51
|
Kaushik PK, Olsson SB. Using virtual worlds to understand insect navigation for bio-inspired systems. CURRENT OPINION IN INSECT SCIENCE 2020; 42:97-104. [PMID: 33010476 DOI: 10.1016/j.cois.2020.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Insects perform a wide array of intricate behaviors over large spatial and temporal scales in complex natural environments. A mechanistic understanding of insect cognition has direct implications on how brains integrate multimodal information and can inspire bio-based solutions for autonomous robots. Virtual Reality (VR) offers an opportunity assess insect neuroethology while presenting complex, yet controlled, stimuli. Here, we discuss the use of insects as inspiration for artificial systems, recent advances in different VR technologies, current knowledge gaps, and the potential for application of insect VR research to bio-inspired robots. Finally, we advocate the need to diversify our model organisms, behavioral paradigms, and embrace the complexity of the natural world. This will help us to uncover the proximate and ultimate basis of brain and behavior and extract general principles for common challenging problems.
Collapse
Affiliation(s)
- Pavan Kumar Kaushik
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, 560064, India.
| | - Shannon B Olsson
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, 560064, India.
| |
Collapse
|
52
|
An updated antennal lobe atlas for the yellow fever mosquito Aedes aegypti. PLoS Negl Trop Dis 2020; 14:e0008729. [PMID: 33079925 PMCID: PMC7575095 DOI: 10.1371/journal.pntd.0008729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
The yellow fever mosquito Aedes aegypti is a prolific vector of arboviral and filarial diseases that largely relies on its sense of smell to find humans. To facilitate in-depth analysis of the neural circuitry underlying Ae. aegypti olfactory-driven behaviors, we generated an updated in vitro atlas for the antennal lobe olfactory brain region of this disease vector using two independent neuronal staining methods. We performed morphological reconstructions with replicate fixed, dissected and stained brain samples from adult male and female Ae. aegypti of the LVPib12 genome reference strain and determined that the antennal lobe in both sexes is comprised of approximately 80 discrete glomeruli. Guided by landmark features in the antennal lobe, we found 63 of these glomeruli are stereotypically located in spatially invariant positions within these in vitro preparations. A posteriorly positioned, mediodorsal glomerulus denoted MD1 was identified as the largest spatially invariant glomerulus in the antennal lobe. Spatial organization of glomeruli in a recently field-derived strain of Ae. aegypti from Puerto Rico was conserved, despite differences in antennal lobe shape relative to the inbred LVPib12 strain. This model in vitro atlas will serve as a useful community resource to improve antennal lobe annotation and anatomically map projection patterns of neurons expressing target genes in this olfactory center. It will also facilitate the development of chemotopic maps of odor representation in the mosquito antennal lobe to decode the molecular and cellular basis of Ae. aegypti attraction to human scent and other chemosensory cues. The olfactory system of the yellow fever mosquito Aedes aegypti is highly tuned for the detection of human odorants, as well as other chemical cues influencing host and food-search behavior, egg-laying and mating. To provide insights into the neuroanatomical organization of the olfactory system of this globally important disease vector, we have generated an updated in vitro atlas for the primary smell processing center of the Ae. aegypti brain, called the antennal lobe. These new guide maps facilitate systematic interrogation of antennal lobe morphology and naming of associated substructures in dissected brain samples of this species labeled with two common neural staining methods. We report that landmark features of the Ae. aegypti antennal lobe morphology and spatial organization appear conserved between mosquito sexes and across geographically divergent strains of this mosquito species. An improved understanding of Ae. aegypti antennal lobe neuroanatomy and how attractive or repellent odorant stimuli are encoded in this brain center has the potential to rapidly accelerate reverse engineering of synthetic chemical blends that effectively lure, confuse or repel this major disease vector.
Collapse
|
53
|
Cribellier A, Spitzen J, Fairbairn H, van de Geer C, van Leeuwen JL, Muijres FT. Lure, retain, and catch malaria mosquitoes. How heat and humidity improve odour-baited trap performance. Malar J 2020; 19:357. [PMID: 33028362 PMCID: PMC7542916 DOI: 10.1186/s12936-020-03403-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/31/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND When seeking a human for a blood meal, mosquitoes use several cues to detect and find their hosts. From this knowledge, counter-flow odour-baited traps have been developed that use a combination of CO2, human-mimicking odour, visual cues and circulating airflow to attract and capture mosquitoes. Initially developed for monitoring, these traps are now also being considered as promising vector control tools. The traps are attractive to host-seeking mosquitoes, but their capture efficiency is low. It has been hypothesized that the lack of short-range host cues, such as heat and increased local humidity, often prevent mosquitoes from getting close enough to get caught; this lack might even trigger avoidance manoeuvres near the capture region. METHODS This study investigated how close-range host cues affect the flight behaviour of Anopheles female malaria mosquitoes around odour-baited traps, and how this affects trap capture performance. For this, a novel counter-flow odour-baited trap was developed, the M-Tego. In addition to the usual CO2 and odour-blend, this trap can provide the short-range host cues, heat and humidity. Systematically adding or removing these two cues tested how this affected the trap capture percentages and flight behaviour. First, capture percentages of the M-Tego with and without short-range host cues to the BG-Suna trap were compared, in both laboratory and semi-field testing. Then, machine-vision techniques were used to track the three-dimensional flight movements of mosquitoes around the M-Tego. RESULTS With heat and humidity present, the M-Tego captured significantly more mosquitoes as capture percentages almost doubled. Comparing the flight behaviour around the M-Tego with variable close-range host cues showed that when these cues were present, flying mosquitoes were more attracted to the trap and spent more time there. In addition, the M-Tego was found to have a better capture mechanism than the BG-Suna, most likely because it does not elicit previously observed upward avoiding manoeuvres. CONCLUSIONS Results suggest that adding heat and humidity to an odour-baited trap lures more mosquitoes close to the trap and retains them there longer, resulting in higher capture performance. These findings support the development of control tools for fighting mosquito-borne diseases such as malaria.
Collapse
Affiliation(s)
- Antoine Cribellier
- Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
| | - Jeroen Spitzen
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Henry Fairbairn
- Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands.,Faculty of Industrial Design Engineering, Delft University of Technology, Delft, The Netherlands
| | - Cedric van de Geer
- Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands.,Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands.,Faculty of Industrial Design Engineering, Delft University of Technology, Delft, The Netherlands.,Ifakara Health Institute, Ifakara, Tanzania
| | - Johan L van Leeuwen
- Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
| | - Florian T Muijres
- Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
54
|
Wynne NE, Lorenzo MG, Vinauger C. Mechanism and plasticity of vectors' host-seeking behavior. CURRENT OPINION IN INSECT SCIENCE 2020; 40:1-5. [PMID: 32199240 DOI: 10.1016/j.cois.2020.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
The host-seeking behavior of disease vector insects is central to the transmission of pathogens. In this context, an improved understanding of the mechanisms that allow vectors to detect, identify and locate a potential host will be crucial to refine existing control strategies and invent new ones. Host-seeking is mediated by the integration of cues that are processed by multiple sensory modalities, and provide robust information about host location and quality. Responses to these cues are plastic and vary as a function of the vector's internal state, age, and previous experience. Vectors also integrate other factors such as time of day, or even the level of defensiveness of the host. Here, we review the most recent advances on the molecular basis of host-seeking behavior, with a particular emphasis on disease vector mosquitoes.
Collapse
Affiliation(s)
- Nicole E Wynne
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Marcelo G Lorenzo
- Instituto René Rachou/FIOCRUZ, Av. Augusto de Lima, 1715, Barro Preto, CEP: 30 190 009, Belo Horizonte, Minas Gerais, Brazil
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
55
|
Multimodal interactions in insect navigation. Anim Cogn 2020; 23:1129-1141. [PMID: 32323027 PMCID: PMC7700066 DOI: 10.1007/s10071-020-01383-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/06/2023]
Abstract
Animals travelling through the world receive input from multiple sensory modalities that could be important for the guidance of their journeys. Given the availability of a rich array of cues, from idiothetic information to input from sky compasses and visual information through to olfactory and other cues (e.g. gustatory, magnetic, anemotactic or thermal) it is no surprise to see multimodality in most aspects of navigation. In this review, we present the current knowledge of multimodal cue use during orientation and navigation in insects. Multimodal cue use is adapted to a species’ sensory ecology and shapes navigation behaviour both during the learning of environmental cues and when performing complex foraging journeys. The simultaneous use of multiple cues is beneficial because it provides redundant navigational information, and in general, multimodality increases robustness, accuracy and overall foraging success. We use examples from sensorimotor behaviours in mosquitoes and flies as well as from large scale navigation in ants, bees and insects that migrate seasonally over large distances, asking at each stage how multiple cues are combined behaviourally and what insects gain from using different modalities.
Collapse
|
56
|
Chandrasegaran K, Lahondère C, Escobar LE, Vinauger C. Linking Mosquito Ecology, Traits, Behavior, and Disease Transmission. Trends Parasitol 2020; 36:393-403. [PMID: 32191853 DOI: 10.1016/j.pt.2020.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 01/11/2023]
Abstract
Mosquitoes are considered to be the deadliest animals on Earth because the diseases they transmit claim at least a million human lives every year globally. Here, we discuss the scales at which the effects of ecological factors cascade to influence epidemiologically relevant behaviors of adult mosquitoes. In particular, we focused our review on the environmental conditions (coarse-scale variables) that shape the life-history traits of larvae and adult mosquitoes (fine-scale traits), and how these factors and their association, in turn, modulate adult behaviors to influence mosquito-borne disease transmission. Finally, we explore the integration of physical, physiological, and behavioral information into predictive models with epidemiological applications.
Collapse
Affiliation(s)
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA; The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA; The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA; The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
57
|
Abstract
Nectar feeding by mosquitoes is important for survival and reproduction, and hence disease transmission. However, we know little about the sensory mechanisms that mediate mosquito attraction to sources of nectar, like those of flowers, or how this information is processed in the mosquito brain. Using a unique mutualism between Aedes mosquitoes and Platanthera obtusata orchids, we reveal that the orchid’s scent mediates this mutualism. Furthermore, lateral inhibition in the mosquito’s antennal (olfactory) lobe—via the neurotransmitter GABA—is critical for the representation of the scent. These results have implications for understanding the olfactory basis of mosquito nectar-seeking behaviors. Mosquitoes are important vectors of disease and require sources of carbohydrates for reproduction and survival. Unlike host-related behaviors of mosquitoes, comparatively less is understood about the mechanisms involved in nectar-feeding decisions, or how this sensory information is processed in the mosquito brain. Here we show that Aedes spp. mosquitoes, including Aedes aegypti, are effective pollinators of the Platanthera obtusata orchid, and demonstrate this mutualism is mediated by the orchid’s scent and the balance of excitation and inhibition in the mosquito’s antennal lobe (AL). The P. obtusata orchid emits an attractive, nonanal-rich scent, whereas related Platanthera species—not visited by mosquitoes—emit scents dominated by lilac aldehyde. Calcium imaging experiments in the mosquito AL revealed that nonanal and lilac aldehyde each respectively activate the LC2 and AM2 glomerulus, and remarkably, the AM2 glomerulus is also sensitive to N,N-diethyl-meta-toluamide (DEET), a mosquito repellent. Lateral inhibition between these 2 glomeruli reflects the level of attraction to the orchid scents. Whereas the enriched nonanal scent of P. obtusata activates the LC2 and suppresses AM2, the high level of lilac aldehyde in the other orchid scents inverts this pattern of glomerular activity, and behavioral attraction is lost. These results demonstrate the ecological importance of mosquitoes beyond operating as disease vectors and open the door toward understanding the neural basis of mosquito nectar-seeking behaviors.
Collapse
|
58
|
Mansourian S, Fandino RA, Riabinina O. Progress in the use of genetic methods to study insect behavior outside Drosophila. CURRENT OPINION IN INSECT SCIENCE 2019; 36:45-56. [PMID: 31494407 DOI: 10.1016/j.cois.2019.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/20/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
In the span of a decade we have seen a rapid progress in the application of genetic tools and genome editing approaches in 'non-model' insects. It is now possible to target sensory receptor genes and neurons, explore their functional roles and manipulate behavioral responses in these insects. In this review, we focus on the latest examples from Diptera, Lepidoptera and Hymenoptera of how applications of genetic tools advanced our understanding of diverse behavioral phenomena. We further discuss genetic methods that could be applied to study insect behavior in the future.
Collapse
Affiliation(s)
| | - Richard A Fandino
- Mass Spectrometry Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | | |
Collapse
|
59
|
Ross PA, Lau MJ, Hoffmann AA. Does membrane feeding compromise the quality of Aedes aegypti mosquitoes? PLoS One 2019; 14:e0224268. [PMID: 31693672 PMCID: PMC6834243 DOI: 10.1371/journal.pone.0224268] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022] Open
Abstract
Modified Aedes aegypti mosquitoes are being mass-reared for release in disease control programs around the world. Releases involving female mosquitoes rely on them being able to seek and feed on human hosts. To facilitate the mass-production of mosquitoes for releases, females are often provided blood through artificial membrane feeders. When reared across generations there is a risk that mosquitoes will adapt to feeding on membranes and lose their ability to feed on human hosts. To test adaptation to membrane feeding, we selected replicate populations of Ae. aegypti for feeding on either human arms or membrane feeders for at least 8 generations. Membrane-selected populations suffered fitness costs, likely due to inbreeding depression arising from bottlenecks. Membrane-selected females had higher feeding rates on membranes than human-selected ones, suggesting adaptation to membrane feeding, but they maintained their attraction to host cues and feeding ability on humans despite a lack of selection for these traits. Host-seeking ability in small laboratory cages did not differ between populations selected on the two blood sources, but membrane-selected females were compromised in a semi-field enclosure where host-seeking was tested over a longer distance. Our findings suggest that Ae. aegypti may adapt to feeding on blood provided artificially, but this will not substantially compromise field performance or affect experimental assessments of mosquito fitness. However, large population sizes (thousands of individuals) during mass rearing with membrane feeders should be maintained to avoid bottlenecks which lead to inbreeding depression.
Collapse
Affiliation(s)
- Perran A. Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|