51
|
Grob R, Fleischmann PN, Grübel K, Wehner R, Rössler W. The Role of Celestial Compass Information in Cataglyphis Ants during Learning Walks and for Neuroplasticity in the Central Complex and Mushroom Bodies. Front Behav Neurosci 2017; 11:226. [PMID: 29184487 PMCID: PMC5694495 DOI: 10.3389/fnbeh.2017.00226] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/30/2017] [Indexed: 11/27/2022] Open
Abstract
Central place foragers are faced with the challenge to learn the position of their nest entrance in its surroundings, in order to find their way back home every time they go out to search for food. To acquire navigational information at the beginning of their foraging career, Cataglyphis noda performs learning walks during the transition from interior worker to forager. These small loops around the nest entrance are repeatedly interrupted by strikingly accurate back turns during which the ants stop and precisely gaze back to the nest entrance—presumably to learn the landmark panorama of the nest surroundings. However, as at this point the complete navigational toolkit is not yet available, the ants are in need of a reference system for the compass component of the path integrator to align their nest entrance-directed gazes. In order to find this directional reference system, we systematically manipulated the skylight information received by ants during learning walks in their natural habitat, as it has been previously suggested that the celestial compass, as part of the path integrator, might provide such a reference system. High-speed video analyses of distinct learning walk elements revealed that even exclusion from the skylight polarization pattern, UV-light spectrum and the position of the sun did not alter the accuracy of the look back to the nest behavior. We therefore conclude that C. noda uses a different reference system to initially align their gaze directions. However, a comparison of neuroanatomical changes in the central complex and the mushroom bodies before and after learning walks revealed that exposure to UV light together with a naturally changing polarization pattern was essential to induce neuroplasticity in these high-order sensory integration centers of the ant brain. This suggests a crucial role of celestial information, in particular a changing polarization pattern, in initially calibrating the celestial compass system.
Collapse
Affiliation(s)
- Robin Grob
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany
| | - Pauline N Fleischmann
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany
| | - Kornelia Grübel
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany
| | - Rüdiger Wehner
- Brain Research Institute, University of Zürich, Zürich, Switzerland
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany
| |
Collapse
|
52
|
Stone T, Webb B, Adden A, Weddig NB, Honkanen A, Templin R, Wcislo W, Scimeca L, Warrant E, Heinze S. An Anatomically Constrained Model for Path Integration in the Bee Brain. Curr Biol 2017; 27:3069-3085.e11. [PMID: 28988858 DOI: 10.1016/j.cub.2017.08.052] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/24/2017] [Accepted: 08/21/2017] [Indexed: 01/30/2023]
Abstract
Path integration is a widespread navigational strategy in which directional changes and distance covered are continuously integrated on an outward journey, enabling a straight-line return to home. Bees use vision for this task-a celestial-cue-based visual compass and an optic-flow-based visual odometer-but the underlying neural integration mechanisms are unknown. Using intracellular electrophysiology, we show that polarized-light-based compass neurons and optic-flow-based speed-encoding neurons converge in the central complex of the bee brain, and through block-face electron microscopy, we identify potential integrator cells. Based on plausible output targets for these cells, we propose a complete circuit for path integration and steering in the central complex, with anatomically identified neurons suggested for each processing step. The resulting model circuit is thus fully constrained biologically and provides a functional interpretation for many previously unexplained architectural features of the central complex. Moreover, we show that the receptive fields of the newly discovered speed neurons can support path integration for the holonomic motion (i.e., a ground velocity that is not precisely aligned with body orientation) typical of bee flight, a feature not captured in any previously proposed model of path integration. In a broader context, the model circuit presented provides a general mechanism for producing steering signals by comparing current and desired headings-suggesting a more basic function for central complex connectivity, from which path integration may have evolved.
Collapse
Affiliation(s)
- Thomas Stone
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Barbara Webb
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Andrea Adden
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | | | - Anna Honkanen
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Rachel Templin
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - William Wcislo
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Luca Scimeca
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Eric Warrant
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden.
| |
Collapse
|
53
|
Fleischmann PN, Grob R, Wehner R, Rössler W. Species-specific differences in the fine structure of learning walk elements in Cataglyphis ants. J Exp Biol 2017; 220:2426-2435. [DOI: 10.1242/jeb.158147] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/19/2017] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Cataglyphis desert ants are famous navigators. Like all central place foragers, they are confronted with the challenge to return home, i.e. relocate an inconspicuous nest entrance in the ground, after their extensive foraging trips. When leaving the underground nest for the first time, desert ants perform a striking behavior, so-called learning walks that are well structured. However, it is still unclear how the ants initially acquire the information needed for sky- and landmark-based navigation, in particular how they calibrate their compass system at the beginning of their foraging careers. Using high-speed video analyses, we show that different Cataglyphis species include different types of characteristic turns in their learning walks. Pirouettes are full or partial rotations (tight turns about the vertical body axis) during which the ants frequently stop and gaze back in the direction of the nest entrance during the longest stopping phases. In contrast, voltes are small walked circles without directed stopping phases. Interestingly, only Cataglyphis ant species living in a cluttered, and therefore visually rich, environment (i.e. C. noda and C. aenescens in southern Greece) perform both voltes and pirouettes. They look back to the nest entrance during pirouettes, most probably to take snapshots of the surroundings. In contrast, C. fortis inhabiting featureless saltpans in Tunisia perform only voltes and do not stop during these turns to gaze back at the nest – even if a set of artificial landmarks surrounds the nest entrance.
Collapse
Affiliation(s)
- Pauline N. Fleischmann
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Robin Grob
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Rüdiger Wehner
- Brain Research Institute, University of Zürich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
54
|
Immonen EV, Dacke M, Heinze S, El Jundi B. Anatomical organization of the brain of a diurnal and a nocturnal dung beetle. J Comp Neurol 2017; 525:1879-1908. [PMID: 28074466 DOI: 10.1002/cne.24169] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 12/25/2022]
Abstract
To avoid the fierce competition for food, South African ball-rolling dung beetles carve a piece of dung off a dung-pile, shape it into a ball and roll it away along a straight line path. For this unidirectional exit from the busy dung pile, at night and day, the beetles use a wide repertoire of celestial compass cues. This robust and relatively easily measurable orientation behavior has made ball-rolling dung beetles an attractive model organism for the study of the neuroethology behind insect orientation and sensory ecology. Although there is already some knowledge emerging concerning how celestial cues are processed in the dung beetle brain, little is known about its general neural layout. Mapping the neuropils of the dung beetle brain is thus a prerequisite to understand the neuronal network that underlies celestial compass orientation. Here, we describe and compare the brains of a day-active and a night-active dung beetle species based on immunostainings against synapsin and serotonin. We also provide 3D reconstructions for all brain areas and many of the fiber bundles in the brain of the day-active dung beetle. Comparison of neuropil structures between the two dung beetle species revealed differences that reflect adaptations to different light conditions. Altogether, our results provide a reference framework for future studies on the neuroethology of insects in general and dung beetles in particular.
Collapse
Affiliation(s)
- Esa-Ville Immonen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland.,Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Marie Dacke
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Stanley Heinze
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Basil El Jundi
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| |
Collapse
|
55
|
How Ants Use Vision When Homing Backward. Curr Biol 2017; 27:401-407. [DOI: 10.1016/j.cub.2016.12.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/10/2016] [Accepted: 12/09/2016] [Indexed: 01/11/2023]
|
56
|
Collett T, Wystrach A, Graham P. Insect Orientation: The Travails of Going Straight. Curr Biol 2016; 26:R461-3. [DOI: 10.1016/j.cub.2016.04.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|