modulates the Laser-Evoked Cortical Activity. Front Hum Neurosci 2020; 14:120. [PMID: 32296320 PMCID: PMC7136469 DOI: 10.3389/fnhum.2020.00120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/16/2020] [Indexed: 11/13/2022] Open
Abstract
Top-down attention towards nociceptive stimuli can be modulated by asking participants to pay attention to specific features of a stimulus, or to provide a rating about its intensity/unpleasantness. Whether and how these different top-down processes may lead to different modulations of the cortical response to nociceptive stimuli remains an open question. We recorded electroencephalographic (EEG) responses to brief nociceptive laser stimuli in 24 healthy participants while they performed a task in which they had to compare two subsequent stimuli on their Spatial location (Location task) or Intensity (Intensity Task). In two additional blocks (Location + Ratings, and Intensity + Ratings) participants had to further provide a rating of the perceived intensity of the stimulus. Such a design allowed us to investigate whether focusing on spatial or intensity features of a nociceptive stimulus and rating its intensity would exert different effects on the EEG responses. We did not find statistical evidence for an effect on the signal while participants were focusing on different features of the signal. We only observed a significant cluster difference in frontoparietal leads at approximately 300-500 ms post-stimulus between the magnitude of the signal in the Intensity and Intensity + Rating conditions, with a less negative response in the Intensity + Rating condition in frontal electrodes, and a less positive amplitude in parietal leads. We speculatively propose that activity in those electrodes and time window reflects magnitude estimation processes. Moreover, the smaller frontal amplitude in the Intensity + Rating condition can be explained by greater working memory engagement known to reduce the magnitude of the EEG signal. We conclude that different top-down attentional processes modulate responses to nociceptive laser stimuli at different electrodes and time windows depending on the underlying processes that are engaged.
Collapse
Affiliation(s)
- Diana M E Torta
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Health Psychology Research Group, University of Leuven, Leuven, Belgium
| | - Marco Ninghetto
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Department of Psychology, University of Turin, Turin, Italy.,Neuroplasticity Laboratory, Nencki Institute for Experimental Biology, Polish Academy of Science, Warsaw, Poland
| | | | - Valéry Legrain
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
53
|
Lai KL, Niddam DM, Fuh JL, Chen WT, Wu JC, Wang SJ. Cortical morphological changes in chronic migraine in a Taiwanese cohort: Surface- and voxel-based analyses. Cephalalgia 2020; 40:575-585. [PMID: 32299230 DOI: 10.1177/0333102420920005] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Previous voxel- or surface-based morphometric analysis studies have revealed alterations in cortical structure in patients with chronic migraine, yet with inconsistent results. The discrepancies may be derived partly from the sample heterogeneity. Employing both methods in a clinically homogenous group may provide a clearer view. METHODS Structural MRI data from 30 prevention-naïve patients with chronic migraine without medication overuse headache or a history of major depression and 30 healthy controls were analyzed. Vertex-wise (surface-based) or voxel-wise (voxel-based) linear models were applied, after controlling for age and gender, to investigate between-group differences. Averaged cortical thicknesses and volumes from regions showing group differences were correlated with parameters related to clinical profiles. RESULTS Surface-based morphometry showed significantly thinner cortices in the bilateral insular cortex, caudal middle frontal gyrus, precentral gyrus, and parietal lobes in patients with chronic migraine relative to healthy controls. Additionally, the number of migraine days in the month preceding MRI examination was correlated negatively with right insular cortical thickness. Voxel-based morphometry (VBM) did not show any group differences or clinical correlations. CONCLUSION Patients with chronic migraine without medication overuse headache, major depression, or prior preventive treatment had reduced cortical thickness in regions within the pain-processing network. Compared to voxel-based morphometry, surface-based morphometry analysis may be more sensitive to subtle structural differences between healthy controls and patients with chronic migraine.
Collapse
Affiliation(s)
- Kuan-Lin Lai
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - David M Niddam
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Ta Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jaw-Ching Wu
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
54
|
Anticipation and violated expectation of pain are influenced by trait rumination: An fMRI study. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:56-72. [PMID: 30251186 PMCID: PMC6344394 DOI: 10.3758/s13415-018-0644-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rumination – as a stable tendency to focus repetitively on feelings related to distress – represents a transdiagnostic risk factor. Theories suggest altered emotional information processing as the key mechanism of rumination. However, studies on the anticipation processes in relation to rumination are scarce, even though expectation in this process is demonstrated to influence the processing of emotional stimuli. In addition, no published study has investigated violated expectation in relation to rumination yet. In the present study we examined the neural correlates of pain anticipation and perception using a fear conditioning paradigm with pain as the unconditioned stimulus in healthy subjects (N = 30). Rumination was assessed with the 10-item Ruminative Response Scale (RRS). Widespread brain activation – extending to temporal, parietal, and occipital lobes along with activation in the cingulate cortex, insula, and putamen – showed a positive correlation with rumination, supporting our hypothesis that trait rumination influences anticipatory processes. Interestingly, with violated expectation (when an unexpected, non-painful stimulus follows a pain cue compared to when an expected, painful stimulus follows the same pain cue) a negative association between rumination and activation was found in the posterior cingulate cortex, which is responsible for change detection in the environment and subsequent behavioral modification. Our results suggest that rumination is associated with increased neural response to pain perception and pain anticipation, and may deteriorate the identification of an unexpected omission of aversive stimuli. Therefore, targeting rumination in cognitive behavioral therapy of chronic pain could have a beneficial effect.
Collapse
|
55
|
Parker T, Huang Y, Raghu AL, FitzGerald JJ, Green AL, Aziz TZ. Dorsal Root Ganglion Stimulation Modulates Cortical Gamma Activity in the Cognitive Dimension of Chronic Pain. Brain Sci 2020; 10:brainsci10020095. [PMID: 32053879 PMCID: PMC7071617 DOI: 10.3390/brainsci10020095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023] Open
Abstract
A cognitive task, the n-back task, was used to interrogate the cognitive dimension of pain in patients with implanted dorsal root ganglion stimulators (DRGS). Magnetoencephalography (MEG) signals from thirteen patients with implanted DRGS were recorded at rest and while performing the n-back task at three increasing working memory loads with DRGS-OFF and the task repeated with DRGS-ON. MEG recordings were pre-processed, then power spectral analysis and source localization were conducted. DRGS resulted in a significant reduction in reported pain scores (mean 23%, p = 0.001) and gamma oscillatory activity (p = 0.036) during task performance. DRGS-induced pain relief also resulted in a significantly reduced reaction time during high working memory load (p = 0.011). A significant increase in average gamma power was observed during task performance compared to the resting state. However, patients who reported exacerbations of pain demonstrated a significantly elevated gamma power (F(3,80) = 65.011612, p < 0.001, adjusted p-value = 0.01), compared to those who reported pain relief during the task. Our findings demonstrate that gamma oscillatory activity is differentially modulated by cognitive load in the presence of pain, and this activity is predominantly localized to the prefrontal and anterior cingulate cortices in a chronic pain cohort.
Collapse
|
56
|
Induced oscillatory signaling in the beta frequency of top-down pain modulation. Pain Rep 2020; 5:e806. [PMID: 32072100 PMCID: PMC7004500 DOI: 10.1097/pr9.0000000000000806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/13/2019] [Indexed: 11/26/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Background: Induced synchronized brain activity, particularly in the beta-frequency range, has rarely been investigated in human electrophysiological studies of attentional modulation of the perception of nociceptive stimuli. Methods: We measured time-resolved brain responses to nociceptive stimuli in healthy subjects (final data set: n = 17) using magnetoencephalography (MEG). In addition to investigating evoked responses as previous studies, we tested whether synchronized beta activity induced by nociceptive stimuli differs between 2 attentional conditions. Subjects were presented simultaneously with 2 stimulus modalities (pain-producing intraepidermal electrical stimuli and visual stimuli) in 2 different experimental conditions, ie, “attention to pain” and “attention to color.” Pain ratings between conditions were compared using a 2-sided paired-sample t test; MEG data were analyzed with Brainstorm. Results: Pain ratings were significantly higher in the “attention to pain” compared with the “attention to color” condition. Peak amplitudes of the evoked responses were significantly larger in the “attention to pain” condition bilaterally in the insula and secondary somatosensory cortex, and in the primary somatosensory cortex (SI) contralateral to stimulation. Induced responses to painful stimuli were significantly stronger in contralateral SI in the beta-frequency range in the “attention to pain” condition. Conclusions: This study replicates previous reports w.r.t. the attentional modulation of evoked responses and suggests a functional role of induced oscillatory activity in the beta frequency in top-down modulation of nociceptive stimuli.
Collapse
|
57
|
Filbrich L, van den Broeke EN, Legrain V, Mouraux A. The focus of spatial attention during the induction of central sensitization can modulate the subsequent development of secondary hyperalgesia. Cortex 2020; 124:193-203. [PMID: 31901709 DOI: 10.1016/j.cortex.2019.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 10/11/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022]
Abstract
Intense or sustained activation of peripheral nociceptors can induce central sensitization. This enhanced responsiveness to nociceptive input of the central nervous system primarily manifests as an increased sensitivity to painful mechanical pinprick stimuli extending beyond the site of injury (secondary mechanical hyperalgesia) and is thought to be a key mechanism in the development of chronic pain, such as persistent post-operative pain. It is increasingly recognized that emotional and cognitive factors can strongly influence the pain experience. Furthermore, through their potential effects on pain modulation circuits including descending pathways to the spinal cord, it has been hypothesized that these emotional and cognitive factors could constitute risk factors for the susceptibility to develop chronic pain. Here, we tested whether, in healthy volunteers, the experimental induction of central sensitization by peripheral nociceptive input can be modulated by selective spatial attention. While participants performed a somatosensory detection task that required focusing attention towards one of the forearms, secondary hyperalgesia was induced at both forearms using bilateral and simultaneous high-frequency electrical stimulation (HFS) of the skin. HFS induced an increased sensitivity to mechanical pinprick stimuli at both forearms, directly (T1) and 20 min (T2) after HFS, confirming the successful induction of secondary hyperalgesia at both forearms. Most importantly, at T2, the HFS-induced increase in pinprick sensitivity as well as the area of secondary hyperalgesia was greater at the attended arm as compared to the non-attended arm. This indicates that top-down attentional factors can modulate the development of central sensitization by peripheral nociceptive input, and that the focus of spatial attention, besides its modulatory effects on perception, can affect activity-dependent neuroplasticity.
Collapse
Affiliation(s)
- Lieve Filbrich
- Institute of Neuroscience (IONS), UCLouvain, Brussels, Belgium; Psychological Sciences Research Institute (IPSY), UCLouvain, Louvain-la-Neuve, Belgium.
| | | | - Valéry Legrain
- Institute of Neuroscience (IONS), UCLouvain, Brussels, Belgium; Psychological Sciences Research Institute (IPSY), UCLouvain, Louvain-la-Neuve, Belgium
| | - André Mouraux
- Institute of Neuroscience (IONS), UCLouvain, Brussels, Belgium; Psychological Sciences Research Institute (IPSY), UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
58
|
Lee IS, Necka EA, Atlas LY. Distinguishing pain from nociception, salience, and arousal: How autonomic nervous system activity can improve neuroimaging tests of specificity. Neuroimage 2020; 204:116254. [PMID: 31604122 PMCID: PMC6911655 DOI: 10.1016/j.neuroimage.2019.116254] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022] Open
Abstract
Pain is a subjective, multidimensional experience that is distinct from nociception. A large body of work has focused on whether pain processing is supported by specific, dedicated brain circuits. Despite advances in human neuroscience and neuroimaging analysis, dissociating acute pain from other sensations has been challenging since both pain and non-pain stimuli evoke salience and arousal responses throughout the body and in overlapping brain circuits. In this review, we discuss these challenges and propose that brain-body interactions in pain can be leveraged in order to improve tests for pain specificity. We review brain and bodily responses to pain and nociception and extant efforts toward identifying pain-specific brain networks. We propose that autonomic nervous system activity should be used as a surrogate measure of salience and arousal to improve these efforts and enable researchers to parse out pain-specific responses in the brain, and demonstrate the feasibility of this approach using example fMRI data from a thermal pain paradigm. This new approach will improve the accuracy and specificity of functional neuroimaging analyses and help to overcome current difficulties in assessing pain specific responses in the human brain.
Collapse
Affiliation(s)
- In-Seon Lee
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth A Necka
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA; National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
59
|
Evers AWM, Peerdeman KJ, van Laarhoven AIM. What is new in the psychology of chronic itch? Exp Dermatol 2019; 28:1442-1447. [PMID: 31246320 PMCID: PMC6973117 DOI: 10.1111/exd.13992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 12/25/2022]
Abstract
Itch is often regarded as unpleasant or bothersome and is accompanied by symptoms of distress and impairments in daily life. The biopsychosocial model of chronic itch describes how psychological factors can contribute to the improvement or exacerbation of chronic itch and related scratching behaviour. Recent research underlines the important role of cognitive-affective information processing, such as attention, affect and expectancies. This may not only play a role for acute itch states, but may particularly apply to the process of itch chronification, for example, due to the vicious cycle in which these factors shape the experience of itch. The present paper focuses on new insights into the relation between itch and the cognitive-affective factors of attention, affect and expectancies. These factors are thought to play a possible aggravating role in itch in the long term and have received increasing attention in the recent empirical literature on maintaining and exacerbating factors for chronic physical symptoms. Possible psychophysiological and neurobiological pathways regarding these factors are discussed, as well as possible intervention methods.
Collapse
Affiliation(s)
- Andrea W. M. Evers
- Health, Medical and Neuropsychology UnitLeiden UniversityLeidenThe Netherlands
- Department of PsychiatryLeiden University Medical CenterLeidenThe Netherlands
- Leiden Institute for Brain and CognitionLeidenThe Netherlands
| | - Kaya J. Peerdeman
- Health, Medical and Neuropsychology UnitLeiden UniversityLeidenThe Netherlands
- Leiden Institute for Brain and CognitionLeidenThe Netherlands
| | - Antoinette I. M. van Laarhoven
- Health, Medical and Neuropsychology UnitLeiden UniversityLeidenThe Netherlands
- Department of PsychiatryLeiden University Medical CenterLeidenThe Netherlands
- Leiden Institute for Brain and CognitionLeidenThe Netherlands
| |
Collapse
|
60
|
Deldar Z, Rustamov N, Blanchette I, Piché M. Improving working memory and pain inhibition in older persons using transcranial direct current stimulation. Neurosci Res 2019; 148:19-27. [DOI: 10.1016/j.neures.2018.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 12/30/2022]
|
61
|
Torta DM, Jure FA, Andersen OK, Biurrun Manresa JA. Intense and sustained pain reduces cortical responses to auditory stimuli: Implications for the interpretation of the effects of heterotopic noxious conditioning stimulation in humans. Eur J Neurosci 2019; 50:3934-3943. [DOI: 10.1111/ejn.14546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/24/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Diana M. Torta
- Health Psychology Faculty of Psychology and Educational Sciences KU Leuven Leuven Belgium
- Institute of Neuroscience UC Louvain Brussels Belgium
| | - Fabricio A. Jure
- Center for Neuroplasticity and Pain SMI® Department of Health Science and Technology Aalborg University Aalborg Denmark
| | - Ole K. Andersen
- Center for Neuroplasticity and Pain SMI® Department of Health Science and Technology Aalborg University Aalborg Denmark
| | - José A.B. Biurrun Manresa
- Center for Neuroplasticity and Pain SMI® Department of Health Science and Technology Aalborg University Aalborg Denmark
- Institute for Research and Development in Bioengineering and Bioinformatics (IBB) CONICET‐UNER Entre Ríos Argentina
| |
Collapse
|
62
|
Opioid-free anaesthesia. Why and how? A contextual analysis. Anaesth Crit Care Pain Med 2019; 38:169-172. [DOI: 10.1016/j.accpm.2018.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/01/2018] [Accepted: 05/02/2018] [Indexed: 11/23/2022]
|
63
|
Kong J, Wolcott E, Wang Z, Jorgenson K, Harvey WF, Tao J, Rones R, Wang C. Altered resting state functional connectivity of the cognitive control network in fibromyalgia and the modulation effect of mind-body intervention. Brain Imaging Behav 2019; 13:482-492. [PMID: 29721768 PMCID: PMC6214794 DOI: 10.1007/s11682-018-9875-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study examines altered resting state functional connectivity (rsFC) of the cognitive control network (CCN) in fibromyalgia patients as compared to healthy controls, as well as how an effective mind-body intervention, Tai Chi, can modulate the altered rsFC of the CCN. Patients with fibromyalgia and matched healthy subjects were recruited in this study. Fibromyalgia patients were scanned 12 weeks before and after intervention. The bilateral dorsolateral prefrontal cortex (DLPFC) was used as a seed to explore the rsFC of the CCN. Data analysis was conducted with 21 patients and 20 healthy subjects. Compared to healthy subjects, fibromyalgia patients exhibited increased rsFC between the DLPFC and the bilateral rostral anterior cingulate cortex (rACC) and medial prefrontal cortex (MPFC) at baseline. The rsFC between the CCN and rACC/MPFC further increased after Tai Chi intervention, and this increase was accompanied by clinical improvements. This rsFC change was also significantly associated with corresponding changes in the Overall Impact domain of the Revised Fibromyalgia Impact Questionnaire (FIQR). Further analysis showed that the rACC/MPFC rsFC with both the PAG and hippocampus significantly decreased following Tai Chi intervention. Our study suggests that fibromyalgia is associated with altered CCN rsFC and that effective mind-body treatment may elicit clinical improvements by further increasing this altered rsFC. Elucidating this mechanism of enhancing the allostasis process will deepen our understanding of the mechanisms underlying mind-body interventions in fibromyalgia patients and facilitate the development of new pain management methods.
Collapse
Affiliation(s)
- Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Emily Wolcott
- Center For Complementary And Integrative Medicine, Department of Rheumatology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Zengjian Wang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Kristen Jorgenson
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - William F Harvey
- Center For Complementary And Integrative Medicine, Department of Rheumatology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Jing Tao
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ramel Rones
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Chenchen Wang
- Center For Complementary And Integrative Medicine, Department of Rheumatology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
64
|
Deldar Z, Rustamov N, Bois S, Blanchette I, Piché M. Enhancement of pain inhibition by working memory with anodal transcranial direct current stimulation of the left dorsolateral prefrontal cortex. J Physiol Sci 2018; 68:825-836. [PMID: 29450801 PMCID: PMC10717442 DOI: 10.1007/s12576-018-0598-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/06/2018] [Indexed: 01/20/2023]
Abstract
The aim of this study was to examine whether transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC) enhances pain inhibition by improving working memory (WM). Forty healthy volunteers participated in two tDCS sessions. Pain was evoked by electrical stimulation at the ankle. Participants performed an n-back task (0-back and 2-back). The experimental protocol comprised five counterbalanced conditions (0-back, 2-back, pain, 0-back with pain and 2-back with pain) that were performed twice (pre-tDCS baseline and during tDCS). Compared with the pre-tDCS baseline values, anodal tDCS decreased response times for the 2-back condition (p < 0.01) but not for the 0-back condition (p > 0.5). Anodal tDCS also decreased pain ratings marginally in the 2-back with pain condition, but not the 0-back with pain condition (p = 0.052 and p > 0.2, respectively). No effect was produced by sham tDCS for any condition (p > 0.2). These results indicate that tDCS of the left DLPFC may enhance pain inhibition by improving WM.
Collapse
Affiliation(s)
- Zoha Deldar
- Department of Chiropractic, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Nabi Rustamov
- Department of Chiropractic, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Suzie Bois
- Department of Chiropractic, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Isabelle Blanchette
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Department of Psychology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Mathieu Piché
- Department of Chiropractic, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada.
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.
| |
Collapse
|
65
|
Sprenger C, Stenmans P, Tinnermann A, Büchel C. Evidence for a spinal involvement in temporal pain contrast enhancement. Neuroimage 2018; 183:788-799. [PMID: 30189340 DOI: 10.1016/j.neuroimage.2018.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/19/2018] [Accepted: 09/02/2018] [Indexed: 12/25/2022] Open
Abstract
Spatiotemporal filtering and amplification of sensory information at multiple levels during the generation of perceptual representations is a fundamental processing principle of the nervous system. While for the visual and auditory system temporal filtering of sensory signals has been noticed for a long time, respective contrast mechanisms within the nociceptive system became only recently subject of investigations, mainly in the context of offset analgesia (OA) subsequent to noxious stimulus decreases. In the present study we corroborate in a first experiment the assumption that offset analgesia involves a central component by showing that an OA-like effect accounting for 74% of a corresponding OA reference can be evoked by decomposing the stimulus offset into two separate box-car stimuli applied within the same dermatome but to separate populations of primary afferent neurons. In order to draw conclusions about the levels of the CNS at which temporal filtering of nociceptive information takes place during OA we investigate in a second experiment neuronal activity in the spinal cord during a painful thermal stimulus offset employing high-resolution fMRI in healthy volunteers. Pain-related BOLD responses in the spinal cord were significantly reduced during OA and their time course followed widely behavioral hypoalgesia, but not the thermal stimulation profile. In summary, the results suggest that temporal pain contrast enhancement during OA comprises a central mechanism and this mechanism becomes already effective at the level of the spinal cord.
Collapse
Affiliation(s)
- Christian Sprenger
- Department of Systems Neuroscience, University-Medical-Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Philip Stenmans
- Department of Systems Neuroscience, University-Medical-Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Alexandra Tinnermann
- Department of Systems Neuroscience, University-Medical-Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University-Medical-Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
66
|
Hausteiner-Wiehle C, Henningsen P. Do we have to rethink Complex Regional Pain Syndrome? J Psychosom Res 2018; 111:13-14. [PMID: 29935746 DOI: 10.1016/j.jpsychores.2018.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Constanze Hausteiner-Wiehle
- Neurocenter, BG Trauma Center Murnau, Murnau, Germany; Dept. of Psychosomatic Medicine and Psychotherapy, Technical University of Munich, Munich, Germany.
| | | |
Collapse
|
67
|
Weber R, Alicea B, Huskey R, Mathiak K. Network Dynamics of Attention During a Naturalistic Behavioral Paradigm. Front Hum Neurosci 2018; 12:182. [PMID: 29780313 PMCID: PMC5946671 DOI: 10.3389/fnhum.2018.00182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
This study investigates the dynamics of attention during continuous, naturalistic interactions in a video game. Specifically, the effect of repeated distraction on a continuous primary task is related to a functional model of network connectivity. We introduce the Non-linear Attentional Saturation Hypothesis (NASH), which predicts that effective connectivity within attentional networks increases non-linearly with decreasing distraction over time, and exhibits dampening at critical parameter values. Functional magnetic resonance imaging (fMRI) data collected using a naturalistic behavioral paradigm coupled with an interactive video game is used to test the hypothesis. As predicted, connectivity in pre-defined regions corresponding to attentional networks increases as distraction decreases. Moreover, the functional relationship between connectivity and distraction is convex, that is, network connectivity somewhat increases as distraction decreases during the continuous primary task, however, connectivity increases considerably as distraction falls below critical levels. This result characterizes the non-linear pattern of connectivity within attentional networks, particularly with respect to their dynamics during behavior. These results are also summarized in the form of a network structure analysis, which underscores the role of various nodes in regulating the global network state. In conclusion, we situate the implications of this research in the context of cognitive complexity and an emerging theory of flow during media exposure.
Collapse
Affiliation(s)
- René Weber
- Media Neuroscience Lab, Department of Communication, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Bradly Alicea
- Orthogonal Research and Teaching Laboratory, Champaign, IL, United States
| | - Richard Huskey
- Cognitive Communication Science Lab, School of Communication, The Ohio State University, Columbus, OH, United States
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
68
|
No perceptual prioritization of non-nociceptive vibrotactile and visual stimuli presented on a sensitized body part. Sci Rep 2018; 8:5359. [PMID: 29599492 PMCID: PMC5876401 DOI: 10.1038/s41598-018-23135-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 03/05/2018] [Indexed: 12/13/2022] Open
Abstract
High frequency electrical conditioning stimulation (HFS) is an experimental method to induce increased mechanical pinprick sensitivity in the unconditioned surrounding skin (secondary hyperalgesia). Secondary hyperalgesia is thought to be the result of central sensitization, i.e. increased responsiveness of nociceptive neurons in the central nervous system. Vibrotactile and visual stimuli presented in the area of secondary hyperalgesia also elicit enhanced brain responses, a finding that cannot be explained by central sensitization as it is currently defined. HFS may recruit attentional processes, which in turn affect the processing of all stimuli. In this study we have investigated whether HFS induces perceptual biases towards stimuli presented onto the sensitized arm by using Temporal Order Judgment (TOJ) tasks. In TOJ tasks, stimuli are presented in rapid succession on either arm, and participants have to indicate their perceived order. In case of a perceptual bias, the stimuli presented on the attended side are systematically reported as occurring first. Participants performed a tactile and a visual TOJ task before and after HFS. Analyses of participants' performance did not reveal any prioritization of the visual and tactile stimuli presented onto the sensitized arm. Our results provide therefore no evidence for a perceptual bias towards tactile and visual stimuli presented onto the sensitized arm.
Collapse
|
69
|
Stancak A, Fallon N, Fenu A, Kokmotou K, Soto V, Cook S. Neural Mechanisms of Attentional Switching Between Pain and a Visual Illusion Task: A Laser Evoked Potential Study. Brain Topogr 2017; 31:430-446. [PMID: 29260349 PMCID: PMC5889779 DOI: 10.1007/s10548-017-0613-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022]
Abstract
Previous studies demonstrated that pain induced by a noxious stimulus during a distraction task is affected by both stimulus-driven and goal-directed processes which interact and change over time. The purpose of this exploratory study was to analyse associations of aspects of subjective pain experience and engagement with the distracting task with attention-sensitive components of noxious laser-evoked potentials (LEPs) on a single-trial basis. A laser heat stimulus was applied to the dorsum of the left hand while subjects either viewed the Rubin vase-face illusion (RVI), or focused on their pain and associated somatosensory sensations occurring on their stimulated hand. Pain-related sensations occurring with every laser stimulus were evaluated using a set of visual analogue scales. Factor analysis was used to identify the principal dimensions of pain experience. LEPs were correlated with subjective aspects of pain experience on a single-trial basis using a multiple linear regression model. A positive LEP component at the vertex electrodes in the interval 294–351 ms (P2) was smaller during focusing on RVI than during focusing on the stimulated hand. Single-trial amplitude variations of the P2 component correlated with changes in Factor 1, representing essential aspects of pain, and inversely with both Factor 2, accounting for anticipated pain, and the number of RVI figure reversals. A source dipole located in the posterior region of the cingulate cortex was the strongest contributor to the attention-related single-trial variations of the P2 component. Instantaneous amplitude variations of the P2 LEP component during switching attention towards pain in the presence of a distracting task are related to the strength of pain experience, engagement with the task, and the level of anticipated pain. Results provide neurophysiological underpinning for the use of distraction analgesia acute pain relief.
Collapse
Affiliation(s)
- Andrej Stancak
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK. .,Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK.
| | - Nicholas Fallon
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK
| | - Alessandra Fenu
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK
| | - Katerina Kokmotou
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK.,Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK
| | - Vicente Soto
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK
| | - Stephanie Cook
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK
| |
Collapse
|
70
|
Lehner R, Meesen R, Wenderoth N. Observing back pain provoking lifting actions modulates corticomotor excitability of the observer's primary motor cortex. Neuropsychologia 2017; 101:1-9. [DOI: 10.1016/j.neuropsychologia.2017.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022]
|