51
|
Lee C, Occhipinti P, Gladfelter AS. PolyQ-dependent RNA-protein assemblies control symmetry breaking. ACTA ACUST UNITED AC 2015; 208:533-44. [PMID: 25713414 PMCID: PMC4347642 DOI: 10.1083/jcb.201407105] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transcripts encoding polarity factors such as Bni1 and Spa2 are nonrandomly clustered in the cytosol to initiate and maintain sites of polarized growth in the fungus Ashbya gossypii. Dendritic growth in fungi and neurons requires that multiple axes of polarity are established and maintained within the same cytoplasm. We have discovered that transcripts encoding key polarity factors including a formin, Bni1, and a polarisome scaffold, Spa2, are nonrandomly clustered in the cytosol to initiate and maintain sites of polarized growth in the fungus Ashbya gossypii. This asymmetric distribution requires the mRNAs to interact with a polyQ-containing protein, Whi3, and a Pumilio protein with a low-complexity sequence, Puf2. Cells lacking Whi3 or Puf2 had severe defects in establishing new sites of polarity and failed to localize Bni1 protein. Interaction of mRNAs with Whi3 and Puf2 promotes enrichment of transcripts at established sites of polarized growth and clustering of polarity transcripts throughout the cell body. Thus, aggregation-prone proteins make functional assemblies to position polarity transcripts, and nonrandom positioning of transcripts is required for symmetry-breaking events. This reveals a physiological function for polyQ-driven assemblies in regulating cell polarity.
Collapse
Affiliation(s)
- ChangHwan Lee
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | | | - Amy S Gladfelter
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
52
|
Abstract
Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed.
Collapse
Affiliation(s)
- Bruce L Goode
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Julian A Eskin
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Beverly Wendland
- The Johns Hopkins University, Department of Biology, Baltimore, Maryland 21218
| |
Collapse
|
53
|
Holmes WR, Mata MA, Edelstein-Keshet L. Local perturbation analysis: a computational tool for biophysical reaction-diffusion models. Biophys J 2015; 108:230-6. [PMID: 25606671 PMCID: PMC4302203 DOI: 10.1016/j.bpj.2014.11.3457] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/21/2014] [Accepted: 11/06/2014] [Indexed: 12/27/2022] Open
Abstract
Diffusion and interaction of molecular regulators in cells is often modeled using reaction-diffusion partial differential equations. Analysis of such models and exploration of their parameter space is challenging, particularly for systems of high dimensionality. Here, we present a relatively simple and straightforward analysis, the local perturbation analysis, that reveals how parameter variations affect model behavior. This computational tool, which greatly aids exploration of the behavior of a model, exploits a structural feature common to many cellular regulatory systems: regulators are typically either bound to a membrane or freely diffusing in the interior of the cell. Using well-documented, readily available bifurcation software, the local perturbation analysis tracks the approximate early evolution of an arbitrarily large perturbation of a homogeneous steady state. In doing so, it provides a bifurcation diagram that concisely describes various regimes of the model's behavior, reducing the need for exhaustive simulations to explore parameter space. We explain the method and provide detailed step-by-step guides to its use and application.
Collapse
Affiliation(s)
- William R Holmes
- Department of Mathematics, University of Melbourne, Parkville, Australia; Center for Mathematical and Computational Biology, Center for Complex Biological Systems, Department of Mathematics, University of California Irvine, Irvine, California.
| | - May Anne Mata
- I. K. Barber School of Arts and Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; Department of Math, Physics, and Computer Science, University of the Philippines Mindanao, Davao City, Philippines
| | - Leah Edelstein-Keshet
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
54
|
Kang PJ, Lee ME, Park HO. Bud3 activates Cdc42 to establish a proper growth site in budding yeast. ACTA ACUST UNITED AC 2014; 206:19-28. [PMID: 25002677 PMCID: PMC4085707 DOI: 10.1083/jcb.201402040] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell polarization occurs along a single axis that is generally determined by a spatial cue, yet the underlying mechanism is poorly understood. Using biochemical assays and live-cell imaging, we show that cell polarization to a proper growth site requires activation of Cdc42 by Bud3 in haploid budding yeast. Bud3 catalyzes the release of guanosine diphosphate (GDP) from Cdc42 and elevates intracellular Cdc42-guanosine triphosphate (GTP) levels in cells with inactive Cdc24, which has as of yet been the sole GDP-GTP exchange factor for Cdc42. Cdc42 is activated in two temporal steps in the G1 phase: the first depends on Bud3, whereas subsequent activation depends on Cdc24. Mutational analyses suggest that biphasic activation of Cdc42 in G1 is necessary for assembly of a proper bud site. Biphasic activation of Cdc42 or Rac GTPases may be a general mechanism for spatial cue-directed cell polarization in eukaryotes.
Collapse
Affiliation(s)
- Pil Jung Kang
- Department of Molecular Genetics and Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210
| | - Mid Eum Lee
- Department of Molecular Genetics and Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210
| | - Hay-Oak Park
- Department of Molecular Genetics and Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210Department of Molecular Genetics and Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
55
|
Ventura AC, Bush A, Vasen G, Goldín MA, Burkinshaw B, Bhattacharjee N, Folch A, Brent R, Chernomoretz A, Colman-Lerner A. Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range. Proc Natl Acad Sci U S A 2014; 111:E3860-9. [PMID: 25172920 PMCID: PMC4169960 DOI: 10.1073/pnas.1322761111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cell signaling systems sense and respond to ligands that bind cell surface receptors. These systems often respond to changes in the concentration of extracellular ligand more rapidly than the ligand equilibrates with its receptor. We demonstrate, by modeling and experiment, a general "systems level" mechanism cells use to take advantage of the information present in the early signal, before receptor binding reaches a new steady state. This mechanism, pre-equilibrium sensing and signaling (PRESS), operates in signaling systems in which the kinetics of ligand-receptor binding are slower than the downstream signaling steps, and it typically involves transient activation of a downstream step. In the systems where it operates, PRESS expands and shifts the input dynamic range, allowing cells to make different responses to ligand concentrations so high as to be otherwise indistinguishable. Specifically, we show that PRESS applies to the yeast directional polarization in response to pheromone gradients. Consideration of preexisting kinetic data for ligand-receptor interactions suggests that PRESS operates in many cell signaling systems throughout biology. The same mechanism may also operate at other levels in signaling systems in which a slow activation step couples to a faster downstream step.
Collapse
Affiliation(s)
- Alejandra C Ventura
- Institute of Physiology, Molecular Biology, and Neuroscience (IFIBYNE), University of Buenos Aires (UBA)-National Scientific and Technical Research Council (CONICET), Department of Physiology, Molecular, and Cell Biology, School of Exact and Natural Sciences (FCEN)
| | - Alan Bush
- Institute of Physiology, Molecular Biology, and Neuroscience (IFIBYNE), University of Buenos Aires (UBA)-National Scientific and Technical Research Council (CONICET), Department of Physiology, Molecular, and Cell Biology, School of Exact and Natural Sciences (FCEN)
| | - Gustavo Vasen
- Institute of Physiology, Molecular Biology, and Neuroscience (IFIBYNE), University of Buenos Aires (UBA)-National Scientific and Technical Research Council (CONICET), Department of Physiology, Molecular, and Cell Biology, School of Exact and Natural Sciences (FCEN)
| | - Matías A Goldín
- Institute of Physiology, Molecular Biology, and Neuroscience (IFIBYNE), University of Buenos Aires (UBA)-National Scientific and Technical Research Council (CONICET), Department of Physiology, Molecular, and Cell Biology, School of Exact and Natural Sciences (FCEN)
| | - Brianne Burkinshaw
- Institute of Physiology, Molecular Biology, and Neuroscience (IFIBYNE), University of Buenos Aires (UBA)-National Scientific and Technical Research Council (CONICET), Department of Physiology, Molecular, and Cell Biology, School of Exact and Natural Sciences (FCEN)
| | | | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, WA 98195; and
| | - Roger Brent
- Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | - Ariel Chernomoretz
- Physics Institute of Buenos Aires (IFIBA), CONICET, and Department of Physics, FCEN, UBA, C1428EGA Buenos Aires, Argentina; Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | - Alejandro Colman-Lerner
- Institute of Physiology, Molecular Biology, and Neuroscience (IFIBYNE), University of Buenos Aires (UBA)-National Scientific and Technical Research Council (CONICET), Department of Physiology, Molecular, and Cell Biology, School of Exact and Natural Sciences (FCEN),
| |
Collapse
|