51
|
Koyama MS, Molfese PJ, Milham MP, Mencl WE, Pugh KR. Thalamus is a common locus of reading, arithmetic, and IQ: Analysis of local intrinsic functional properties. BRAIN AND LANGUAGE 2020; 209:104835. [PMID: 32738503 PMCID: PMC8087146 DOI: 10.1016/j.bandl.2020.104835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 05/04/2023]
Abstract
Neuroimaging studies of basic achievement skills - reading and arithmetic - often control for the effect of IQ to identify unique neural correlates of each skill. This may underestimate possible effects of common factors between achievement and IQ measures on neuroimaging results. Here, we simultaneously examined achievement (reading and arithmetic) and IQ measures in young adults, aiming to identify MRI correlates of their common factors. Resting-state fMRI (rs-fMRI) data were analyzed using two metrics assessing local intrinsic functional properties; regional homogeneity (ReHo) and fractional amplitude low frequency fluctuation (fALFF), measuring local intrinsic functional connectivity and intrinsic functional activity, respectively. ReHo highlighted the thalamus/pulvinar (a subcortical region implied for selective attention) as a common locus for both achievement skills and IQ. More specifically, the higher the ReHo values, the lower the achievement and IQ scores. For fALFF, the left superior parietal lobule, part of the dorsal attention network, was positively associated with reading and IQ. Collectively, our results highlight attention-related regions, particularly the thalamus/pulvinar as a key region related to individual differences in performance on all the three measures. ReHo in the thalamus/pulvinar may serve as a tool to examine brain mechanisms underlying a comorbidity of reading and arithmetic difficulties, which could co-occur with weakness in general intellectual abilities.
Collapse
Affiliation(s)
- Maki S Koyama
- Haskins Laboratories, New Haven, CT, USA; Center for the Developing Brain, Child Mind Institute, New York, NY, USA.
| | - Peter J Molfese
- Haskins Laboratories, New Haven, CT, USA; Section on Functional Imaging Methods, Laboratory of Brain and Cognition, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA; Center for Biomedical Imagingand Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA.
| | | | - Kenneth R Pugh
- Haskins Laboratories, New Haven, CT, USA; Yale University School of Medicine, Department of Diagnostic Radiology, New Haven, CT, USA; University of Connecticut, Department of Psychology, Storrs, CT, USA.
| |
Collapse
|
52
|
Herman JP, Arcizet F, Krauzlis RJ. Attention-related modulation of caudate neurons depends on superior colliculus activity. eLife 2020; 9:e53998. [PMID: 32940607 PMCID: PMC7544506 DOI: 10.7554/elife.53998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 08/26/2020] [Indexed: 11/13/2022] Open
Abstract
Recent work has implicated the primate basal ganglia in visual perception and attention, in addition to their traditional role in motor control. The basal ganglia, especially the caudate nucleus 'head' (CDh) of the striatum, receive indirect anatomical connections from the superior colliculus (SC), a midbrain structure that is known to play a crucial role in the control of visual attention. To test the possible functional relationship between these subcortical structures, we recorded CDh neuronal activity of macaque monkeys before and during unilateral SC inactivation in a spatial attention task. SC inactivation significantly altered the attention-related modulation of CDh neurons and strongly impaired the classification of task-epochs based on CDh activity. Only inactivation of SC on the same side of the brain as recorded CDh neurons, not the opposite side, had these effects. These results demonstrate a novel interaction between SC activity and attention-related visual processing in the basal ganglia.
Collapse
Affiliation(s)
- James P Herman
- Laboratory of Sensorimotor Research, National Eye InstituteBethesdaUnited States
| | | | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye InstituteBethesdaUnited States
| |
Collapse
|
53
|
Lev-Ari T, Zahar Y, Agarwal A, Gutfreund Y. Behavioral and neuronal study of inhibition of return in barn owls. Sci Rep 2020; 10:7267. [PMID: 32350332 PMCID: PMC7190666 DOI: 10.1038/s41598-020-64197-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 11/21/2022] Open
Abstract
Inhibition of return (IOR) is the reduction of detection speed and/or detection accuracy of a target in a recently attended location. This phenomenon, which has been discovered and studied thoroughly in humans, is believed to reflect a brain mechanism for controlling the allocation of spatial attention in a manner that enhances efficient search. Findings showing that IOR is robust, apparent at a very early age and seemingly dependent on midbrain activity suggest that IOR is a universal attentional mechanism in vertebrates. However, studies in non-mammalian species are scarce. To explore this hypothesis comparatively, we tested for IOR in barn owls (Tyto alba) using the classical Posner cueing paradigm. Two barn owls were trained to initiate a trial by fixating on the center of a computer screen and then turning their gaze to the location of a target. A short, non-informative cue appeared before the target, either at a location predicting the target (valid) or a location not predicting the target (invalid). In one barn owl, the response times (RT) to the valid targets compared to the invalid targets shifted from facilitation (lower RTs) to inhibition (higher RTs) when increasing the time lag between the cue and the target. The second owl mostly failed to maintain fixation and responded to the cue before the target onset. However, when including in the analysis only the trials in which the owl maintained fixation, an inhibition in the valid trials could be detected. To search for the neural correlates of IOR, we recorded multiunit responses in the optic tectum (OT) of four head-fixed owls passively viewing a cueing paradigm as in the behavioral experiments. At short cue to target lags (<100 ms), neural responses to the target in the receptive field (RF) were usually enhanced if the cue appeared earlier inside the RF (valid) and were suppressed if the cue appeared earlier outside the RF (invalid). This was reversed at longer lags: neural responses were suppressed in the valid conditions and were unaffected in the invalid conditions. The findings support the notion that IOR is a basic mechanism in the evolution of vertebrate behavior and suggest that the effect appears as a result of the interaction between lateral and forward inhibition in the tectal circuitry.
Collapse
Affiliation(s)
- Tidhar Lev-Ari
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, 31096, Israel
| | - Yael Zahar
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, 31096, Israel
| | - Arpit Agarwal
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, 31096, Israel
| | - Yoram Gutfreund
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, 31096, Israel.
| |
Collapse
|
54
|
Stein BE, Rowland BA. Using superior colliculus principles of multisensory integration to reverse hemianopia. Neuropsychologia 2020; 141:107413. [PMID: 32113921 DOI: 10.1016/j.neuropsychologia.2020.107413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 11/18/2022]
Abstract
The diversity of our senses conveys many advantages; it enables them to compensate for one another when needed, and the information they provide about a common event can be integrated to facilitate its processing and, ultimately, adaptive responses. These cooperative interactions are produced by multisensory neurons. A well-studied model in this context is the multisensory neuron in the output layers of the superior colliculus (SC). These neurons integrate and amplify their cross-modal (e.g., visual-auditory) inputs, thereby enhancing the physiological salience of the initiating event and the probability that it will elicit SC-mediated detection, localization, and orientation behavior. Repeated experience with the same visual-auditory stimulus can also increase the neuron's sensitivity to these individual inputs. This observation raised the possibility that such plasticity could be engaged to restore visual responsiveness when compromised. For example, unilateral lesions of visual cortex compromise the visual responsiveness of neurons in the multisensory output layers of the ipsilesional SC and produces profound contralesional blindness (hemianopia). The possibility that multisensory plasticity could restore the visual responses of these neurons, and reverse blindness, was tested in the cat model of hemianopia. Hemianopic subjects were repeatedly presented with spatiotemporally congruent visual-auditory stimulus pairs in the blinded hemifield on a daily or weekly basis. After several weeks of this multisensory exposure paradigm, visual responsiveness was restored in SC neurons and behavioral responses were elicited by visual stimuli in the previously blind hemifield. The constraints on the effectiveness of this procedure proved to be the same as those constraining SC multisensory plasticity: whereas repetitions of a congruent visual-auditory stimulus was highly effective, neither exposure to its individual component stimuli, nor to these stimuli in non-congruent configurations was effective. The restored visual responsiveness proved to be robust, highly competitive with that in the intact hemifield, and sufficient to support visual discrimination.
Collapse
Affiliation(s)
- Barry E Stein
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Benjamin A Rowland
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
55
|
|
56
|
Shen J, Fang K, Fan Y, Song J, Yang J, Shen D, Liu Y, Fang G. Dynamics of electroencephalogram oscillations underlie right-eye preferences in predatory behavior of the music frog. ACTA ACUST UNITED AC 2019; 222:jeb.212175. [PMID: 31611293 DOI: 10.1242/jeb.212175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/07/2019] [Indexed: 12/15/2022]
Abstract
Visual lateralization is a typical characteristic of many vertebrates; however, its underlying dynamic neural mechanism is unclear. In this study, predatory responses and dynamic brain activities were evaluated in the Emei music frog (Nidirana daunchina) to assess the potential eye preferences and their underlying dynamic neural mechanism, using behavioral and electrophysiological experiments, respectively. To do this, when the prey stimulus (live cricket and leaf as control) was moved around the frogs in both clockwise and anticlockwise directions at constant velocity, the number of predatory responses were counted and electroencephalogram (EEG) absolute power spectra for each band were measured for the telencephalon, diencephalon and mesencephalon. The results showed that: (1) no significant differences in the number of predatory responses could be found for the control (leaf), but the number of predatory responses for the right visual field (RVF) was significantly greater than that for the left visual field (LVF) when the live cricket was moved into the RVF clockwise; (2) compared with no stimulus in the visual field and stimulus in the LVF, the power spectra of each EEG band were greater when the prey stimulus was moved into the RVF clockwise; and (3) the power spectra of the theta, alpha and beta bands in the left diencephalon were significantly greater than those of the right counterpart for the clockwise direction, but similar significant differences presented for the delta, theta and alpha bands in the anticlockwise direction. Together, the results suggested that right-eye preferences for predatory behaviors exist in music frogs, and that the dynamics of EEG oscillations might underlie this right eye/left hemisphere advantage.
Collapse
Affiliation(s)
- Jiangyan Shen
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, Sichuan, People's Republic of China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, People's Republic of China
| | - Ke Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, Sichuan, People's Republic of China
| | - Yanzhu Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, Sichuan, People's Republic of China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, People's Republic of China
| | - Jinjin Song
- School of Life Science, Anhui University, Hefei, Anhui, People's Republic of China
| | - Jing Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, Sichuan, People's Republic of China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, People's Republic of China
| | - Di Shen
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, Sichuan, People's Republic of China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, People's Republic of China
| | - Yansu Liu
- Sichuan Nursing Vocational College, No. 173, Longdu Nan Road, Longquan District, Chengdu, Sichuan, People's Republic of China
| | - Guangzhan Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
57
|
Abstract
Visual stimuli can evoke complex behavioral responses, but the underlying streams of neural activity in mammalian brains are difficult to follow because of their size. Here, I review the visual system of zebrafish larvae, highlighting where recent experimental evidence has localized the functional steps of visuomotor transformations to specific brain areas. The retina of a larva encodes behaviorally relevant visual information in neural activity distributed across feature-selective ganglion cells such that signals representing distinct stimulus properties arrive in different areas or layers of the brain. Motor centers in the hindbrain encode motor variables that are precisely tuned to behavioral needs within a given stimulus setting. Owing to rapid technological progress, larval zebrafish provide unique opportunities for obtaining a comprehensive understanding of the intermediate processing steps occurring between visual and motor centers, revealing how visuomotor transformations are implemented in a vertebrate brain.
Collapse
Affiliation(s)
- Johann H. Bollmann
- Developmental Biology, Institute of Biology I, Faculty of Biology, and Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
58
|
Subcortical connectivity correlates selectively with attention's effects on spatial choice bias. Proc Natl Acad Sci U S A 2019; 116:19711-19716. [PMID: 31492811 PMCID: PMC6765279 DOI: 10.1073/pnas.1902704116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Forebrain mechanisms of visuospatial attention have been widely studied. Yet, how the midbrain contributes to attention remains comparatively unknown. Here, we examined the role of the superior colliculus (SC), a vertebrate midbrain structure, in attention. Does the SC control sensitivity to attended information, or enable biasing choices toward attended information, or both? We mapped structural connections of the human SC with neocortical regions and found that the strengths of these connections correlated with, and were strongly predictive of, individuals’ choice bias, but not sensitivity. Taken together with previous animal studies, our results suggest that the human SC may play an evolutionarily conserved role in controlling choice bias during visual attention. Neural mechanisms of attention are extensively studied in the neocortex; comparatively little is known about how subcortical regions contribute to attention. The superior colliculus (SC) is an evolutionarily conserved, subcortical (midbrain) structure that has been implicated in controlling visuospatial attention. Yet how the SC contributes mechanistically to attention remains unknown. We investigated the role of the SC in attention, combining model-based psychophysics, diffusion imaging, and tractography in human participants. Specifically, we asked whether the SC contributes to enhancing sensitivity (d′) to attended information, or whether it contributes to biasing choices (criteria) in favor of attended information. We tested human participants on a multialternative change detection task, with endogenous spatial cueing, and quantified sensitivity and bias with a recently developed multidimensional signal detection model (m-ADC model). At baseline, sensitivity and bias exhibited complementary patterns of asymmetries across the visual hemifields: While sensitivity was consistently higher for detecting changes in the left hemifield, bias was higher for reporting changes in the right hemifield. Remarkably, white matter connectivity of the SC with the neocortex mirrored this pattern of asymmetries. Specifically, the asymmetry in SC–cortex connectivity correlated with the asymmetry in choice bias, but not in sensitivity. In addition, SC–cortex connectivity strength could predict cueing-induced modulation of bias, but not of sensitivity, across individuals. In summary, the SC may be a key node in an evolutionarily conserved network for controlling choice bias during visuospatial attention.
Collapse
|
59
|
Rapid Ocular Responses Are Modulated by Bottom-up-Driven Auditory Salience. J Neurosci 2019; 39:7703-7714. [PMID: 31391262 PMCID: PMC6764203 DOI: 10.1523/jneurosci.0776-19.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 02/03/2023] Open
Abstract
Despite the prevalent use of alerting sounds in alarms and human-machine interface systems and the long-hypothesized role of the auditory system as the brain's "early warning system," we have only a rudimentary understanding of what determines auditory salience-the automatic attraction of attention by sound-and which brain mechanisms underlie this process. A major roadblock has been the lack of a robust, objective means of quantifying sound-driven attentional capture. Here we demonstrate that: (1) a reliable salience scale can be obtained from crowd-sourcing (N = 911), (2) acoustic roughness appears to be a driving feature behind this scaling, consistent with previous reports implicating roughness in the perceptual distinctiveness of sounds, and (3) crowd-sourced auditory salience correlates with objective autonomic measures. Specifically, we show that a salience ranking obtained from online raters correlated robustly with the superior colliculus-mediated ocular freezing response, microsaccadic inhibition (MSI), measured in naive, passively listening human participants (of either sex). More salient sounds evoked earlier and larger MSI, consistent with a faster orienting response. These results are consistent with the hypothesis that MSI reflects a general reorienting response that is evoked by potentially behaviorally important events regardless of their modality.SIGNIFICANCE STATEMENT Microsaccades are small, rapid, fixational eye movements that are measurable with sensitive eye-tracking equipment. We reveal a novel, robust link between microsaccade dynamics and the subjective salience of brief sounds (salience rankings obtained from a large number of participants in an online experiment): Within 300 ms of sound onset, the eyes of naive, passively listening participants demonstrate different microsaccade patterns as a function of the sound's crowd-sourced salience. These results position the superior colliculus (hypothesized to underlie microsaccade generation) as an important brain area to investigate in the context of a putative multimodal salience hub. They also demonstrate an objective means for quantifying auditory salience.
Collapse
|
60
|
Volotsky S, Vinepinsky E, Donchin O, Segev R. Long-range neural inhibition and stimulus competition in the archerfish optic tectum. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:537-552. [PMID: 31123813 DOI: 10.1007/s00359-019-01345-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 04/28/2019] [Accepted: 05/10/2019] [Indexed: 11/26/2022]
Abstract
The archerfish, which is unique in its ability to hunt insects above the water level by shooting a jet of water at its prey, operates in a complex visual environment. The fish needs to quickly select one object from among many others. In animals other than the archerfish, long-range inhibition is considered to drive selection. As a result of long-range inhibition, a potential target outside a neuron's receptive field suppresses the activity elicited by another potential target within the receptive field. We tested whether a similar mechanism operates in the archerfish by recording the activity of neurons in the optic tectum while presenting a target stimulus inside the receptive field and a competing stimulus outside the receptive field. We held the features of the target constant while varying the size, speed, and distance of the competing stimulus. We found cells that exhibit long-range inhibition; i.e., inhibition that extends to a significant part of the entire visual field of the animal. The competing stimulus depressed the firing rate. In some neurons, this effect was dependent on the features of the competing stimulus. These findings suggest that long-range inhibition may play a crucial role in the target selection process in the archerfish.
Collapse
Affiliation(s)
- Svetlana Volotsky
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Ehud Vinepinsky
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Opher Donchin
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Ronen Segev
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.
| |
Collapse
|
61
|
Fan Y, Yue X, Yang J, Shen J, Shen D, Tang Y, Fang G. Preference of spectral features in auditory processing for advertisement calls in the music frogs. Front Zool 2019; 16:13. [PMID: 31168310 PMCID: PMC6509768 DOI: 10.1186/s12983-019-0314-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Animal vocal signals encode very important information for communication during which the importance of temporal and spectral characteristics of vocalizations is always asymmetrical and species-specific. However, it is still unknown how auditory system represents this asymmetrical and species-specific patterns. In this study, auditory event related potential (ERP) changes were evaluated in the Emei music frog (Babina daunchina) to assess the differences in eliciting neural responses of both temporal and spectral features for the telencephalon, diencephalon and mesencephalon respectively. To do this, an acoustic playback experiment using an oddball paradigm design was conducted, in which an original advertisement call (OC), its spectral feature preserved version (SC) and temporal feature preserved version (TC) were used as deviant stimuli with synthesized white noise as standard stimulus. RESULTS The present results show that 1) compared with TC, more similar ERP components were evoked by OC and SC; and 2) the P3a amplitudes in the forebrain evoked by OC were significantly higher in males than in females. CONCLUSIONS Together, the results provide evidence for suggesting neural processing for conspecific vocalization may prefer to the spectral features in the music frog, prompting speculation that the spectral features may play more important roles in auditory object perception or vocal communication in this species. In addition, the neural processing for auditory perception is sexually dimorphic.
Collapse
Affiliation(s)
- Yanzhu Fan
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, People’s Republic of China
| | - Xizi Yue
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
| | - Jing Yang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, People’s Republic of China
| | - Jiangyan Shen
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, People’s Republic of China
| | - Di Shen
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, People’s Republic of China
| | - Yezhong Tang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
| | - Guangzhan Fang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin Nan Road, Chengdu, Sichuan 610041 People’s Republic of China
| |
Collapse
|
62
|
Ringler E, Coates M, Cobo-Cuan A, Harris NG, Narins PM. MEMRI for visualizing brain activity after auditory stimulation in frogs. Behav Neurosci 2019; 133:329-340. [PMID: 31045394 DOI: 10.1037/bne0000318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anuran amphibians are common model organisms in bioacoustics and neurobiology. To date, however, most available methods for studying auditory processing in frogs are highly invasive and thus do not allow for longitudinal study designs, nor do they provide a global view of the brain, which substantially limits the questions that can be addressed. The goal of this study was to identify areas in the frog brain that are responsible for auditory processing using in vivo manganese-enhanced MRI (MEMRI). We were interested in determining if the neural processing of socially relevant acoustic stimuli (e.g., species-specific calls) engages a specific pattern of brain activation that differs from patterns elicited by less- or nonrelevant acoustic signals. We thus designed an experiment, in which we presented three different types of acoustic stimuli (species-specific calls, band-limited noise, or silence) to fully awake northern leopard frogs (Rana pipiens) and then conducted MEMRI T1-weighted imaging to investigate differences in signal intensity due to manganese uptake as an indication of brain activity across all three conditions. We found the greatest change in signal intensity within the torus semicircularis (the principal central auditory region), the habenula, and the paraphysis of frogs that had been exposed to conspecific calls compared with noise or silence conditions. Stimulation with noise did not result in the same activation patterns, indicating that signals with contrasting social relevance are differentially processed in these areas of the amphibian brain. MEMRI provides a powerful approach to studying brain activity with high spatial resolution in frogs. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Eva Ringler
- Department of Integrative Biology and Physiology
| | | | | | | | | |
Collapse
|
63
|
Posner MI, Niell CM. Illuminating the Neural Circuits Underlying Orienting of Attention. Vision (Basel) 2019; 3:vision3010004. [PMID: 31735805 PMCID: PMC6802764 DOI: 10.3390/vision3010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 11/17/2022] Open
Abstract
Human neuroimaging has revealed brain networks involving frontal and parietal cortical areas as well as subcortical areas, including the superior colliculus and pulvinar, which are involved in orienting to sensory stimuli. Because accumulating evidence points to similarities between both overt and covert orienting in humans and other animals, we propose that it is now feasible, using animal models, to move beyond these large-scale networks to address the local networks and cell types that mediate orienting of attention. In this opinion piece, we discuss optogenetic and related methods for testing the pathways involved, and obstacles to carrying out such tests in rodent and monkey populations.
Collapse
Affiliation(s)
- Michael I. Posner
- Institute of Neuroscience, University of Oregon, Eugene, OR 97401, USA
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA
- Correspondence:
| | - Cristopher M. Niell
- Institute of Neuroscience, University of Oregon, Eugene, OR 97401, USA
- Department of Biology, University of Oregon, Eugene, OR 97401, USA
| |
Collapse
|
64
|
The neural instantiation of a priority map. Curr Opin Psychol 2019; 29:108-112. [PMID: 30731260 DOI: 10.1016/j.copsyc.2019.01.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/27/2018] [Accepted: 01/04/2019] [Indexed: 11/20/2022]
Abstract
The term priority map is commonly used to describe a map of the visual scene, in which objects and locations are represented by their attentional priority, which itself is a combination of low-level salience and top-down control. The aim of this review is to examine how such a map may be represented at the neuronal level. We propose that there is not a single, common map in the brain, but that a number of cortical areas work together to generate the resultant behavior. Specifically, we suggest that the lateral intraparietal area (LIP) of posterior parietal cortex provides a simple representation of attentional priority, which remaps across saccades, so that there is an apparent allocentric map in a region with retinocentric encoding scheme. We propose that the frontal eye field (FEF) of prefrontal cortex receives the responses from LIP, but can suppress them to control the flow of eye movement behavior, and that the intermediate layers of the superior colliculus (SCi) reflect the final saccade goal. Together, these areas function to guide eye movements and may play a similar role in allocating covert visual attention.
Collapse
|
65
|
Knudsen EI. Neural Circuits That Mediate Selective Attention: A Comparative Perspective. Trends Neurosci 2018; 41:789-805. [PMID: 30075867 DOI: 10.1016/j.tins.2018.06.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/31/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
Selective attention is central to cognition. Dramatic advances have been made in understanding the neural circuits that mediate selective attention. Forebrain networks, most elaborated in primates, control all forms of attention based on task demands and the physical salience of stimuli. These networks contain circuits that distribute top-down signals to sensory processing areas and enhance information processing in those areas. A midbrain network, most elaborated in birds, controls spatial attention. It contains circuits that continuously compute the highest priority stimulus location and route sensory information from the selected location to forebrain networks that make cognitive decisions. The identification of these circuits, their functions and mechanisms represent a major advance in our understanding of how the vertebrate brain mediates selective attention.
Collapse
Affiliation(s)
- Eric I Knudsen
- Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA 94305-5125, USA.
| |
Collapse
|
66
|
Guarino D. Krauzlis' Strange Inversion of Reasoning. Front Syst Neurosci 2018; 12:34. [PMID: 30079014 PMCID: PMC6062649 DOI: 10.3389/fnsys.2018.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/29/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Domenico Guarino
- Centre National de la Recherche Scientifique, Unité de Neurosciences Information et Complexité, Paris, France
| |
Collapse
|
67
|
"Shepherd's crook" neurons drive and synchronize the enhancing and suppressive mechanisms of the midbrain stimulus selection network. Proc Natl Acad Sci U S A 2018; 115:E7615-E7623. [PMID: 30026198 DOI: 10.1073/pnas.1804517115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The optic tectum (TeO), or superior colliculus, is a multisensory midbrain center that organizes spatially orienting responses to relevant stimuli. To define the stimulus with the highest priority at each moment, a network of reciprocal connections between the TeO and the isthmi promotes competition between concurrent tectal inputs. In the avian midbrain, the neurons mediating enhancement and suppression of tectal inputs are located in separate isthmic nuclei, facilitating the analysis of the neural processes that mediate competition. A specific subset of radial neurons in the intermediate tectal layers relay retinal inputs to the isthmi, but at present it is unclear whether separate neurons innervate individual nuclei or a single neural type sends a common input to several of them. In this study, we used in vitro neural tracing and cell-filling experiments in chickens to show that single neurons innervate, via axon collaterals, the three nuclei that comprise the isthmotectal network. This demonstrates that the input signals representing the strength of the incoming stimuli are simultaneously relayed to the mechanisms promoting both enhancement and suppression of the input signals. By performing in vivo recordings in anesthetized chicks, we also show that this common input generates synchrony between both antagonistic mechanisms, demonstrating that activity enhancement and suppression are closely coordinated. From a computational point of view, these results suggest that these tectal neurons constitute integrative nodes that combine inputs from different sources to drive in parallel several concurrent neural processes, each performing complementary functions within the network through different firing patterns and connectivity.
Collapse
|
68
|
Ben-Tov M, Ben-Shahar O, Segev R. What a predator can teach us about visual processing: a lesson from the archerfish. Curr Opin Neurobiol 2018; 52:80-87. [PMID: 29727858 DOI: 10.1016/j.conb.2018.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/27/2018] [Accepted: 04/07/2018] [Indexed: 10/17/2022]
Abstract
The archerfish is a predator with highly unusual visually guided behavior. It is most famous for its ability to hunt by shooting water jets at static or dynamic insect prey, up to two meters above the water's surface. In the lab, the archerfish can learn to distinguish and shoot at artificial targets presented on a computer screen, thus enabling well-controlled experiments. In recent years, these capacities have turned the archerfish into a model animal for studying a variety of visual functions, from visual saliency and visual search, through fast visually guided prediction, and all the way to higher level visual processing such as face recognition. Here we review these recent developments and show how they fall into two emerging lines of research on this animal model. The first is ethologically motivated and emphasizes how the natural environment and habitat of the archerfish interact with its visual processing during predation. The second is driven by parallels to the primate brain and aims to determine whether the latter's characteristic visual information processing capacities can also be found in the qualitatively different fish brain, thereby underscoring the functional universality of certain visual processes. We discuss the differences between these two lines of research and possible future directions.
Collapse
Affiliation(s)
- Mor Ben-Tov
- Department of Neurobiology, Duke University, Durham, NC 27710, United States
| | - Ohad Ben-Shahar
- Computer Sciences Department, Ben Gurion University of the Negev, Israel; Life Sciences Department, Ben Gurion University of the Negev, Israel
| | - Ronen Segev
- Life Sciences Department, Ben Gurion University of the Negev, Israel; Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Israel; Biomedical Engineering Department, Ben Gurion University of the Negev, Israel.
| |
Collapse
|
69
|
Chelazzi L, Bisley JW, Bartolomeo P. The unconscious guidance of attention. Cortex 2018; 102:1-5. [PMID: 29549966 DOI: 10.1016/j.cortex.2018.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Leonardo Chelazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy; National Institute of Neuroscience, Italy.
| | - James W Bisley
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Paolo Bartolomeo
- Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
70
|
Gigliotta O, Seidel Malkinson T, Miglino O, Bartolomeo P. Pseudoneglect in Visual Search: Behavioral Evidence and Connectional Constraints in Simulated Neural Circuitry. eNeuro 2017; 4:ENEURO.0154-17.2017. [PMID: 29291241 PMCID: PMC5745611 DOI: 10.1523/eneuro.0154-17.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 11/29/2022] Open
Abstract
Most people tend to bisect horizontal lines slightly to the left of their true center (pseudoneglect) and start visual search from left-sided items. This physiological leftward spatial bias may depend on hemispheric asymmetries in the organization of attentional networks, but the precise mechanisms are unknown. Here, we modeled relevant aspects of the ventral and dorsal attentional networks (VAN and DAN) of the human brain. First, we demonstrated pseudoneglect in visual search in 101 right-handed psychology students. Participants consistently tended to start the task from a left-sided item, thus showing pseudoneglect. Second, we trained populations of simulated neurorobots to perform a similar task, by using a genetic algorithm. The neurorobots' behavior was controlled by artificial neural networks, which simulated the human VAN and DAN in the two brain hemispheres. Neurorobots differed in the connectional constraints that were applied to the anatomy and function of the attention networks. Results indicated that (1) neurorobots provided with a biologically plausible hemispheric asymmetry of the VAN-DAN connections, as well as with interhemispheric inhibition, displayed the best match with human data; however; (2) anatomical asymmetry per se was not sufficient to generate pseudoneglect; in addition, the VAN must have an excitatory influence on the ipsilateral DAN; and (3) neurorobots provided with bilateral competence in the VAN but without interhemispheric inhibition failed to display pseudoneglect. These findings provide a proof of concept of the causal link between connectional asymmetries and pseudoneglect and specify important biological constraints that result in physiological asymmetries of human behavior.
Collapse
Affiliation(s)
- Onofrio Gigliotta
- Department of Humanistic Studies, University of Naples Federico II, 80133 Naples, Italy
| | - Tal Seidel Malkinson
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Sorbonne Universités, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, 75013 Paris, France
| | - Orazio Miglino
- Department of Humanistic Studies, University of Naples Federico II, 80133 Naples, Italy
- Institute of Cognitive Sciences and Technologies, National Research Council, 00185 Rome, Italy
| | - Paolo Bartolomeo
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Sorbonne Universités, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, 75013 Paris, France
| |
Collapse
|