51
|
Novel identification of STAT1 as a crucial mediator of ETV6-NTRK3-induced tumorigenesis. Oncogene 2018; 37:2270-2284. [PMID: 29391602 DOI: 10.1038/s41388-017-0102-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/09/2017] [Accepted: 11/27/2017] [Indexed: 01/06/2023]
Abstract
Chromosomal rearrangements that facilitate tumor formation and progression through activation of oncogenic tyrosine kinases are frequently observed in cancer. The ETV6-NTRK3 (EN) fusion has been implicated in various cancers, including infantile fibrosarcoma, secretory breast carcinoma, and acute myeloblastic leukemia, and has exhibited in vivo and in vitro transforming ability. In the present study, we analyzed transcriptome alterations using DNA microarray and RNA-Seq in EN-transduced NIH3T3 fibroblasts to identify the mechanisms that are involved in EN-mediated tumorigenesis. Through functional profile assessment of EN-regulated transcriptome alterations, we found that upregulated genes by EN were mainly associated with cell motion, membrane invagination, and cell proliferation, while downregulated genes were involved in cell adhesion, which correlated with the transforming potential and increased proliferation in EN-transduced cells. KEGG pathway analysis identified the JAK-STAT signaling pathway with the highest statistical significance. Moreover, Ingenuity Pathway Analysis and gene regulatory network analysis identified the STAT1 transcription factor and its target genes as top EN-regulated molecules. We further demonstrated that EN enhanced STAT1 phosphorylation but attenuated STAT1 acetylation, eventually inhibiting the interaction between the NF-κB p65 subunit and acetylated STAT1. Consequently, nuclear translocation of NF-κB p65 and subsequent NF-κB activity were increased by EN. Notably, inhibition of STAT1 phosphorylation attenuated tumorigenic ability of EN in vitro and in vivo. Taken together, here we report, for the first time, STAT1 as a significant EN-regulated transcription factor and a crucial mediator of EN-induced tumorigenesis.
Collapse
|
52
|
Ke S, Li RC, Meng FK, Fang MH. NKILA inhibits NF-κB signaling and suppresses tumor metastasis. Aging (Albany NY) 2018; 10:56-71. [PMID: 29348395 PMCID: PMC5811242 DOI: 10.18632/aging.101359] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/17/2017] [Indexed: 06/07/2023]
Abstract
The long non-coding RNA (lncRNA) NKILA (nuclear transcription factor NF-κB interacting lncRNA) functions as a suppressor in human breast cancer and tongue cancer. However, the clinical significance and biological roles of NKILA in esophageal squamous cell carcinoma (ESCC) remain unknown. In this study, we showed that NKILA was downregulated in ESCC tissues and cancer cells compared with their normal counterparts. Low NKILA expression correlated with large tumor size and advanced TNM stage, and predicted poor overall and disease-free survival of ESCC patients. Further loss- and gain-of-function assays indicated that NKILA inhibited proliferation and migration of ESCC cells in vitro, suppressed tumor growth and lung metastasis in vivo. Mechanistically, NKILA could inhibit phosphorylation of IκBα, suppress p65 nuclear translocation and downregulate the expression of NF-κB target genes in ESCC cells. These results suggest NKILA could suppress malignant development of ESCC via abrogation of the NF-κB signaling and may potentially serve as a prognostic marker for ESCC.
Collapse
Affiliation(s)
- Shun Ke
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
- Equal contribution
| | - Rui-chao Li
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
- Equal contribution
| | - Fan-kai Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Ming-hao Fang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
53
|
Dextraze K, Saha A, Kim D, Narang S, Lehrer M, Rao A, Narang S, Rao D, Ahmed S, Madhugiri V, Fuller CD, Kim MM, Krishnan S, Rao G, Rao A. Spatial habitats from multiparametric MR imaging are associated with signaling pathway activities and survival in glioblastoma. Oncotarget 2017; 8:112992-113001. [PMID: 29348883 PMCID: PMC5762568 DOI: 10.18632/oncotarget.22947] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/20/2017] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma (GBM) show significant inter- and intra-tumoral heterogeneity, impacting response to treatment and overall survival time of 12-15 months. To study glioblastoma phenotypic heterogeneity, multi-parametric magnetic resonance images (MRI) of 85 glioblastoma patients from The Cancer Genome Atlas were analyzed to characterize tumor-derived spatial habitats for their relationship with outcome (overall survival) and to identify their molecular correlates (i.e., determine associated tumor signaling pathways correlated with imaging-derived habitat measurements). Tumor sub-regions based on four sequences (fluid attenuated inversion recovery, T1-weighted, post-contrast T1-weighted, and T2-weighted) were defined by automated segmentation. From relative intensity of pixels in the 3-dimensional tumor region, "imaging habitats" were identified and analyzed for their association to clinical and genetic data using survival modeling and Dirichlet regression, respectively. Sixteen distinct tumor sub-regions ("spatial imaging habitats") were derived, and those associated with overall survival (denoted "relevant" habitats) in glioblastoma patients were identified. Dirichlet regression implicated each relevant habitat with unique pathway alterations. Relevant habitats also had some pathways and cellular processes in common, including phosphorylation of STAT-1 and natural killer cell activity, consistent with cancer hallmarks. This work revealed clinical relevance of MRI-derived spatial habitats and their relationship with oncogenic molecular mechanisms in patients with GBM. Characterizing the associations between imaging-derived phenotypic measurements with the genomic and molecular characteristics of tumors can enable insights into tumor biology, further enabling the practice of personalized cancer treatment. The analytical framework and workflow demonstrated in this study are inherently scalable to multiple MR sequences.
Collapse
Affiliation(s)
- Katherine Dextraze
- Department of Medical Physics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Abhijoy Saha
- Department of Statistics, The Ohio State University, Columbus, OH, USA
| | - Donnie Kim
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shivali Narang
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Lehrer
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anita Rao
- Texas Academy of Math and Science, Denton, TX, USA.,School of Engineering and Applied Sciences, Columbia University, New York City, NY, USA
| | - Saphal Narang
- Debakey High School for Health Professions, Houston, TX, USA
| | - Dinesh Rao
- Radiology, University of Florida, College of Medicine, Jacksonville, FL, USA
| | - Salmaan Ahmed
- Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Clifton David Fuller
- Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle M Kim
- Radiation Oncology, The University of Michigan, Ann Arbor, MI, USA
| | - Sunil Krishnan
- Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ganesh Rao
- Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arvind Rao
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
54
|
Panagiotaki KN, Sideratou Z, Vlahopoulos SA, Paravatou-Petsotas M, Zachariadis M, Khoury N, Zoumpourlis V, Tsiourvas D. A Triphenylphosphonium-Functionalized Mitochondriotropic Nanocarrier for Efficient Co-Delivery of Doxorubicin and Chloroquine and Enhanced Antineoplastic Activity. Pharmaceuticals (Basel) 2017; 10:E91. [PMID: 29160846 PMCID: PMC5748647 DOI: 10.3390/ph10040091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023] Open
Abstract
Drug delivery systems that target subcellular organelles and, in particular, mitochondria are considered to have great potential in treating disorders that are associated with mitochondrial dysfunction, including cancer or neurodegenerative diseases. To this end, a novel hyperbranched mitochondriotropic nanocarrier was developed for the efficient co-delivery of two different (both in chemical and pharmacological terms) bioactive compounds. The carrier is based on hyperbranched poly(ethyleneimine) functionalized with triphenylphosphonium groups that forms ~100 nm diameter nanoparticles in aqueous media and can encapsulate doxorubicin (DOX), a well-known anti-cancer drug, and chloroquine (CQ), a known chemosensitizer with arising potential in anticancer medication. The anticancer activity of this system against two aggressive DOX-resistant human prostate adenocarcinoma cell lines and in in vivo animal studies was assessed. The co-administration of encapsulated DOX and CQ leads to improved cell proliferation inhibition at extremely low DOX concentrations (0.25 μΜ). In vivo experiments against DU145 human prostate cancer cells grafted on immunodeficient mice resulted in tumor growth arrest during the three-week administration period and no pervasive side effects. The findings put forward the potential of such targeted low dose combination treatments as a therapeutic scheme with minimal adverse effects.
Collapse
Affiliation(s)
- Katerina N Panagiotaki
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| | - Zili Sideratou
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| | - Spiros A Vlahopoulos
- Ηoremeio Research Laboratory, First Department of Paediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Maria Paravatou-Petsotas
- Institute of Nuclear and Radiological Sciences and Technology Energy and Safety, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| | - Michael Zachariadis
- Institute of Biosciences and Applications, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| | - Nikolas Khoury
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Vassilis Zoumpourlis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Dimitris Tsiourvas
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| |
Collapse
|
55
|
Yang JK, Song J, Huo HR, Zhao YL, Zhang GY, Zhao ZM, Sun GZ, Jiao BH. DNM3, p65 and p53 from exosomes represent potential clinical diagnosis markers for glioblastoma multiforme. Ther Adv Med Oncol 2017; 9:741-754. [PMID: 29449895 PMCID: PMC5808838 DOI: 10.1177/1758834017737471] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/22/2017] [Indexed: 12/26/2022] Open
Abstract
Background: Glioblastoma multiforme (GBM) is the most aggressive and deadly primary brain cancer that arises from astrocytes and classified as grade IV. Recently, exosomes have been reported as an essential mediator in diverse cancer carcinogenesis and metastasis. However, their role in GBM is still unclear. In this study, we aimed to investigate whether blood exosomes can be potential clinical diagnostic markers for GBM. Methods: We used a xenograft orthotopic mouse model to detect the differentially expressed genes in the brain and blood exosomes of original/recurrent GBM. Results: We found that recurrent GBM had stronger growth capacity and lethality than original GBM in the mouse model. A gene microarray of original tumors and blood exosomes from GBM orthotopic xenografts results showed that DNM3, p65 and CD117 expressions increased, whereas PTEN and p53 expressions decreased in both original tumors and blood exosomes. In the recurrent GBM tumor model, DNM3 and p65 showed increased expressions, whereas ST14 and p53 showed decreased expressions in tumor and blood exosomes of the recurrent GBM mouse model. Conclusion: In summary, we found that DNM3, p65 and p53 had a similar trend in brain and blood exosomes both for original and recurrent GBM, and could serve as potential clinical diagnostic markers for GBM.
Collapse
Affiliation(s)
- Jian-Kai Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jian Song
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hao-Ran Huo
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yin-Long Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guang-Yu Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zong-Mao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guo-Zhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bao-Hua Jiao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang 050000, China
| |
Collapse
|
56
|
Yazdani S, Bansal R, Prakash J. Drug targeting to myofibroblasts: Implications for fibrosis and cancer. Adv Drug Deliv Rev 2017; 121:101-116. [PMID: 28720422 DOI: 10.1016/j.addr.2017.07.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/20/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022]
Abstract
Myofibroblasts are the key players in extracellular matrix remodeling, a core phenomenon in numerous devastating fibrotic diseases. Not only in organ fibrosis, but also the pivotal role of myofibroblasts in tumor progression, invasion and metastasis has recently been highlighted. Myofibroblast targeting has gained tremendous attention in order to inhibit the progression of incurable fibrotic diseases, or to limit the myofibroblast-induced tumor progression and metastasis. In this review, we outline the origin of myofibroblasts, their general characteristics and functions during fibrosis progression in three major organs: liver, kidneys and lungs as well as in cancer. We will then discuss the state-of-the art drug targeting technologies to myofibroblasts in context of the above-mentioned organs and tumor microenvironment. The overall objective of this review is therefore to advance our understanding in drug targeting to myofibroblasts, and concurrently identify opportunities and challenges for designing new strategies to develop novel diagnostics and therapeutics against fibrosis and cancer.
Collapse
Affiliation(s)
- Saleh Yazdani
- Targeted Therapeutics Division, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Targeted Therapeutics Division, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jai Prakash
- Targeted Therapeutics Division, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; ScarTec Therapeutics BV, Enschede, The Netherlands.
| |
Collapse
|
57
|
Chen J, Stark LA. Aspirin Prevention of Colorectal Cancer: Focus on NF-κB Signalling and the Nucleolus. Biomedicines 2017; 5:biomedicines5030043. [PMID: 28718829 PMCID: PMC5618301 DOI: 10.3390/biomedicines5030043] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
Overwhelming evidence indicates that aspirin and related non-steroidal anti-inflammatory drugs (NSAIDs) have anti-tumour activity and the potential to prevent cancer, particularly colorectal cancer. However, the mechanisms underlying this effect remain hypothetical. Dysregulation of the nuclear factor-kappaB (NF-κB) transcription factor is a common event in many cancer types which contributes to tumour initiation and progression by driving expression of pro-proliferative/anti-apoptotic genes. In this review, we will focus on the current knowledge regarding NSAID effects on the NF-κB signalling pathway in pre-cancerous and cancerous lesions, and the evidence that these effects contribute to the anti-tumour activity of the agents. The nuclear organelle, the nucleolus, is emerging as a central regulator of transcription factor activity and cell growth and death. Nucleolar function is dysregulated in the majority of cancers which promotes cancer growth through direct and indirect mechanisms. Hence, this organelle is emerging as a promising target for novel therapeutic agents. Here, we will also discuss evidence for crosstalk between the NF-κB pathway and nucleoli, the role that this cross-talk has in the anti-tumour effects of NSAIDs and ways forward to exploit this crosstalk for therapeutic purpose.
Collapse
Affiliation(s)
- Jingyu Chen
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Rd., Edinburgh, Scotland EH4 2XU, UK.
| | - Lesley A Stark
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Rd., Edinburgh, Scotland EH4 2XU, UK.
| |
Collapse
|
58
|
Salmiheimo A, Mustonen H, Vainionpää S, Shen Z, Kemppainen E, Puolakkainen P, Seppänen H. Tumour-associated macrophages activate migration and STAT3 in pancreatic ductal adenocarcinoma cells in co-cultures. Pancreatology 2017; 17:635-641. [PMID: 28476581 DOI: 10.1016/j.pan.2017.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/29/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Tumour-associated macrophages participate in tumour development and progression. The aim of this study was to assess the interactions of pancreatic cancer cells and pro-inflammatory M1 and anti-inflammatory M2 macrophages, specifically their effect on pancreatic cancer cell migration and the changes in STAT-signalling. METHODS Monocytes were isolated from healthy subjects and differentiated into macrophages with M-CSF. The macrophages were polarized towards M1 by IL-12 and towards M2 by IL-10. We studied also the effect of pan-JAK/STAT-inhibitor P6. Macrophage polarization and STAT and NFkB-activation in both MiaPaCa-2 and macrophages were assessed by flow cytometry. We recorded the effect of co-culture on migration rate of pancreatic cancer cells MiaPaCa-2. RESULTS Macrophages increased the migration rate of pancreatic cancer cells. Co-culture activated STAT1, STAT3, STAT5, AKT, and NFkB in macrophages and STAT3 in MiaPaCa-2 cells. IL-12 polarized macrophages towards M1 and decreased the migration rate of pancreatic cancer cells in co-cultures as well as P6. IL-10 skewed macrophage polarization towards M2 and induced increase of pancreatic cancer cells in co-cultures. CONCLUSION Co-culture with macrophages increased pancreatic cancer cell migration and activated STAT3. It is possible to activate and deactivate migration of pancreatic cancer cells trough macrophage polarization.
Collapse
Affiliation(s)
- Aino Salmiheimo
- Department of Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Sanna Vainionpää
- Department of Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Esko Kemppainen
- Department of Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Pauli Puolakkainen
- Department of Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland.
| | - Hanna Seppänen
- Department of Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
59
|
Chen YP, Wu SH, Chen IC, Chen CT. Impacts of Cross-Linkers on Biological Effects of Mesoporous Silica Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10254-10265. [PMID: 28229590 DOI: 10.1021/acsami.7b00240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chemically synthesized cross-linkers play decisive roles in variable cargos attached to nanoparticles (NPs). Previous studies reported that surface properties, such as the size, charge, and surface chemistry, are particularly important determinants influencing the biological fate and actions of NPs and cells. Recent studies also focused on the relationship of serum proteins with the surface properties of NPs (also called the protein corona), which is recognized as a key factor in determining the cytotoxicity and biodistribution. However, there is concern that cross-linkers conjugated onto NPs might induce undesirable biological effects. Cell responses induced by cross-linkers have not yet been precisely elucidated. Herein, using mesoporous silica nanoparticles (MSNs) the surfaces of which were separately conjugated with four popular heterobifunctional cross-linkers, i.e., N-[α-maleimidoacetoxy]succinimide ester (AMAS), m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC), and maleimide poly(ethylene glycol) succinimidyl carboxymethyl ester (MAL-PEG-SCM), we investigated cross-linker-conjugated MSNs to determine whether they can cause cytotoxicity, or enhance reactive oxygen species (ROS) generation, nuclear factor (NF)-κB activation, and p-p38 or p21 protein expressions in RAW264.7 macrophage cells. Furthermore, we also separately conjugated two biomolecules containing TAT peptides and bovine serum albumin (BSA) as model systems to study their cell responses in detail. Finally, in vivo mice studies evaluated the biodistribution and blood assays (biochemistry and complete blood count) of PEG-derivative NPs, and results suggested that TAT peptides caused significant white blood cell (WBC)-related cell and platelet abnormalities, as well as liver and kidney dysfunction compared to BSA when conjugated onto MSNs. The results showed that attention to cross-linkers should be considered an issue in the surface modification of NPs. We anticipate that our results could be helpful in developing biosafety nanomaterials.
Collapse
Affiliation(s)
| | | | - I-Chih Chen
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University , Taipei 110, Taiwan
| | - Chien-Tsu Chen
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University , Taipei 110, Taiwan
| |
Collapse
|
60
|
Adamaki M, Vlahopoulos S, Lambrou GI, Papavassiliou AG, Moschovi M. Aberrant AML1 gene expression in the diagnosis of childhood leukemias not characterized by AML1-involved cytogenetic abnormalities. Tumour Biol 2017; 39:1010428317694308. [PMID: 28349830 DOI: 10.1177/1010428317694308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The AML1 ( acute myeloid leukemia 1) gene, a necessary prerequisite of embryonic hematopoiesis and a critical regulator of normal hematopoietic development, is one of the most frequently mutated genes in human leukemia, involving over 50 chromosome translocations and over 20 partner genes. In the few existing studies investigating AML1 gene expression in childhood leukemias, aberrant upregulation seems to specifically associate with AML1 translocations and amplifications. The aim of this study was to determine whether overexpression also extends to other leukemic subtypes than the ones karyotypically involving AML1. We use quantitative real-time polymerase chain reaction methodology to investigate gene expression in 100 children with acute leukemias and compare them to those of healthy controls. We show that in childhood acute lymphoblastic leukemia, AML1 gene overexpression is associated with a variety of leukemic subtypes, both immunophenotypically and cytogenetically. Statistically significantly higher transcripts of the gene were detected in the acute lymphoblastic leukemia group as compared to the acute myeloid leukemia group, where AML1 overexpression appeared to associate with cytogenetic abnormalities additional to those that engage the AML1 gene, or that are reported as showing a "normal" karyotype. Collectively, our study shows that AML1 gene overexpression characterizes a broader range of leukemic subtypes than previously thought, including various maturation stages of B-cell acute lymphoblastic leukemia and cytogenetic types additional to those involving the AML1 gene.
Collapse
Affiliation(s)
- Maria Adamaki
- 1 Pediatric Hematology/Oncology Unit, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens and "Aghia Sofia" Children's Hospital, Athens, Greece
| | - Spiros Vlahopoulos
- 1 Pediatric Hematology/Oncology Unit, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens and "Aghia Sofia" Children's Hospital, Athens, Greece
| | - George I Lambrou
- 1 Pediatric Hematology/Oncology Unit, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens and "Aghia Sofia" Children's Hospital, Athens, Greece
| | - Athanasios G Papavassiliou
- 2 Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Moschovi
- 1 Pediatric Hematology/Oncology Unit, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens and "Aghia Sofia" Children's Hospital, Athens, Greece
| |
Collapse
|
61
|
Guarneri C, Bevelacqua V, Polesel J, Falzone L, Cannavò PS, Spandidos DA, Malaponte G, Libra M. NF‑κB inhibition is associated with OPN/MMP‑9 downregulation in cutaneous melanoma. Oncol Rep 2017; 37:737-746. [PMID: 28075446 PMCID: PMC5355753 DOI: 10.3892/or.2017.5362] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/20/2016] [Indexed: 01/21/2023] Open
Abstract
The development of cutaneous melanoma is influenced by genetic factors, including BRAF mutations and environmental factors, such as ultraviolet exposure. Its progression has been also associated with the involvement of several tumour microenvironmental molecules. Among these, nuclear factor‑κB (NF‑κB) has been indicated as a key player of osteopontin (OPN) and matrix metalloproteinase‑9 (MMP‑9) activation. However, whether NF‑κB plays a role in the development and progression of melanoma in association with the OPN/MMP‑9 axis according to the BRAFV600E mutation status has not been investigated in detail to date. Thus, in the present study, in order to shed light on this matter, 148 patients with melanoma and 53 healthy donors were recruited for the analysis of OPN, MMP‑9 and NF‑κB. Significantly higher circulating levels of OPN and MMP‑9 were observed in the patients with melanoma when compared to the healthy donors. Similar data were obtained for NF‑κB p65 activity. The OPN levels did not differ significantly between melanomas with or without BRAFV600E mutation. However, as regards NF‑κB and MMP‑9, significant differences were observed between the melanomas with or without BRAFV600E mutation. To determine whether NF‑κB inhibition is associated with a decrease in the levels of OPN and MMP‑9, peripheral blood mononuclear cells from 29 patients with melanoma were treated with the NF‑κB inhibitor, dehydroxymethylepoxyquinomycin (DHMEQ), with or without OPN. As expected, the inhibition of NF‑κB induced a marked decrease in both the OPN and MMP‑9 levels. Furthermore, the decrease in MMP‑9 levels was higher among melanomas harbouring the BRAFV600E mutation. Overall, our data suggest that the activation of MMP‑9 is associated with the BRAFV600E mutation status. Furthermore, such an activation is mediated by NF‑κB, suggesting its role as therapeutic target in patients with melanoma.
Collapse
Affiliation(s)
- Claudio Guarneri
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, I-98125 Messina, Italy
| | - Valentina Bevelacqua
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, CRO Aviano National Cancer Institute, IRCCS, I-33081 Aviano, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| | - Patrizia S. Cannavò
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, I-98125 Messina, Italy
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Grazia Malaponte
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Section of General and Clinical Pathology and Oncology, University of Catania, I-95124 Catania, Italy
| |
Collapse
|
62
|
Vlahopoulos SA. Aberrant control of NF-κB in cancer permits transcriptional and phenotypic plasticity, to curtail dependence on host tissue: molecular mode. Cancer Biol Med 2017; 14:254-270. [PMID: 28884042 PMCID: PMC5570602 DOI: 10.20892/j.issn.2095-3941.2017.0029] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of the transcription factor NF-κB in shaping the cancer microenvironment is becoming increasingly clear. Inflammation alters the activity of enzymes that modulate NF-κB function, and causes extensive changes in genomic chromatin that ultimately drastically alter cell-specific gene expression. NF-κB regulates the expression of cytokines and adhesion factors that control interactions among adjacent cells. As such, NF-κB fine tunes tissue cellular composition, as well as tissues' interactions with the immune system. Therefore, NF-κB changes the cell response to hormones and to contact with neighboring cells. Activating NF-κB confers transcriptional and phenotypic plasticity to a cell and thereby enables profound local changes in tissue function and composition. Research suggests that the regulation of NF-κB target genes is specifically altered in cancer. Such alterations occur not only due to mutations of NF-κB regulatory proteins, but also because of changes in the activity of specific proteostatic modules and metabolic pathways. This article describes the molecular mode of NF-κB regulation with a few characteristic examples of target genes.
Collapse
Affiliation(s)
- Spiros A Vlahopoulos
- The First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Athens 11527, Greece
| |
Collapse
|
63
|
Chatterjee B, Banoth B, Mukherjee T, Taye N, Vijayaragavan B, Chattopadhyay S, Gomes J, Basak S. Late-phase synthesis of IκBα insulates the TLR4-activated canonical NF-κB pathway from noncanonical NF-κB signaling in macrophages. Sci Signal 2016; 9:ra120. [PMID: 27923915 DOI: 10.1126/scisignal.aaf1129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nuclear factor κB (NF-κB) transcription factors coordinate the inflammatory immune response during microbial infection. Pathogenic substances engage canonical NF-κB signaling through the heterodimer RelA:p50, which is subjected to rapid negative feedback by inhibitor of κBα (IκBα). The noncanonical NF-κB pathway is required for the differentiation of immune cells; however, cross-talk between both pathways can occur. Concomitantly activated noncanonical signaling generates p52 from the p100 precursor. The synthesis of p100 is induced by canonical signaling, leading to the formation of the late-acting RelA:p52 heterodimer. This cross-talk prolongs inflammatory RelA activity in epithelial cells to ensure pathogen clearance. We found that the Toll-like receptor 4 (TLR4)-activated canonical NF-κB signaling pathway is insulated from lymphotoxin β receptor (LTβR)-induced noncanonical signaling in mouse macrophage cell lines. Combined computational and biochemical studies indicated that the extent of NF-κB-responsive expression of Nfkbia, which encodes IκBα, inversely correlated with cross-talk. The Nfkbia promoter showed enhanced responsiveness to NF-κB activation in macrophages compared to that in fibroblasts. We found that this hyperresponsive promoter engaged the RelA:p52 dimer generated during costimulation of macrophages through TLR4 and LTβR to trigger synthesis of IκBα at late time points, which prevented the late-acting RelA cross-talk response. Together, these data suggest that, despite the presence of identical signaling networks in cells of diverse lineages, emergent cross-talk between signaling pathways is subject to cell type-specific regulation. We propose that the insulation of canonical and noncanonical NF-κB pathways limits the deleterious effects of macrophage-mediated inflammation.
Collapse
Affiliation(s)
- Budhaditya Chatterjee
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India.,Kusuma School of Biological Sciences, IIT-Delhi, Hauz Khas, New Delhi, India
| | - Balaji Banoth
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Tapas Mukherjee
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | - Bharath Vijayaragavan
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | - James Gomes
- Kusuma School of Biological Sciences, IIT-Delhi, Hauz Khas, New Delhi, India
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
64
|
Guan Z, Li C, Fan J, He D, Li L. Androgen receptor (AR) signaling promotes RCC progression via increased endothelial cell proliferation and recruitment by modulating AKT → NF-κB → CXCL5 signaling. Sci Rep 2016; 6:37085. [PMID: 27848972 PMCID: PMC5111066 DOI: 10.1038/srep37085] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/21/2016] [Indexed: 02/08/2023] Open
Abstract
Androgen receptor (AR) signaling may promote renal cell carcinoma (RCC) progression via altered HIF-2α/VEGF signaling. However, it remains unclear whether AR signaling also promotes RCC progression by recruiting vascular endothelial cells (ECs), key players in the development of blood vessels. In our study, AR increased EC proliferation and recruitment to the tumor microenvironment and promoted RCC progression. Mechanistically, AR modulated cytokine CXCL5 expression by altering AKT → NF-κB signaling, and interruption of AKT → NF-κB → CXCL5 signaling using either specific inhibitors or siRNA suppressed AR-enhanced EC recruitment and AR-EC-promoted RCC progression. The results obtained using an in vivo mouse model and a human clinical sample survey confirmed the role of AR in promoting RCC progression through enhancement of EC proliferation and/or recruitment via altered AKT → NF-κB → CXCL5 signaling. Targeting this newly identified AR-induced AKT → NF-κB → CXCL5 pathway may facilitate the development of new therapies for slowing RCC progression.
Collapse
Affiliation(s)
- Zhenfeng Guan
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Jianlan Institute of Medicine, Beijing 100190, China
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
65
|
Pan L, Zhu B, Hao W, Zeng X, Vlahopoulos SA, Hazra TK, Hegde ML, Radak Z, Bacsi A, Brasier AR, Ba X, Boldogh I. Oxidized Guanine Base Lesions Function in 8-Oxoguanine DNA Glycosylase-1-mediated Epigenetic Regulation of Nuclear Factor κB-driven Gene Expression. J Biol Chem 2016; 291:25553-25566. [PMID: 27756845 DOI: 10.1074/jbc.m116.751453] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/14/2016] [Indexed: 11/06/2022] Open
Abstract
A large percentage of redox-responsive gene promoters contain evolutionarily conserved guanine-rich clusters; guanines are the bases most susceptible to oxidative modification(s). Consequently, 7,8-dihydro-8-oxoguanine (8-oxoG) is one of the most abundant base lesions in promoters and is primarily repaired via the 8-oxoguanine DNA glycosylase-1 (OOG1)-initiated base excision repair pathway. In view of a prompt cellular response to oxidative challenge, we hypothesized that the 8-oxoG lesion and the cognate repair protein OGG1 are utilized in transcriptional gene activation. Here, we document TNFα-induced enrichment of both 8-oxoG and OGG1 in promoters of pro-inflammatory genes, which precedes interaction of NF-κB with its DNA-binding motif. OGG1 bound to 8-oxoG upstream from the NF-κB motif increased its DNA occupancy by promoting an on-rate of both homodimeric and heterodimeric forms of NF-κB. OGG1 depletion decreased both NF-κB binding and gene expression, whereas Nei-like glycosylase-1 and -2 had a marginal effect. These results are the first to document a novel paradigm wherein the DNA repair protein OGG1 bound to its substrate is coupled to DNA occupancy of NF-κB and functions in epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Lang Pan
- From the Departments of Microbiology and Immunology and.,the Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China, and
| | - Bing Zhu
- From the Departments of Microbiology and Immunology and
| | - Wenjing Hao
- the Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China, and
| | - Xianlu Zeng
- the Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China, and
| | | | - Tapas K Hazra
- Medicine, and.,the Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Muralidhar L Hegde
- the Department of Radiation Oncology and Neurology, Methodist Research Institute, Houston, Texas 77030
| | - Zsolt Radak
- From the Departments of Microbiology and Immunology and
| | - Attila Bacsi
- From the Departments of Microbiology and Immunology and
| | - Allan R Brasier
- Medicine, and.,the Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| | - Xueqing Ba
- From the Departments of Microbiology and Immunology and .,the Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China, and
| | - Istvan Boldogh
- From the Departments of Microbiology and Immunology and .,the Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|
66
|
Baik IH, Jo GH, Seo D, Ko MJ, Cho CH, Lee MG, Lee YH. Knockdown of RPL9 expression inhibits colorectal carcinoma growth via the inactivation of Id-1/NF-κB signaling axis. Int J Oncol 2016; 49:1953-1962. [PMID: 27633352 DOI: 10.3892/ijo.2016.3688] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/25/2016] [Indexed: 11/06/2022] Open
Abstract
Ribosomal protein L9 (RPL9), a component of the 60S subunit for protein synthesis, is upregulated in human colorectal cancer. In the present study, we investigated whether RPL9 gained extraribosomal function during tumorigenesis and whether targeting of RPL9 with small interfering (si) RNA could alter the course of colorectal cancer progression. Our results showed that siRNA knockdown of RPL9 suppresses colorectal cancer (CRC) cell growth and long-term colony formation through an increase in sub-G1 cell population and a strong induction of apoptotic cell death. To obtain insights into the molecular changes in response to RPL9 knockdown, global changes in gene expression were examined using RNA sequencing. It revealed that RPL9-specific knockdown led to dysregulation of 918 genes in HCT116 and 3178 genes in HT29 cells. Among these, 296 genes showed same directional regulation (128 upregulated and 168 downregulated genes) and were considered as a common RPL9 knockdown signature. Particularly, we found through a network analysis that Id-1, which is functionally associated with activation of NF-κB and cell survival, was commonly downregulated. Subsequent western blot analysis affirmed that RPL9 silencing induced the decrease in the levels of Id-1 and phosphorylated IκBα in both HCT116 and HT29 cells. Also, the same condition decreased the levels of PARP-1 and pro-caspase-3, accelerating apoptosis. Furthermore, inhibition of RPL9 expression significantly suppressed the growth of human CRC xenografts in nude mice. These findings indicate that the function of RPL9 is correlated with Id-1/NF-κB signaling axis and suggest that targeting RPL9 could be an attractive option for molecular therapy of colorectal cancer.
Collapse
Affiliation(s)
- In Hye Baik
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Guk-Heui Jo
- Myunggok Eye Research Institute, Kim's Eye Hospital, Konyang University College of Medicine, Seoul, Republic of Korea
| | - Daekwan Seo
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Ji Ko
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Chi Heum Cho
- Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yun-Han Lee
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
67
|
Moschovi M, Adamaki M, Vlahopoulos SA. Progress in Treatment of Viral Infections in Children with Acute Lymphoblastic Leukemia. Oncol Rev 2016; 10:300. [PMID: 27471584 PMCID: PMC4943096 DOI: 10.4081/oncol.2016.300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/29/2016] [Indexed: 02/08/2023] Open
Abstract
In children, the most commonly encountered type of leukemia is acute lymphoblastic leukemia (ALL). An important source of morbidity and mortality in ALL are viral infections. Even though allogeneic transplantations, which are often applied also in ALL, carry a recognized risk for viral infections, there are multiple factors that make ALL patients susceptible to viral infections. The presence of those factors has an influence in the type and severity of infections. Currently available treatment options do not guarantee a positive outcome for every case of viral infection in ALL, without significant side effects. Side effects can have very serious consequences for the ALL patients, which include nephrotoxicity. For this reason a number of strategies for personalized intervention have been already clinically tested, and experimental approaches are being developed. Adoptive immunotherapy, which entails administration of ex vivo grown immune cells to a patient, is a promising approach in general, and for transplant recipients in particular. The ex vivo grown cells are aimed to strengthen the immune response to the virus that has been identified in the patients' blood and tissue samples. Even though many patients with weakened immune system can benefit from progress in novel approaches, a viral infection still poses a very significant risk for many patients. Therefore, preventive measures and supportive care are very important for ALL patients.
Collapse
Affiliation(s)
- Maria Moschovi
- Hematology-Oncology Unit, First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital , Athens, Greece
| | - Maria Adamaki
- Hematology-Oncology Unit, First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital , Athens, Greece
| | - Spiros A Vlahopoulos
- Hematology-Oncology Unit, First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital , Athens, Greece
| |
Collapse
|
68
|
German P, Saenz D, Szaniszlo P, Aguilera-Aguirre L, Pan L, Hegde ML, Bacsi A, Hajas G, Radak Z, Ba X, Mitra S, Papaconstantinou J, Boldogh I. 8-Oxoguanine DNA glycosylase1-driven DNA repair-A paradoxical role in lung aging. Mech Ageing Dev 2016; 161:51-65. [PMID: 27343030 DOI: 10.1016/j.mad.2016.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/11/2022]
Abstract
Age-associated changes in lung structure and function are some of the most important predictors of overall health, cognitive activities and longevity. Common to all aging cells is an increase in oxidatively modified DNA bases, primarily 8-oxo-7,8-dihydroguanine (8-oxoG). It is repaired via DNA base excision repair pathway driven by 8-oxoguanine DNA glycosylase-1 (OGG1-BER), whose role in aging has been the focus of many studies. This study hypothesizes that signaling and consequent gene expression during cellular response to OGG1-BER "wires" senescence/aging processes. To test OGG1-BER was mimicked by repeatedly exposing diploid lung fibroblasts cells and airways of mice to 8-oxoG base. Results showed that repeated exposures led to G1 cell cycle arrest and pre-matured senescence of cultured cells in which over 1000 genes were differentially expressed -86% of them been identical to those in naturally senesced cells. Gene ontology analysis of gene expression displayed biological processes driven by small GTPases, phosphoinositide 3-kinase and mitogen activated kinase cascades both in cultured cells and lungs. These results together, points to a new paradigm about the role of DNA damage and repair by OGG1 in aging and age-associated disease processes.
Collapse
Affiliation(s)
- Peter German
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - David Saenz
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Peter Szaniszlo
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Leopoldo Aguilera-Aguirre
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Attila Bacsi
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Gyorgy Hajas
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Zsolt Radak
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Xueqing Ba
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Sankar Mitra
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - John Papaconstantinou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| |
Collapse
|
69
|
Cytokines in cancer drug resistance: Cues to new therapeutic strategies. Biochim Biophys Acta Rev Cancer 2016; 1865:255-65. [DOI: 10.1016/j.bbcan.2016.03.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 02/07/2023]
|
70
|
Park MH, Hong JT. Roles of NF-κB in Cancer and Inflammatory Diseases and Their Therapeutic Approaches. Cells 2016; 5:cells5020015. [PMID: 27043634 PMCID: PMC4931664 DOI: 10.3390/cells5020015] [Citation(s) in RCA: 441] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor that plays a crucial role in various biological processes, including immune response, inflammation, cell growth and survival, and development. NF-κB is critical for human health, and aberrant NF-κB activation contributes to development of various autoimmune, inflammatory and malignant disorders including rheumatoid arthritis, atherosclerosis, inflammatory bowel diseases, multiple sclerosis and malignant tumors. Thus, inhibiting NF-κB signaling has potential therapeutic applications in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk 28160, Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk 28160, Korea.
| |
Collapse
|
71
|
Moschovi M, Critselis E, Cen O, Adamaki M, Lambrou GI, Chrousos GP, Vlahopoulos S. Drugs acting on homeostasis: challenging cancer cell adaptation. Expert Rev Anticancer Ther 2015; 15:1405-1417. [PMID: 26523494 DOI: 10.1586/14737140.2015.1095095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Cancer treatment aims to exploit properties that define malignant cells. In recent years, it has become apparent that malignant cells often survive cancer treatment and ensuing cell stress by switching on auxiliary turnover pathways, changing cellular metabolism and, concomitantly, the gene expression profile. The changed profile impacts the material exchange of cancer cells with affected tissues. Herein, we show that pathways of proteostasis and energy generation regulate common transcription factors. Namely, when one pathway of intracellular turnover is blocked, it triggers alternative turnover mechanisms, which induce transcription factor proteins that control expression of cytokines and regulators of apoptosis, cell division, differentiation, metabolism, and response to hormones. We focus on several alternative turnover mechanisms that can be blocked by drugs already used in clinical practice for the treatment of other non-cancer related diseases. We also discuss paradigms on the challenges posed by cancer cell adaptation mechanisms.
Collapse
Affiliation(s)
- Maria Moschovi
- a 1 University of Athens, Horemio Research Institute, First Department of Pediatrics, Thivon & Levadeias, Goudi, Athens, 11527, Greece
- b 2 University of Athens, Pediatric Hematology/Oncology Unit, First Department of Pediatrics, University of Athens, "Aghia Sofia" Children's Hospital, Thivon & Levadeias, 11527 Goudi, Athens, Greece
| | - Elena Critselis
- a 1 University of Athens, Horemio Research Institute, First Department of Pediatrics, Thivon & Levadeias, Goudi, Athens, 11527, Greece
| | - Osman Cen
- c 3 Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago Ave, Chicago, IL 60611, USA
| | - Maria Adamaki
- a 1 University of Athens, Horemio Research Institute, First Department of Pediatrics, Thivon & Levadeias, Goudi, Athens, 11527, Greece
- b 2 University of Athens, Pediatric Hematology/Oncology Unit, First Department of Pediatrics, University of Athens, "Aghia Sofia" Children's Hospital, Thivon & Levadeias, 11527 Goudi, Athens, Greece
| | - George I Lambrou
- a 1 University of Athens, Horemio Research Institute, First Department of Pediatrics, Thivon & Levadeias, Goudi, Athens, 11527, Greece
| | - George P Chrousos
- a 1 University of Athens, Horemio Research Institute, First Department of Pediatrics, Thivon & Levadeias, Goudi, Athens, 11527, Greece
| | - Spiros Vlahopoulos
- a 1 University of Athens, Horemio Research Institute, First Department of Pediatrics, Thivon & Levadeias, Goudi, Athens, 11527, Greece
| |
Collapse
|