51
|
Juárez-Rojas L, Casillas F, López A, Betancourt M, Ommati MM, Retana-Márquez S. Physiological role of reactive oxygen species in testis and epididymal spermatozoa. Andrologia 2022; 54:e14367. [PMID: 35034376 DOI: 10.1111/and.14367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/02/2021] [Accepted: 12/18/2021] [Indexed: 11/26/2022] Open
Abstract
The reactive oxygen species (ROS) play an important role in various aspects of male reproductive function, for spermatozoa to acquire the ability to fertilize. However, the increase in ROS generation, both due to internal and external factors, can induce oxidative stress, causing alterations in the structure and function of phospholipids and proteins. In the nucleus, ROS attack DNA, causing its fragmentation and activation of apoptosis, thus altering gene and protein expression. Accumulating evidence also reveals that endogenously produced ROS can act as second messengers in regulating cell signalling pathways and in the transduction of signals that are responsible for regulating spermatogonia self-renewal and proliferation. In the epididymis, they actively participate in the formation of disulphide bridges required for the final condensation of chromatin, as well as in the phosphorylation and dephosphorylation of proteins contained in the fibrous sheath of the flagellum, stimulating the activation of progressive motility in epididymal spermatozoa. In this review, the role of small amounts of ROS during spermatogenesis and epididymal sperm maturation was discussed.
Collapse
Affiliation(s)
- Lizbeth Juárez-Rojas
- Department of Biology of Reproduction, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| | - Fahiel Casillas
- Department of Biology of Reproduction, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| | - Alma López
- Department of Health Sciences, Autonomous Metropolitan University-Iztapalapa Campus, Mexico City, Mexico
| | - Miguel Betancourt
- Department of Health Sciences, Autonomous Metropolitan University-Iztapalapa Campus, Mexico City, Mexico
| | - Mohammad Mehdi Ommati
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, People's Republic of China
| | - Socorro Retana-Márquez
- Department of Biology of Reproduction, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| |
Collapse
|
52
|
Hayashida Y, Yamamoto C, Takahashi F, Shibata A, Kasahara M. Characterization of the cAMP phosphodiesterase domain in plant adenylyl cyclase/cAMP phosphodiesterase CAPE from the liverwort Marchantia polymorpha. JOURNAL OF PLANT RESEARCH 2022; 135:137-144. [PMID: 34779957 DOI: 10.1007/s10265-021-01359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Cyclic AMP (cAMP) acts as a second messenger and is involved in the regulation of various physiological responses. Recently, we identified the cAMP-synthesis/hydrolysis enzyme CAPE, which contains the two catalytic domains adenylyl cyclase (AC) and cAMP phosphodiesterase (PDE) from the liverwort Marchantia polymorpha. Here we characterize the PDE domain of M. polymorpha CAPE (MpCAPE-PDE) using the purified protein expressed in E. coli. The Km and Vmax of MpCAPE-PDE were 30 µM and 5.8 nmol min-1 mg-1, respectively. Further, we investigated the effect of divalent cations on PDE activity and found that Ca2+ enhanced PDE activity, suggesting that Ca2+ may be involved in cAMP signaling through the regulation of PDE activity of CAPE. Among the PDE inhibitors tested, only dipyridamole moderately inhibited PDE activity by approximately 40% at high concentrations. Conversely, 3-isobutyl-1-methylxanthine (IBMX) did not inhibit PDE activity.
Collapse
Affiliation(s)
- Yuta Hayashida
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Chiaki Yamamoto
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Fumio Takahashi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Aika Shibata
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Masahiro Kasahara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
53
|
Maitan PP, Bromfield EG, Hoogendijk R, Leung MR, Zeev-Ben-Mordehai T, van de Lest CH, Jansen JWA, Leemans B, Guimarães JD, Stout TAE, Gadella BM, Henning H. Bicarbonate-Stimulated Membrane Reorganization in Stallion Spermatozoa. Front Cell Dev Biol 2021; 9:772254. [PMID: 34869370 PMCID: PMC8635755 DOI: 10.3389/fcell.2021.772254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Classical in vitro fertilization (IVF) is still poorly successful in horses. This lack of success is thought to be due primarily to inadequate capacitation of stallion spermatozoa under in vitro conditions. In species in which IVF is successful, bicarbonate, calcium, and albumin are considered the key components that enable a gradual reorganization of the sperm plasma membrane that allows the spermatozoa to undergo an acrosome reaction and fertilize the oocyte. The aim of this work was to comprehensively examine contributors to stallion sperm capacitation by investigating bicarbonate-induced membrane remodelling steps, and elucidating the contribution of cAMP signalling to these events. In the presence of capacitating media containing bicarbonate, a significant increase in plasma membrane fluidity was readily detected using merocyanine 540 staining in the majority of viable spermatozoa within 15 min of bicarbonate exposure. Specific inhibition of soluble adenylyl cyclase (sAC) in the presence of bicarbonate by LRE1 significantly reduced the number of viable sperm with high membrane fluidity. This suggests a vital role for sAC-mediated cAMP production in the regulation of membrane fluidity. Cryo-electron tomography of viable cells with high membrane fluidity revealed a range of membrane remodelling intermediates, including destabilized membranes and zones with close apposition of the plasma membrane and the outer acrosomal membrane. However, lipidomic analysis of equivalent viable spermatozoa with high membrane fluidity demonstrated that this phenomenon was neither accompanied by a gross change in the phospholipid composition of stallion sperm membranes nor detectable sterol efflux (p > 0.05). After an early increase in membrane fluidity, a significant and cAMP-dependent increase in viable sperm with phosphatidylserine (PS), but not phosphatidylethanolamine (PE) exposure was noted. While the events observed partly resemble findings from the in vitro capacitation of sperm from other mammalian species, the lack of cholesterol removal appears to be an equine-specific phenomenon. This research will assist in the development of a defined medium for the capacitation of stallion sperm and will facilitate progress toward a functional IVF protocol for horse gametes.
Collapse
Affiliation(s)
- Paula Piccolo Maitan
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Elizabeth G Bromfield
- Department of Biomolecular Health Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Romy Hoogendijk
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Miguel Ricardo Leung
- Cryo-Electron Microscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Tzviya Zeev-Ben-Mordehai
- Cryo-Electron Microscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Chris H van de Lest
- Department of Biomolecular Health Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jeroen W A Jansen
- Department of Biomolecular Health Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Bart Leemans
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Tom A E Stout
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Bart M Gadella
- Department of Biomolecular Health Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Population Health Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Heiko Henning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
54
|
Molecular mechanisms of sperm motility are conserved in an early-branching metazoan. Proc Natl Acad Sci U S A 2021; 118:2109993118. [PMID: 34810263 PMCID: PMC8640785 DOI: 10.1073/pnas.2109993118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 01/11/2023] Open
Abstract
Reef-building corals are the keystone species of the world’s most biodiverse yet threatened marine ecosystems. Coral reproduction, critical for reef resilience, requires that coral sperm swim through the water column to reach the egg. However, little is known about the mechanisms that regulate coral sperm motility. We found here that coral sperm motility is pH dependent and that activation of motility requires signaling via the pH-sensing enzyme soluble adenylyl cyclase. This study reveals the deep conservation of a sperm activation pathway from humans to corals, presenting the first comprehensive examination of the molecular mechanisms regulating sperm motility in an early-diverging animal. These results are critical for understanding the resilience of this sensitive life stage to a changing marine environment. Efficient and targeted sperm motility is essential for animal reproductive success. Sperm from mammals and echinoderms utilize a highly conserved signaling mechanism in which sperm motility is stimulated by pH-dependent activation of the cAMP-producing enzyme soluble adenylyl cyclase (sAC). However, the presence of this pathway in early-branching metazoans has remained unexplored. Here, we found that elevating cytoplasmic pH induced a rapid burst of cAMP signaling and triggered the onset of motility in sperm from the reef-building coral Montipora capitata in a sAC-dependent manner. Expression of sAC in the mitochondrial-rich midpiece and flagellum of coral sperm support a dual role for this molecular pH sensor in regulating mitochondrial respiration and flagellar beating and thus motility. In addition, we found that additional members of the homologous signaling pathway described in echinoderms, both upstream and downstream of sAC, are expressed in coral sperm. These include the Na+/H+ exchanger SLC9C1, protein kinase A, and the CatSper Ca2+ channel conserved even in mammalian sperm. Indeed, the onset of motility corresponded with increased protein kinase A activity. Our discovery of this pathway in an early-branching metazoan species highlights the ancient origin of the pH-sAC-cAMP signaling node in sperm physiology and suggests that it may be present in many other marine invertebrate taxa for which sperm motility mechanisms remain unexplored. These results emphasize the need to better understand the role of pH-dependent signaling in the reproductive success of marine animals, particularly as climate change stressors continue to alter the physiology of corals and other marine invertebrates.
Collapse
|
55
|
Ferreira JJ, Lybaert P, Puga-Molina LC, Santi CM. Conserved Mechanism of Bicarbonate-Induced Sensitization of CatSper Channels in Human and Mouse Sperm. Front Cell Dev Biol 2021; 9:733653. [PMID: 34650979 PMCID: PMC8505895 DOI: 10.3389/fcell.2021.733653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
To fertilize an egg, mammalian sperm must undergo capacitation in the female genital tract. A key contributor to capacitation is the calcium (Ca2+) channel CatSper, which is activated by membrane depolarization and intracellular alkalinization. In mouse epididymal sperm, membrane depolarization by exposure to high KCl triggers Ca2+ entry through CatSper only in alkaline conditions (pH 8.6) or after in vitro incubation with bicarbonate (HCO3–) and bovine serum albumin (capacitating conditions). However, in ejaculated human sperm, membrane depolarization triggers Ca2+ entry through CatSper in non-capacitating conditions and at lower pH (< pH 7.4) than is required in mouse sperm. Here, we aimed to determine the mechanism(s) by which CatSper is activated in mouse and human sperm. We exposed ejaculated mouse and human sperm to high KCl to depolarize the membrane and found that intracellular Ca2+ concentration increased at pH 7.4 in sperm from both species. Conversely, intracellular Ca2+ concentration did not increase under these conditions in mouse epididymal or human epididymal sperm. Furthermore, pre-incubation with HCO3– triggered an intracellular Ca2+ concentration increase in response to KCl in human epididymal sperm. Treatment with protein kinase A (PKA) inhibitors during exposure to HCO3– inhibited Ca2+ concentration increases in mouse epididymal sperm and in both mouse and human ejaculated sperm. Finally, we show that soluble adenylyl cyclase and increased intracellular pH are required for the intracellular Ca2+ concentration increase in both human and mouse sperm. In summary, our results suggest that a conserved mechanism of activation of CatSper channels is present in both human and mouse sperm. In this mechanism, HCO3– in semen activates the soluble adenylyl cyclase/protein kinase A pathway, which leads to increased intracellular pH and sensitizes CatSper channels to respond to membrane depolarization to allow Ca2+ influx. This indirect mechanism of CatSper sensitization might be an early event capacitation that occurs as soon as the sperm contact the semen.
Collapse
Affiliation(s)
- Juan J Ferreira
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Pascale Lybaert
- Research Laboratory on Human Reproduction, Faculté de Médecine, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Lis C Puga-Molina
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States
| | - Celia M Santi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
56
|
Balbach M, Fushimi M, Huggins DJ, Steegborn C, Meinke PT, Levin LR, Buck J. Optimization of lead compounds into on-demand, nonhormonal contraceptives: leveraging a public-private drug discovery institute collaboration†. Biol Reprod 2021; 103:176-182. [PMID: 32307523 PMCID: PMC7401349 DOI: 10.1093/biolre/ioaa052] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/20/2022] Open
Abstract
Efforts to develop new male or female nonhormonal, orally available contraceptives assume that to be effective and safe, targets must be (1) essential for fertility; (2) amenable to targeting by small-molecule inhibitors; and (3) restricted to the germline. In this perspective, we question the third assumption and propose that despite its wide expression, soluble adenylyl cyclase (sAC: ADCY10), which is essential for male fertility, is a valid target. We hypothesize that an acute-acting sAC inhibitor may provide orally available, on-demand, nonhormonal contraception for men without adverse, mechanism-based effects. To test this concept, we describe a collaboration between academia and the unique capabilities of a public-private drug discovery institute.
Collapse
Affiliation(s)
- Melanie Balbach
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Makoto Fushimi
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - David J Huggins
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Peter T Meinke
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.,Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
57
|
Balbach M, Ghanem L, Rossetti T, Kaur N, Ritagliati C, Ferreira J, Krapf D, Puga Molina LC, Santi CM, Hansen JN, Wachten D, Fushimi M, Meinke PT, Buck J, Levin LR. Soluble adenylyl cyclase inhibition prevents human sperm functions essential for fertilization. Mol Hum Reprod 2021; 27:6360468. [PMID: 34463764 DOI: 10.1093/molehr/gaab054] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/16/2021] [Indexed: 01/07/2023] Open
Abstract
Soluble adenylyl cyclase (sAC: ADCY10) has been genetically confirmed to be essential for male fertility in mice and humans. In mice, ex vivo studies of dormant, caudal epididymal sperm demonstrated that sAC is required for initiating capacitation and activating motility. We now use an improved sAC inhibitor, TDI-10229, for a comprehensive analysis of sAC function in mouse and human sperm. In contrast to caudal epididymal mouse sperm, human sperm are collected post-ejaculation, after sAC activity has already been stimulated. In addition to preventing the capacitation-induced stimulation of sAC and protein kinase A activities, tyrosine phosphorylation, alkalinization, beat frequency and acrosome reaction in dormant mouse sperm, sAC inhibitors interrupt each of these capacitation-induced changes in ejaculated human sperm. Furthermore, we show for the first time that sAC is required during acrosomal exocytosis in mouse and human sperm. These data define sAC inhibitors as candidates for non-hormonal, on-demand contraceptives suitable for delivery via intravaginal devices in women.
Collapse
Affiliation(s)
- Melanie Balbach
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, USA
| | - Lubna Ghanem
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, USA
| | - Thomas Rossetti
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, USA
| | - Navpreet Kaur
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, USA
| | - Carla Ritagliati
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, USA.,Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina
| | - Jacob Ferreira
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, USA
| | - Dario Krapf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina
| | - Lis C Puga Molina
- Department of OB/GYN, Washington University School of Medicine, Saint Louis, MO, USA
| | - Celia Maria Santi
- Department of OB/GYN, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jan Niklas Hansen
- Biophysical Imaging, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Biophysical Imaging, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Makoto Fushimi
- Tri-Institutional Therapeutics Discovery Institute, New York City, NY, USA
| | - Peter T Meinke
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, USA.,Tri-Institutional Therapeutics Discovery Institute, New York City, NY, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York City, NY, USA
| |
Collapse
|
58
|
Fushimi M, Buck H, Balbach M, Gorovyy A, Ferreira J, Rossetti T, Kaur N, Levin LR, Buck J, Quast J, van den Heuvel J, Steegborn C, Finkin-Groner E, Kargman S, Michino M, Foley MA, Miller M, Liverton NJ, Huggins DJ, Meinke PT. Discovery of TDI-10229: A Potent and Orally Bioavailable Inhibitor of Soluble Adenylyl Cyclase (sAC, ADCY10). ACS Med Chem Lett 2021; 12:1283-1287. [PMID: 34413957 PMCID: PMC8366019 DOI: 10.1021/acsmedchemlett.1c00273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023] Open
Abstract
Soluble adenylyl cyclase (sAC) has gained attention as a potential therapeutic target given the role of this enzyme in intracellular signaling. We describe successful efforts to design improved sAC inhibitors amenable for in vivo interrogation of sAC inhibition to assess its potential therapeutic applications. This work culminated in the identification of TDI-10229 (12), which displays nanomolar inhibition of sAC in both biochemical and cellular assays and exhibits mouse pharmacokinetic properties sufficient to warrant its use as an in vivo tool compound.
Collapse
Affiliation(s)
- Makoto Fushimi
- Tri-Institutional
Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Hannes Buck
- Department
of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Melanie Balbach
- Department
of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Anna Gorovyy
- Department
of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Jacob Ferreira
- Department
of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Thomas Rossetti
- Department
of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Navpreet Kaur
- Department
of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Lonny R. Levin
- Department
of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Jochen Buck
- Department
of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Jonathan Quast
- Department
of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | | | - Clemens Steegborn
- Department
of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Efrat Finkin-Groner
- Tri-Institutional
Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Stacia Kargman
- Tri-Institutional
Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Mayako Michino
- Tri-Institutional
Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Michael A. Foley
- Tri-Institutional
Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Michael Miller
- Tri-Institutional
Therapeutics Discovery Institute, New York, New York 10021, United States
| | - Nigel J. Liverton
- Tri-Institutional
Therapeutics Discovery Institute, New York, New York 10021, United States
| | - David J. Huggins
- Tri-Institutional
Therapeutics Discovery Institute, New York, New York 10021, United States
- Department
of Physiology and Biophysics, Weill Cornell
Medicine, New York, New York 10021, United
States
| | - Peter T. Meinke
- Tri-Institutional
Therapeutics Discovery Institute, New York, New York 10021, United States
- Department
of Pharmacology, Weill Cornell Medicine, New York, New York 10021, United States
| |
Collapse
|
59
|
Takei GL, Tourzani DA, Paudel B, Visconti PE. Activation of cAMP-dependent phosphorylation pathways is independent of ROS production during mouse sperm capacitation. Mol Reprod Dev 2021; 88:544-557. [PMID: 34318548 DOI: 10.1002/mrd.23524] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022]
Abstract
Mammalian sperm have to undergo capacitation to fertilize the egg. At the molecular level, capacitation involves cAMP synthesis, protein kinase A activation, and downstream increase in tyrosine phosphorylation. In addition, during capacitation, mammalian sperm actively generate reactive oxygen species (ROS). It has been proposed that ROS modulate phosphorylation pathways; however, the crosstalk between these signaling processes is not well-understood. In the present study, we used loss- and gain-of-function approaches to evaluate the interconnection between ROS and phosphorylation. We showed that BSA and HCO3 - , but not Ca2+ , in the capacitation media are required for ROS production. The synergic effect of these compounds was neither mediated by HCO3 - stimulation of cAMP synthesis nor by BSA-induced cholesterol efflux. The capacitation-induced ROS generation was blocked in the presence of superoxide dismutase (SOD), catalase, and apocynin. However, none of these compounds affected cAMP-dependent or tyrosine phosphorylation. On the other hand, the addition of NADPH to the media induced ROS generation in sperm incubated in the absence of BSA and HCO3 - without upregulating cAMP-dependent or tyrosine phosphorylation signaling. Most interestingly, catalase, but not SOD, blocked in vitro fertilization suggesting a role for H2 O2 in this process.
Collapse
Affiliation(s)
- Gen L Takei
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Darya A Tourzani
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Bidur Paudel
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
60
|
Vega Hissi EG, De Costa Guardamagna AB, Garro AD, Falcon CR, Anderluh M, Tomašič T, Kikelj D, Yaneff A, Davio CA, Enriz RD, Zurita AR. A Potent N-(piperidin-4-yl)-1H-pyrrole-2-carboxamide Inhibitor of Adenylyl Cyclase of G. lamblia: Biological Evaluation and Molecular Modelling Studies. ChemMedChem 2021; 16:2094-2105. [PMID: 33783977 DOI: 10.1002/cmdc.202100037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/26/2021] [Indexed: 11/06/2022]
Abstract
In this work, we report a derivative of N-(piperidin-4-yl)-1H-pyrrole-2-carboxamide as a new inhibitor for adenylyl cyclase of Giardia lamblia which was obtained from a study using structural data of the nucleotidyl cyclase 1 (gNC1) of this parasite. For such a study, we developed a model for this specific enzyme by using homology techniques, which is the first model reported for gNC1 of G. lamblia. Our studies show that the new inhibitor has a competitive mechanism of action against this enzyme. 2-Hydroxyestradiol was used as the reference compound for comparative studies. Results in this work are important from two points of view. on the one hand, an experimentally corroborated model for gNC1 of G. lamblia obtained by molecular modelling is presented; on the other hand, the new inhibitor obtained is an undoubtedly excellent starting structure for the development of new metabolic inhibitors for G. lamblia.
Collapse
Affiliation(s)
- Esteban G Vega Hissi
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Antonella B De Costa Guardamagna
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Adriana D Garro
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Cristian R Falcon
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Marko Anderluh
- Department of Medicinal Chemistry, University of Ljubljana, Faculty of Pharmacy Askerceva, cesta 7, 1000, Ljubljana, Slovenia
| | - Tihomir Tomašič
- Department of Medicinal Chemistry, University of Ljubljana, Faculty of Pharmacy Askerceva, cesta 7, 1000, Ljubljana, Slovenia
| | - Danijel Kikelj
- Department of Medicinal Chemistry, University of Ljubljana, Faculty of Pharmacy Askerceva, cesta 7, 1000, Ljubljana, Slovenia
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113, AAD, Buenos Aires, Argentina
| | - Carlos A Davio
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113, AAD, Buenos Aires, Argentina
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Adolfo R Zurita
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700, San Luis, Argentina
| |
Collapse
|
61
|
Effect of Soluble Adenylyl Cyclase (ADCY10) Inhibitors on the LH-Stimulated cAMP Synthesis in Mltc-1 Leydig Cell Line. Int J Mol Sci 2021; 22:ijms22094641. [PMID: 33924969 PMCID: PMC8125623 DOI: 10.3390/ijms22094641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 11/25/2022] Open
Abstract
In contrast to all transmembrane adenylyl cyclases except ADCY9, the cytosolic soluble adenylyl cyclase (ADCY10) is insensitive to forskolin stimulation and is uniquely modulated by calcium and bicarbonate ions. In the present paper, we focus on ADCY10 localization and a kinetic analysis of intracellular cAMP accumulation in response to human LH in the absence or presence of four different ADCY10 inhibitors (KH7, LRE1, 2-CE and 4-CE) in MTLC-1 cells. ADCY10 was immuno-detected in the cytoplasm of MLTC-1 cells and all four inhibitors were found to inhibit LH-stimulated cAMP accumulation and progesterone level in MLTC-1 and testosterone level primary Leydig cells. Interestingly, similar inhibitions were also evidenced in mouse testicular Leydig cells. In contrast, the tmAC-specific inhibitors ddAdo3′ and ddAdo5′, even at high concentration, exerted weak or no inhibition on cAMP accumulation, suggesting an important role of ADCY10 relative to tmACs in the MLTC-1 response to LH. The strong synergistic effect of HCO3− under LH stimulation further supports the involvement of ADCY10 in the response to LH.
Collapse
|
62
|
Tanga BM, Qamar AY, Raza S, Bang S, Fang X, Yoon K, Cho J. Semen evaluation: methodological advancements in sperm quality-specific fertility assessment - A review. Anim Biosci 2021; 34:1253-1270. [PMID: 33902175 PMCID: PMC8255896 DOI: 10.5713/ab.21.0072] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/30/2021] [Indexed: 11/27/2022] Open
Abstract
Assessment of male fertility is based on the evaluation of sperm. Semen evaluation measures various sperm quality parameters as fertility indicators. However, semen evaluation has limitations, and it requires the advancement and application of strict quality control methods to interpret the results. This article reviews the recent advances in evaluating various sperm-specific quality characteristics and methodologies, with the help of different assays to assess sperm-fertility status. Sperm evaluation methods that include conventional microscopic methods, computer-assisted sperm analyzers (CASA), and flow cytometric analysis, provide precise information related to sperm morphology and function. Moreover, profiling fertility-related biomarkers in sperm or seminal plasma can be helpful in predicting fertility. Identification of different sperm proteins and diagnosis of DNA damage has positively contributed to the existing pool of knowledge about sperm physiology and molecular anomalies associated with different infertility issues in males. Advances in methods and sperm-specific evaluation has subsequently resulted in a better understanding of sperm biology that has improved the diagnosis and clinical management of male factor infertility. Accurate sperm evaluation is of paramount importance in the application of artificial insemination and assisted reproductive technology. However, no single test can precisely determine fertility; the selection of an appropriate test or a set of tests and parameters is required to accurately determine the fertility of specific animal species. Therefore, a need to further calibrate the CASA and advance the gene expression tests is recommended for faster and field-level applications.
Collapse
Affiliation(s)
- Bereket Molla Tanga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea.,Faculty of Veterinary Medicine, Hawassa University, 05, Hawassa, Ethiopia
| | - Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea.,Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang 35200, Sub-campus University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Sanan Raza
- Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang 35200, Sub-campus University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.,Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang 35200, Sub-campus University of Veterinary and Animal Sciences, Lahore 54000, PakistanDepartment of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin 09016, Turkey
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Kiyoung Yoon
- Department of Companion Animal, Shingu College, Seongnam 13174, Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
63
|
Tang L, Liu YL, Qin G, Lin Q, Zhang YH. Effects of tributyltin on gonad and brood pouch development of male pregnant lined seahorse (Hippocampus erectus) at environmentally relevant concentrations. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124854. [PMID: 33370696 DOI: 10.1016/j.jhazmat.2020.124854] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/26/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
The male pregnancy of seahorses is unique, but their reproductive response to environmental disturbances has not yet been clarified. Tributyltin (TBT) is known to have an endocrine disrupting effect on the reproductive system of coastal marine organisms. This study evaluated the potential effects of exposure to environmentally relevant concentrations of TBT on the development of gonads and brood pouch of the lined seahorse (Hippocampus erectus). Physiological, histological, and transcriptional analyses were conducted, and results showed that high levels of TBT bioaccumulation occurred in male and female seahorses. TBT led to ovarian follicular atresia and apoptosis with the elevation of androgen levels, accompanied by the induction of genes associated with lysosomes and autophagosomes. Comparative transcriptional analyses revealed the likely inhibition of spermatogenesis via the suppression of cyclic AMP and androgen synthesis. Notably, the transcriptional profiles showed that TBT potentially affects the immune system, angiogenesis, and embryo nourishment of the brood pouch, which indicates that it has negative effects on the male reproductive system of seahorses. In summary, this study reveals that environmental levels of TBT potentially affect the reproductive efficiency of seahorses, and may ultimately lead to a reduction in their populations in coastal environments.
Collapse
Affiliation(s)
- Lu Tang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Ya-Li Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Science, Beijing 100049, China.
| | - Yan-Hong Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|
64
|
Salmerón C, Harter TS, Kwan GT, Roa JN, Blair SD, Rummer JL, Shiels HA, Goss GG, Wilson RW, Tresguerres M. Molecular and biochemical characterization of the bicarbonate-sensing soluble adenylyl cyclase from a bony fish, the rainbow trout Oncorhynchus mykiss. Interface Focus 2021; 11:20200026. [PMID: 33633829 DOI: 10.1098/rsfs.2020.0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Soluble adenylyl cyclase (sAC) is a HC O 3 - -stimulated enzyme that produces the ubiquitous signalling molecule cAMP, and deemed an evolutionarily conserved acid-base sensor. However, its presence is not yet confirmed in bony fishes, the most abundant and diverse of vertebrates. Here, we identified sAC genes in various cartilaginous, ray-finned and lobe-finned fish species. Next, we focused on rainbow trout sAC (rtsAC) and identified 20 potential alternative spliced mRNAs coding for protein isoforms ranging in size from 28 to 186 kDa. Biochemical and kinetic analyses on purified recombinant rtsAC protein determined stimulation by HC O 3 - at physiologically relevant levels for fish internal fluids (EC50 ∼ 7 mM). rtsAC activity was sensitive to KH7, LRE1, and DIDS (established inhibitors of sAC from other organisms), and insensitive to forskolin and 2,5-dideoxyadenosine (modulators of transmembrane adenylyl cyclases). Western blot and immunocytochemistry revealed high rtsAC expression in gill ion-transporting cells, hepatocytes, red blood cells, myocytes and cardiomyocytes. Analyses in the cell line RTgill-W1 suggested that some of the longer rtsAC isoforms may be preferentially localized in the nucleus, the Golgi apparatus and podosomes. These results indicate that sAC is poised to mediate multiple acid-base homeostatic responses in bony fishes, and provide cues about potential novel functions in mammals.
Collapse
Affiliation(s)
- Cristina Salmerón
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Till S Harter
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Garfield T Kwan
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Jinae N Roa
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Salvatore D Blair
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Department of Biology, Winthrop University, Rock Hill, SC, USA
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Rod W Wilson
- Department of Biosciences, University of Exeter, Exeter, UK
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
65
|
Rossetti T, Jackvony S, Buck J, Levin LR. Bicarbonate, carbon dioxide and pH sensing via mammalian bicarbonate-regulated soluble adenylyl cyclase. Interface Focus 2021; 11:20200034. [PMID: 33633833 PMCID: PMC7898154 DOI: 10.1098/rsfs.2020.0034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Soluble adenylyl cyclase (sAC; ADCY10) is a bicarbonate (HCO3 -)-regulated enzyme responsible for the generation of cyclic adenosine monophosphate (cAMP). sAC is distributed throughout the cell and within organelles and, as such, plays a role in numerous cellular signalling pathways. Carbonic anhydrases (CAs) nearly instantaneously equilibrate HCO3 -, protons and carbon dioxide (CO2); because of the ubiquitous presence of CAs within cells, HCO3 --regulated sAC can respond to changes in any of these factors. Thus, sAC can function as a physiological HCO3 -/CO2/pH sensor. Here, we outline examples where we have shown that sAC responds to changes in HCO3 -, CO2 or pH to regulate diverse physiological functions.
Collapse
Affiliation(s)
- Tom Rossetti
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
- Graduate Program in Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Stephanie Jackvony
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
- Graduate Program in Neuroscience, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lonny R. Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
66
|
Signal transduction in primary cilia - analyzing and manipulating GPCR and second messenger signaling. Pharmacol Ther 2021; 224:107836. [PMID: 33744260 DOI: 10.1016/j.pharmthera.2021.107836] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
The primary cilium projects from the surface of most vertebrate cells, where it senses extracellular signals to regulate diverse cellular processes during tissue development and homeostasis. Dysfunction of primary cilia underlies the pathogenesis of severe diseases, commonly referred to as ciliopathies. Primary cilia contain a unique protein repertoire that is distinct from the cell body and the plasma membrane, enabling the spatially controlled transduction of extracellular cues. G-protein coupled receptors (GPCRs) are key in sensing environmental stimuli that are transmitted via second messenger signaling into a cellular response. Here, we will give an overview of the role of GPCR signaling in primary cilia, and how ciliary GPCR signaling can be targeted by pharmacology, chemogenetics, and optogenetics.
Collapse
|
67
|
López-Albors O, Llamas-López PJ, Ortuño JÁ, Latorre R, García-Vázquez FA. In vivo measurement of pH and CO 2 levels in the uterus of sows through the estrous cycle and after insemination. Sci Rep 2021; 11:3194. [PMID: 33542361 PMCID: PMC7862298 DOI: 10.1038/s41598-021-82620-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
The pH-CO2-HCO3- system is a ubiquitous biological regulator with important functional implications for reproduction. Knowledge of the physiological values of its components is relevant for reproductive biology and the optimization of Assisted Reproductive Technologies (ARTs). However, in situ measurements of these parameters in the uterus are scarce or null. This study describes a non-invasive method for in situ time-lapse recording of pH and CO2 within the uterus of non-anesthetized sows. Animals were at three different reproductive conditions, estrous with no insemination and two hours after insemination, and diestrous. From pH and CO2 data, HCO3- concentration was estimated. The non-invasive approach to the porcine uterus with novel optical probes allowed the obtaining of in situ physiological values of pH, CO2, and HCO3-. Variable oscillatory patterns of pH, CO2 and HCO3- were found independently of the estrous condition. Insemination did not immediately change the levels of uterine pH, CO2 (%) and HCO3- concentration, but all the values were affected by the estrous cycle decreasing significantly at diestrous condition. This study contributes to a better understanding of the in vivo regulation of the pH-CO2-HCO3- system in the uterus and may help to optimize the protocols of sperm treatment for in vitro fertilization.
Collapse
Affiliation(s)
- Octavio López-Albors
- grid.10586.3a0000 0001 2287 8496Department of Anatomy and Comparative Pathology, University of Murcia, 30100 Murcia, Spain ,International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Pedro José Llamas-López
- grid.10586.3a0000 0001 2287 8496Department of Physiology, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Joaquín Ángel Ortuño
- grid.10586.3a0000 0001 2287 8496Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain
| | - Rafael Latorre
- grid.10586.3a0000 0001 2287 8496Department of Anatomy and Comparative Pathology, University of Murcia, 30100 Murcia, Spain ,International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Francisco Alberto García-Vázquez
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain ,grid.10586.3a0000 0001 2287 8496Department of Physiology, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain ,grid.452553.0Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
68
|
Soluble adenylyl cyclase regulates the cytosolic NADH/NAD + redox state and the bioenergetic switch between glycolysis and oxidative phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148367. [PMID: 33412125 DOI: 10.1016/j.bbabio.2020.148367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/11/2020] [Accepted: 12/19/2020] [Indexed: 12/22/2022]
Abstract
The evolutionarily conserved soluble adenylyl cyclase (sAC, ADCY10) mediates cAMP signaling exclusively in intracellular compartments. Because sAC activity is sensitive to local concentrations of ATP, bicarbonate, and free Ca2+, sAC is potentially an important metabolic sensor. Nonetheless, little is known about how sAC regulates energy metabolism in intact cells. In this study, we demonstrated that both pharmacological and genetic suppression of sAC resulted in increased lactate secretion and decreased pyruvate secretion in multiple cell lines and primary cultures of mouse hepatocytes and cholangiocytes. The increased extracellular lactate-to-pyruvate ratio upon sAC suppression reflected an increased cytosolic free [NADH]/[NAD+] ratio, which was corroborated by using the NADH/NAD+ redox biosensor Peredox-mCherry. Mechanistic studies in permeabilized HepG2 cells showed that sAC inhibition specifically suppressed complex I of the mitochondrial respiratory chain. A survey of cAMP effectors revealed that only selective inhibition of exchange protein activated by cAMP 1 (Epac1), but not protein kinase A (PKA) or Epac2, suppressed complex I-dependent respiration and significantly increased the cytosolic NADH/NAD+ redox state. Analysis of the ATP production rate and the adenylate energy charge showed that inhibiting sAC reciprocally affects ATP production by glycolysis and oxidative phosphorylation while maintaining cellular energy homeostasis. In conclusion, our study shows that, via the regulation of complex I-dependent mitochondrial respiration, sAC-Epac1 signaling regulates the cytosolic NADH/NAD+ redox state, and coordinates oxidative phosphorylation and glycolysis to maintain cellular energy homeostasis. As such, sAC is effectively a bioenergetic switch between aerobic glycolysis and oxidative phosphorylation at the post-translational level.
Collapse
|
69
|
Polyamines Influence Mouse Sperm Channels Activity. Int J Mol Sci 2021; 22:ijms22010441. [PMID: 33406808 PMCID: PMC7795802 DOI: 10.3390/ijms22010441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 01/15/2023] Open
Abstract
Polyamines are ubiquitous polycationic compounds that are highly charged at physiological pH. While passing through the epididymis, sperm lose their capacity to synthesize the polyamines and, upon ejaculation, again come into contact with the polyamines contained in the seminal fluid, unleashing physiological events that improve sperm motility and capacitation. In the present work, we hypothesize about the influence of polyamines, namely, spermine, spermidine, and putrescine, on the activity of sperm channels, evaluating the intracellular concentrations of chloride [Cl−]i, calcium [Ca2+]i, sodium [Na+]i, potassium [K+]i, the membrane Vm, and pHi. The aim of this is to identify the possible regulatory mechanisms mediated by the polyamines on sperm-specific channels under capacitation and non-capacitation conditions. The results showed that the presence of polyamines did not directly influence the activity of calcium and chloride channels. However, the results suggested an interaction of polyamines with sodium and potassium channels, which may contribute to the membrane Vm during capacitation. In addition, alkalization of the pHi revealed the possible activation of sperm-specific Na+/H+ exchangers (NHEs) by the increased levels of cyclic AMP (cAMP), which were produced by soluble adenylate cyclase (sAC) and interact with the polyamines, evidence that is supported by in silico analysis.
Collapse
|
70
|
Baro Graf C, Ritagliati C, Stival C, Luque GM, Gentile I, Buffone MG, Krapf D. Everything you ever wanted to know about PKA regulation and its involvement in mammalian sperm capacitation. Mol Cell Endocrinol 2020; 518:110992. [PMID: 32853743 DOI: 10.1016/j.mce.2020.110992] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022]
Abstract
The 3', 5'-cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA) is a tetrameric holoenzyme comprising a set of two regulatory subunits (PKA-R) and two catalytic (PKA-C) subunits. The PKA-R subunits act as sensors of cAMP and allow PKA-C activity. One of the first signaling events observed during mammalian sperm capacitation is PKA activation. Thus, understanding how PKA activity is restricted in space and time is crucial to decipher the critical steps of sperm capacitation. It is widely accepted that PKA specificity depends on several levels of regulation. Anchoring proteins play a pivotal role in achieving proper localization signaling, subcellular targeting and cAMP microdomains. These multi-factorial regulation steps are necessary for a precise spatio-temporal activation of PKA. Here we discuss recent understanding of regulatory mechanisms of PKA in mammalian sperm, such as post-translational modifications, in the context of its role as the master orchestrator of molecular events conducive to capacitation.
Collapse
Affiliation(s)
- Carolina Baro Graf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina; Laboratorio de Medicina Reproductiva (LMR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Carla Ritagliati
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
| | - Cintia Stival
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
| | - Guillermina M Luque
- Laboratory of Cellular and Molecular Reproductive Biology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Iñaki Gentile
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
| | - Mariano G Buffone
- Laboratory of Cellular and Molecular Reproductive Biology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Dario Krapf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina; Laboratorio de Medicina Reproductiva (LMR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
71
|
Zalazar L, Stival C, Nicolli AR, De Blas GA, Krapf D, Cesari A. Male Decapacitation Factor SPINK3 Blocks Membrane Hyperpolarization and Calcium Entry in Mouse Sperm. Front Cell Dev Biol 2020; 8:575126. [PMID: 33102481 PMCID: PMC7554638 DOI: 10.3389/fcell.2020.575126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/10/2020] [Indexed: 01/10/2023] Open
Abstract
Mammalian sperm acquire ability to fertilize through a process called capacitation, occurring after ejaculation and regulated by both female molecules and male decapacitation factors. Bicarbonate and calcium present in the female reproductive tract trigger capacitation in sperm, leading to acrosomal responsiveness and hyperactivated motility. Male decapacitating factors present in the semen avert premature capacitation, until detached from the sperm surface. However, their mechanism of action remains elusive. Here we describe for the first time the molecular basis for the decapacitating action of the seminal protein SPINK3 in mouse sperm. When present in the capacitating medium, SPINK3 inhibited Src kinase, a modulator of the potassium channel responsible for plasma membrane hyperpolarization. Lack of hyperpolarization affected calcium channels activity, impairing the acquisition of acrosomal responsiveness and blocking hyperactivation. Interestingly, SPINK3 acted only on non-capacitated sperm, as it did not bind to capacitated cells. Binding selectivity allows its decapacitating action only in non-capacitated sperm, without affecting capacitated cells.
Collapse
Affiliation(s)
- Lucia Zalazar
- Instituto de Investigaciones Biológicas (IIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Cintia Stival
- Laboratory of Cell Signal Transduction Networks, Instituto de Biologia Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Anabella R Nicolli
- Instituto de Investigaciones Biológicas (IIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Gerardo A De Blas
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, National Scientific and Technical Research Council, Mendoza, Argentina
| | - Dario Krapf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biologia Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Andreina Cesari
- Instituto de Investigaciones Biológicas (IIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.,Escuela Superior de Medicina, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
72
|
The Role of Zinc in Male Fertility. Int J Mol Sci 2020; 21:ijms21207796. [PMID: 33096823 PMCID: PMC7589359 DOI: 10.3390/ijms21207796] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Several studies proposed the importance of zinc ion in male fertility. Here, we describe the properties, roles and cellular mechanisms of action of Zn2+ in spermatozoa, focusing on its involvement in sperm motility, capacitation and acrosomal exocytosis, three functions that are crucial for successful fertilization. The impact of zinc supplementation on assisted fertilization techniques is also described. The impact of zinc on sperm motility has been investigated in many vertebrate and invertebrate species. It has been reported that Zn2+ in human seminal plasma decreases sperm motility and that Zn2+ removal enhances motility. Reduction in the intracellular concentration of Zn2+ during epididymal transit allows the development of progressive motility and the subsequent hyper activated motility during sperm capacitation. Extracellular Zn2+ affects intracellular signaling pathways through its interaction with the Zn2+ sensing receptor (ZnR), also named GPR39. This receptor was found in the sperm tail and the acrosome, suggesting the possible involvement of Zn2+ in sperm motility and acrosomal exocytosis. Our studies showed that Zn2+ stimulates bovine sperm acrosomal exocytosis, as well as human sperm hyper-activated motility, were both mediated by GPR39. Zn2+ binds and activates GPR39, which activates the trans-membrane-adenylyl-cyclase (tmAC) to catalyze cAMP production. The NHE (Na+/H+-exchanger) is activated by cAMP, leading in increased pHi and activation of the sperm-specific Ca2+ channel CatSper, resulting in an increase in [Ca2+]i, which, together with HCO3−, activates the soluble adenylyl-cyclase (sAC). The increase in [cAMP]i activates protein kinase A (PKA), followed by activation of the Src-epidermal growth factor receptor-Pphospholipase C (Src-EGFR-PLC) cascade, resulting in inositol-triphosphate (IP3) production, which mobilizes Ca2+ from the acrosome, causing a further increase in [Ca2+]i and the development of hyper-activated motility. PKA also activates phospholipase D1 (PLD1), leading to F-actin formation during capacitation. Prior to the acrosomal exocytosis, PLC induces phosphadidylinositol-4,5-bisphosphate (PIP2) hydrolysis, leading to the release of the actin-severing protein gelsolin to the cytosol, which is activated by Ca2+, resulting in F-actin breakdown and the occurrence of acrosomal exocytosis.
Collapse
|
73
|
Chiarante N, Alonso CAI, Plaza J, Lottero-Leconte R, Arroyo-Salvo C, Yaneff A, Osycka-Salut CE, Davio C, Miragaya M, Perez-Martinez S. Cyclic AMP efflux through MRP4 regulates actin dynamics signalling pathway and sperm motility in bovines. Sci Rep 2020; 10:15619. [PMID: 32973195 PMCID: PMC7518284 DOI: 10.1038/s41598-020-72425-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/27/2020] [Indexed: 11/15/2022] Open
Abstract
Previously we demonstrated that multidrug resistance-associated protein 4 transporter (MRP4) mediates cAMP efflux in bovine spermatozoa and that extracellular cAMP (ecAMP) triggers events associated to capacitation. Here, we deepen the study of the role of MRP4 in bovine sperm function by using MK571, an MRP4 inhibitor. The incubation of spermatozoa with MK571 during 45 min inhibited capacitation-associated events. MRP4 was localized in post-acrosomal region and mid-piece at 15 min capacitation, while at 45 min it was mainly located in the acrosome. After 15 min, MK571 decreased total sperm motility (TM), progressive motility (PM) and several kinematic parameters. The addition of ecAMP rescued MK571 effect and ecAMP alone increased the percentage of motile sperm and kinematics parameters. Since actin cytoskeleton plays essential roles in the regulation of sperm motility, we investigated if MRP4 activity might affect actin polymerization. After 15 min capacitation, an increase in F-actin was observed, which was inhibited by MK571. This effect was reverted by the addition of ecAMP. Furthermore, ecAMP alone increased F-actin levels while no F-actin was detected with ecAMP in the presence of PKA inhibitors. Our results support the importance of cAMP efflux through MRP4 in sperm capacitation and suggest its involvement in the regulation of actin polymerization and motility.
Collapse
Affiliation(s)
- Nicolás Chiarante
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Carlos A I Alonso
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jessica Plaza
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), UBA, Buenos Aires, Argentina
| | - Raquel Lottero-Leconte
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Camila Arroyo-Salvo
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA) (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD, Buenos Aires, Argentina
| | - Claudia E Osycka-Salut
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIIB-UNSAM/CONICET), Campus Miguelete, Avenida 25 de Mayo y Francia, San Martín, B1650HMP, Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas (ININFA) (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD, Buenos Aires, Argentina
| | - Marcelo Miragaya
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), UBA, Buenos Aires, Argentina
| | - Silvina Perez-Martinez
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
74
|
Hidalgo DM, Romarowski A, Gervasi MG, Navarrete F, Balbach M, Salicioni AM, Levin LR, Buck J, Visconti PE. Capacitation increases glucose consumption in murine sperm. Mol Reprod Dev 2020; 87:1037-1047. [PMID: 32914502 DOI: 10.1002/mrd.23421] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022]
Abstract
Mammalian sperm acquire fertilization capacity in the female reproductive tract in a process known as capacitation. During capacitation, sperm change their motility pattern (i.e., hyperactivation) and become competent to undergo the acrosome reaction. We have recently shown that, in the mouse, sperm capacitation is associated with increased uptake of fluorescently labeled deoxyglucose and with extracellular acidification suggesting enhanced glycolysis. Consistently, in the present work we showed that glucose consumption is enhanced in media that support mouse sperm capacitation suggesting upregulation of glucose metabolic pathways. The increase in glucose consumption was modulated by bicarbonate and blocked by protein kinase A and soluble adenylyl cyclase inhibitors. Moreover, permeable cyclic adenosine monophosphate (cAMP) agonists increase glucose consumption in sperm incubated in conditions that do not support capacitation. Also, the increase in glucose consumption was reduced when sperm were incubated in low calcium conditions. Interestingly, this reduction was not overcome with cAMP agonists. Despite these findings, glucose consumption of sperm from Catsper1 knockout mice was similar to the one from wild type suggesting that other sources of calcium are also relevant. Altogether, these results suggest that cAMP and calcium pathways are involved in the regulation of glycolytic energy pathways during murine sperm capacitation.
Collapse
Affiliation(s)
- David M Hidalgo
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA.,Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, Caceres, Spain
| | - Ana Romarowski
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - María G Gervasi
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - Felipe Navarrete
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - Melanie Balbach
- Department of Pharmacology, Weill Cornell New York, New York City, New York, USA
| | - Ana M Salicioni
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell New York, New York City, New York, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell New York, New York City, New York, USA
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
75
|
Balbach M, Hamzeh H, Jikeli JF, Brenker C, Schiffer C, Hansen JN, Neugebauer P, Trötschel C, Jovine L, Han L, Florman HM, Kaupp UB, Strünker T, Wachten D. Molecular Mechanism Underlying the Action of Zona-pellucida Glycoproteins on Mouse Sperm. Front Cell Dev Biol 2020; 8:572735. [PMID: 32984353 PMCID: PMC7487327 DOI: 10.3389/fcell.2020.572735] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/12/2020] [Indexed: 01/10/2023] Open
Abstract
Mammalian oocytes are enveloped by the zona pellucida (ZP), an extracellular matrix of glycoproteins. In sperm, stimulation with ZP proteins evokes a rapid Ca2+ influx via the sperm-specific, pH-sensitive Ca2+ channel CatSper. However, the physiological role and molecular mechanisms underlying ZP-dependent activation of CatSper are unknown. Here, we delineate the sequence of ZP-signaling events in mouse sperm. We show that ZP proteins evoke a rapid intracellular pHi increase that rests predominantly on Na+/H+ exchange by NHA1 and requires cAMP synthesis by the soluble adenylyl cyclase sAC as well as a sufficiently negative membrane potential set by the spem-specific K+ channel Slo3. The alkaline-activated CatSper channel translates the ZP-induced pHi increase into a Ca2+ response. Our findings reveal the molecular components underlying ZP action on mouse sperm, opening up new avenues for understanding the basic principles of sperm function and, thereby, mammalian fertilization.
Collapse
Affiliation(s)
- Melanie Balbach
- Center of Advanced European Studies and Research, Department of Molecular Sensory Systems, Bonn, Germany
| | - Hussein Hamzeh
- Center of Advanced European Studies and Research, Department of Molecular Sensory Systems, Bonn, Germany
| | - Jan F Jikeli
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christoph Brenker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Christian Schiffer
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Jan N Hansen
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Pia Neugebauer
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden
| | - Ling Han
- Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden
| | - Harvey M Florman
- Department of Obstetrics and Gynecology, University of Massachusetts Medical School Worcester, Worcester, MA, United States
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research, Department of Molecular Sensory Systems, Bonn, Germany.,Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Timo Strünker
- Center of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
76
|
Machado SA, Sharif M, Kadirvel G, Bovin N, Miller DJ. Adhesion to oviduct glycans regulates porcine sperm Ca2+ influx and viability. PLoS One 2020; 15:e0237666. [PMID: 32822385 PMCID: PMC7442259 DOI: 10.1371/journal.pone.0237666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Before fertilization, sperm bind to epithelial cells of the oviduct isthmus to form a reservoir that regulates sperm viability and capacitation. The sperm reservoir maintains optimum fertility in species, like swine, in which semen deposition and ovulation may not be well synchronized. We demonstrated previously that porcine sperm bind to two oviductal glycan motifs, a biantennary 6-sialylated N-acetyllactosamine (bi-SiaLN) oligosaccharide and 3-O-sulfated Lewis X trisaccharide (suLeX). Here, we assessed the ability of these glycans to regulate sperm Ca2+ influx, capacitation and affect sperm lifespan. After 24 h, the viability of sperm bound to immobilized bi-SiaLN and suLeX was higher (46% and 41% respectively) compared to viability of free-swimming sperm (10–12%). Ca2+ is a central regulator of sperm function so we assessed whether oviduct glycans could affect the Ca2+ influx that occurs during capacitation. Using a fluorescent intracellular Ca2+ probe, we observed that both oviduct glycans suppressed the Ca2+ increase that occurs during capacitation. Thus, specific oviduct glycans can regulate intracellular Ca2+. Because the increase in intracellular Ca2+ was suppressed by oviduct glycans, we examined whether glycans affected capacitation, as determined by protein tyrosine phosphorylation and the ability to undergo a Ca2+ ionophore-induced acrosome reaction. We found no discernable suppression of capacitation in sperm bound to oviduct glycans. We also detected no effect of oviduct glycans on sperm motility during capacitation. In summary, LeX and bi-SiaLN glycan motifs found on oviduct oligosaccharides suppress the Ca2+ influx that occurs during capacitation and extend sperm lifespan but do not affect sperm capacitation or motility.
Collapse
Affiliation(s)
- Sergio A. Machado
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Momal Sharif
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Govindasamy Kadirvel
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Nicolai Bovin
- Shemyakin Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - David J. Miller
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- * E-mail:
| |
Collapse
|
77
|
Wang T, Young S, Krenz H, Tüttelmann F, Röpke A, Krallmann C, Kliesch S, Zeng XH, Brenker C, Strünker T. The Ca 2+ channel CatSper is not activated by cAMP/PKA signaling but directly affected by chemicals used to probe the action of cAMP and PKA. J Biol Chem 2020; 295:13181-13193. [PMID: 32703901 DOI: 10.1074/jbc.ra120.013218] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
The sperm-specific Ca2+ channel CatSper (cation channel of sperm) controls the influx of Ca2+ into the flagellum and, thereby, the swimming behavior of sperm. A hallmark of human CatSper is its polymodal activation by membrane voltage, intracellular pH, and oviductal hormones. Whether CatSper is also activated by signaling pathways involving an increase of cAMP and ensuing activation of PKA is, however, a matter of controversy. To shed light on this question, we used kinetic ion-sensitive fluorometry, patch-clamp recordings, and optochemistry to study transmembrane Ca2+ flux and membrane currents in human sperm from healthy donors and from patients that lack functional CatSper channels. We found that human CatSper is neither activated by intracellular cAMP directly nor indirectly by the cAMP/PKA-signaling pathway. Instead, we show that nonphysiological concentrations of cAMP and membrane-permeable cAMP analogs used to mimic the action of intracellular cAMP activate human CatSper from the outside via a hitherto-unknown extracellular binding site. Finally, we demonstrate that the effects of common PKA inhibitors on human CatSper rest predominantly, if not exclusively, on off-target drug actions on CatSper itself rather than on inhibition of PKA. We conclude that the concept of an intracellular cAMP/PKA-activation of CatSper is primarily based on unspecific effects of chemical probes used to interfere with cAMP signaling. Altogether, our findings solve several controversial issues and reveal a novel ligand-binding site controlling the activity of CatSper, which has important bearings on future studies of cAMP and Ca2+ signaling in sperm.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, China; Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Samuel Young
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Henrike Krenz
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Frank Tüttelmann
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - Albrecht Röpke
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - Claudia Krallmann
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Xu-Hui Zeng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, China.
| | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany.
| | - Timo Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany; Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany.
| |
Collapse
|
78
|
Akbari A, Pipitone GB, Anvar Z, Jaafarinia M, Ferrari M, Carrera P, Totonchi M. ADCY10 frameshift variant leading to severe recessive asthenozoospermia and segregating with absorptive hypercalciuria. Hum Reprod 2020; 34:1155-1164. [PMID: 31119281 DOI: 10.1093/humrep/dez048] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/18/2019] [Accepted: 03/13/2019] [Indexed: 01/27/2023] Open
Abstract
STUDY QUESTION Can whole exome sequencing (WES) reveal a novel pathogenic variant in asthenozoospermia in a multiplex family including multiple patients? SUMMARY ANSWER Patients were discovered to be homozygous for a rare 2-bp deletion in the ADCY10 coding region (c.1205_1206del, rs779944215). WHAT IS KNOWN ALREADY ADCY10 encodes for soluble adenylyl cyclase (sAC), which is the predominant adenylate cyclase in sperm. It is already established that proper sAC activity and a constant supply of cAMP are crucial to sperm motility regulation, and knockout mouse models have been reported as severely asthenozoospermic. ADCY10 is a susceptibility gene for dominant absorptive hypercalciuria (OMIM#143870); however, no ADCY10 variations have been confirmed to cause human asthenozoospermia to date. STUDY DESIGN, SIZE, DURATION This was a retrospective genetics study of a highly consanguineous pedigree of asthenozoospermia. The subject family was recruited in Iran in 2016. PARTICIPANTS/MATERIALS, SETTING, METHODS The two patients were diagnosed as asthenozoospermic through careful clinical investigations. Both patients, respective parents, and an unaffected brother were subjected to WES. The discovered variant was validated by Sanger sequencing and segregated with the phenotype. To confirm the pathogenicity of the variant, sperm samples from both patients, 10 normozoospermic men and 10 asthenozoospermic patients not representing the variation, were treated with a cAMP analogue dissolved in human tubal fluid medium, followed by computer-assisted sperm analysis and statistical analyses. MAIN RESULTS AND THE ROLE OF CHANCE The discovered homozygous variant occurs at 10 amino acids upstream of the ADCY10 nucleotide binding site leading to a premature termination (p.His402Argfs*41). Treatment of the patients' sperm samples with a cell-permeable cAMP analogue resulted in a significant increase in sperm motility, indicating the pathogenic role of the variant. Moreover, absorptive hypercalciuria, segregating within the family, was also associated with the same variant following a dominant inheritance. LIMITATIONS, REASONS FOR CAUTION Though nonsense-mediated decay is highly likely to occur in the mutated transcripts, we were not able to confirm this due to low RNA levels in mature sperm. WIDER IMPLICATIONS OF THE FINDINGS Our finding enlarges the phenotypic spectrum associated with the ADCY10 gene, previously described as a susceptibility gene for dominant absorptive hypercalciuria. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grants from the Royan Institute, Tehran, Iran, and San Raffaele Hospital, Milan, Italy. The authors have no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Arvand Akbari
- Department of Biology, Faculty of Science, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran.,Department of Biology, Faculty of Science, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | | | - Zahra Anvar
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Obstetrics & Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Jaafarinia
- Department of Biology, Faculty of Science, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran.,Department of Biology, Faculty of Science, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Maurizio Ferrari
- Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital, Milan, Italy.,Genomic Unit for the Diagnosis of Human Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Carrera
- Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital, Milan, Italy.,Genomic Unit for the Diagnosis of Human Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
79
|
Zapata-Carmona H, Barón L, Zuñiga LM, Díaz ES, Kong M, Drobnis EZ, Sutovsky P, Morales P. The activation of the chymotrypsin-like activity of the proteasome is regulated by soluble adenyl cyclase/cAMP/protein kinase A pathway and required for human sperm capacitation. Mol Hum Reprod 2020; 25:587-600. [PMID: 31329238 DOI: 10.1093/molehr/gaz037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
One of the first events of mammalian sperm capacitation is the activation of the soluble adenyl cyclase/cAMP/protein kinase A (SACY/cAMP/PKA) pathway. Here, we evaluated whether the increase in PKA activity at the onset of human sperm capacitation is responsible for the activation of the sperm proteasome and whether this activation is required for capacitation progress. Viable human sperm were incubated with inhibitors of the SACY/cAMP/PKA pathway. The chymotrypsin-like activity of the sperm proteasome was evaluated using a fluorogenic substrate. Sperm capacitation status was evaluated using the chlortetracycline assay and tyrosine phosphorylation. To determine whether proteasomal subunits were phosphorylated by PKA, the proteasome was immunoprecipitated and tested on a western blot using an antibody against phosphorylated PKA substrates. Immunofluorescence microscopy analysis and co-immunoprecipitation (IPP) were used to investigate an association between the catalytic subunit alpha of PKA (PKA-Cα) and the proteasome. The chymotrypsin-like activity of the sperm proteasome significantly increased after 5 min of capacitation (P < 0.001) and remained high for the remaining incubation time. Treatment with H89, KT5720 or KH7 significantly decreased the chymotrypsin-like activity of the proteasome (P < 0.001). IPP experiments indicated that PKA inhibition significantly modified phosphorylation of proteasome subunits. In addition, PKA-Cα colocalized with the proteasome in the equatorial segment and in the connecting piece, and co-immunoprecipitated with the proteasome. This is the first demonstration of sperm proteasome activity being directly regulated by SACY/PKA-Cα. This novel discovery extends our current knowledge of sperm physiology and may be used to manage sperm capacitation during assisted reproductive technology procedures.
Collapse
Affiliation(s)
- Héctor Zapata-Carmona
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Lina Barón
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Lidia M Zuñiga
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Emilce Silvina Díaz
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Milene Kong
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Erma Z Drobnis
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA.,Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Patricio Morales
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile.,Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
80
|
Leemans B, Stout TAE, De Schauwer C, Heras S, Nelis H, Hoogewijs M, Van Soom A, Gadella BM. Update on mammalian sperm capacitation: how much does the horse differ from other species? Reproduction 2020; 157:R181-R197. [PMID: 30721132 DOI: 10.1530/rep-18-0541] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/04/2019] [Indexed: 12/21/2022]
Abstract
In contrast to various other mammalian species, conventional in vitro fertilization (IVF) with horse gametes is not reliably successful. In particular, stallion spermatozoa fails to penetrate the zona pellucida, most likely due to incomplete activation of stallion spermatozoa (capacitation) under in vitro conditions. In other mammalian species, specific capacitation triggers have been described; unfortunately, none of these is able to induce full capacitation in stallion spermatozoa. Nevertheless, knowledge of capacitation pathways and their molecular triggers might improve our understanding of capacitation-related events observed in stallion sperm. When sperm cells are exposed to appropriate capacitation triggers, several molecular and biochemical changes should be induced in the sperm plasma membrane and cytoplasm. At the level of the sperm plasma membrane, (1) an increase in membrane fluidity, (2) cholesterol depletion and (3) lipid raft aggregation should occur consecutively; the cytoplasmic changes consist of protein tyrosine phosphorylation and elevated pH, cAMP and Ca2+ concentrations. These capacitation-related events enable the switch from progressive to hyperactivated motility of the sperm cells, and the induction of the acrosome reaction. These final capacitation triggers are indispensable for sperm cells to migrate through the viscous oviductal environment, penetrate the cumulus cells and zona pellucida and, finally, fuse with the oolemma. This review will focus on molecular aspects of sperm capacitation and known triggers in various mammalian species. Similarities and differences with the horse will be highlighted to improve our understanding of equine sperm capacitation/fertilizing events.
Collapse
Affiliation(s)
- Bart Leemans
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Tom A E Stout
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Catharina De Schauwer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Sonia Heras
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Hilde Nelis
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Maarten Hoogewijs
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Bart M Gadella
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
81
|
Fernández-Alegre E, Álvarez-Fernández I, Domínguez JC, Casao A, Martínez-Pastor F. Melatonin Non-Linearly Modulates Bull Spermatozoa Motility and Physiology in Capacitating and Non-Capacitating Conditions. Int J Mol Sci 2020; 21:ijms21082701. [PMID: 32295040 PMCID: PMC7215461 DOI: 10.3390/ijms21082701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 02/08/2023] Open
Abstract
Bull spermatozoa physiology may be modulated by melatonin. We washed ejaculated spermatozoa free of melatonin and incubated them (4 h, 38 °C) with 0-pM, 1-pM, 100-pM, 10-nM and 1-µM melatonin in TALP-HEPES (non-capacitating) and TALP-HEPES-heparin (capacitating). This range of concentrations encompassed the effects mediated by melatonin receptors (pM), intracellular targets (nM–µM) or antioxidant activity (µM). Treatment effects were assessed as motility changes by computer-assisted sperm analysis (CASA) of motility and physiological changes by flow cytometry. Melatonin effects were more evident in capacitating conditions, with 100 pM reducing motility and velocity (VCL) while increasing a “slow” subpopulation. All concentrations decreased apoptotic spermatozoa and stimulated mitochondrial activity in viable spermatozoa, with 100 pM–1 µM increasing acrosomal damage, 10 nM–1 µM increasing intracellular calcium and 1 pM reducing the response to a calcium-ionophore challenge. In non-capacitating media, 1 µM increased hyperactivation-related variables and decreased apoptotic spermatozoa; 100 pM–1 µM increased membrane disorders (related to capacitation); all concentrations decreased mitochondrial ROS production. Melatonin concentrations had a modal effect on bull spermatozoa, suggesting a capacitation-modulating role and protective effect at physiological concentrations (pM). Some effects may be of practical use, considering artificial reproductive techniques.
Collapse
Affiliation(s)
- Estela Fernández-Alegre
- Institute of Animal Health and Cattle Development (INDEGSAL), University of León, 24071 León, Spain; (E.F.-A.); (I.Á.-F.); (J.C.D.)
| | - Indira Álvarez-Fernández
- Institute of Animal Health and Cattle Development (INDEGSAL), University of León, 24071 León, Spain; (E.F.-A.); (I.Á.-F.); (J.C.D.)
| | - Juan Carlos Domínguez
- Institute of Animal Health and Cattle Development (INDEGSAL), University of León, 24071 León, Spain; (E.F.-A.); (I.Á.-F.); (J.C.D.)
- Department of Animal Medicine, Surgery and Anatomy (Animal Medicine and Surgery), University of León, 24071 León, Spain
| | - Adriana Casao
- BIOFITER, Department of Biochemistry and Molecular and Cell Biology, Institute of Environmental Sciences of Aragón, School of Veterinary Medicine, University of Zaragoza, 50013 Zaragoza, Spain;
| | - Felipe Martínez-Pastor
- Institute of Animal Health and Cattle Development (INDEGSAL), University of León, 24071 León, Spain; (E.F.-A.); (I.Á.-F.); (J.C.D.)
- Department of Molecular Biology (Cell Biology), University of León, 24071 León, Spain
- Correspondence: ; Tel.: +34-987-291-491
| |
Collapse
|
82
|
Vyklicka L, Lishko PV. Dissecting the signaling pathways involved in the function of sperm flagellum. Curr Opin Cell Biol 2020; 63:154-161. [PMID: 32097833 DOI: 10.1016/j.ceb.2020.01.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/09/2020] [Accepted: 01/26/2020] [Indexed: 01/28/2023]
Abstract
The mammalian flagellum is a specific type of motile cilium required for sperm motility and male fertility. Effective flagellar movement is dependent on axonemal function, which in turn relies on proper ion homeostasis within the flagellar compartment. This ion homeostasis is maintained by the concerted function of ion channels and transporters that initiate signal transduction pathways resulting in motility changes. Advances in electrophysiology and super-resolution microscopy have helped to identify and characterize new regulatory modalities of the mammalian flagellum. Here, we discuss what is currently known about the regulation of flagellar ion channels and transporters that maintain sodium, potassium, calcium, and proton homeostasis. Identification of new regulatory elements and their specific roles in sperm motility is imperative for improving diagnostics of male infertility.
Collapse
Affiliation(s)
- Lenka Vyklicka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Polina V Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
83
|
Leclerc P, Goupil S, Rioux J, Lavoie‐Ouellet C, Clark M, Ruiz J, Saindon A. Study on the role of calmodulin in sperm function through the enrichment and identification of calmodulin‐binding proteins in bovine ejaculated spermatozoa. J Cell Physiol 2020; 235:5340-5352. [DOI: 10.1002/jcp.29421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Pierre Leclerc
- Department of Obstetrics, Gynecology and ReproductionCenter for Research on Reproduction, Development and Intergenerational Health, Laval University Quebec Canada
- Reproduction, Mother and Youth Health AxisCHU de Quebec‐Université Laval research Center Quebec Canada
| | - Serge Goupil
- Department of Obstetrics, Gynecology and ReproductionCenter for Research on Reproduction, Development and Intergenerational Health, Laval University Quebec Canada
- Reproduction, Mother and Youth Health AxisCHU de Quebec‐Université Laval research Center Quebec Canada
| | - Jean‐François Rioux
- Department of Obstetrics, Gynecology and ReproductionCenter for Research on Reproduction, Development and Intergenerational Health, Laval University Quebec Canada
- Reproduction, Mother and Youth Health AxisCHU de Quebec‐Université Laval research Center Quebec Canada
| | - Camille Lavoie‐Ouellet
- Department of Obstetrics, Gynecology and ReproductionCenter for Research on Reproduction, Development and Intergenerational Health, Laval University Quebec Canada
- Reproduction, Mother and Youth Health AxisCHU de Quebec‐Université Laval research Center Quebec Canada
| | - Marie‐Ève Clark
- Department of Obstetrics, Gynecology and ReproductionCenter for Research on Reproduction, Development and Intergenerational Health, Laval University Quebec Canada
- Reproduction, Mother and Youth Health AxisCHU de Quebec‐Université Laval research Center Quebec Canada
| | - Juliana Ruiz
- Department of Obstetrics, Gynecology and ReproductionCenter for Research on Reproduction, Development and Intergenerational Health, Laval University Quebec Canada
- Reproduction, Mother and Youth Health AxisCHU de Quebec‐Université Laval research Center Quebec Canada
| | - Andrée‐Anne Saindon
- Department of Obstetrics, Gynecology and ReproductionCenter for Research on Reproduction, Development and Intergenerational Health, Laval University Quebec Canada
- Reproduction, Mother and Youth Health AxisCHU de Quebec‐Université Laval research Center Quebec Canada
| |
Collapse
|
84
|
Dey S, Brothag C, Vijayaraghavan S. Signaling Enzymes Required for Sperm Maturation and Fertilization in Mammals. Front Cell Dev Biol 2019; 7:341. [PMID: 31921853 PMCID: PMC6930163 DOI: 10.3389/fcell.2019.00341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
In mammals, motility and fertilizing ability of spermatozoa develop during their passage through the epididymis. After ejaculation, sperm undergo capacitation and hyperactivation in the female reproductive tract - a motility transition that is required for sperm penetration of the egg. Both epididymal initiation of sperm motility and hyperactivation are essential for male fertility. Motility initiation in the epididymis and sperm hyperactivation involve changes in metabolism, cAMP (cyclic adenosine mono-phosphate), calcium and pH acting through protein kinases and phosphatases. Despite this knowledge, we still do not understand, in biochemical terms, how sperm acquire motility in the epididymis and how motility is altered in the female reproductive tract. Recent data show that the sperm specific protein phosphatase PP1γ2, glycogen synthase kinase 3 (GSK3), and the calcium regulated phosphatase calcineurin (PP2B), are involved in epididymal sperm maturation. The protein phosphatase PP1γ2 is present only in testis and sperm in mammals. PP1γ2 has a isoform-specific requirement for normal function of mammalian sperm. Sperm PP1γ2 is regulated by three proteins - inhibitor 2, inhibitor 3 and SDS22. Changes in phosphorylation of these three inhibitors and their binding to PP1γ2 are involved in initiation and activation of sperm motility. The inhibitors are phosphorylated by protein kinases, one of which is GSK3. The isoform GSK3α is essential for epididymal sperm maturation and fertility. Calcium levels dramatically decrease during sperm maturation and initiation of motility suggesting that the calcium activated sperm phosphatase (PP2B) activity also decreases. Loss of PP2B results in male infertility due to impaired sperm maturation in the epididymis. Thus the three signaling enzymes PP1γ2, GSK3, and PP2B along with the documented PKA (protein kinase A) have key roles in sperm maturation and hyperactivation. Significantly, all these four signaling enzymes are present as specific isoforms only in placental mammals, a testimony to their essential roles in the unique aspects of sperm function in mammals. These findings should lead to a better biochemical understanding of the basis of male infertility and should lead to novel approaches to a male contraception and managed reproduction.
Collapse
|
85
|
McBrinn RC, Fraser J, Hope AG, Gray DW, Barratt CLR, Martins da Silva SJ, Brown SG. Novel pharmacological actions of trequinsin hydrochloride improve human sperm cell motility and function. Br J Pharmacol 2019; 176:4521-4536. [PMID: 31368510 PMCID: PMC6932944 DOI: 10.1111/bph.14814] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Asthenozoospermia is a leading cause of male infertility, but development of pharmacological agents to improve sperm motility is hindered by the lack of effective screening platforms and knowledge of suitable molecular targets. We have demonstrated that a high-throughput screening (HTS) strategy and established in vitro tests can identify and characterise compounds that improve sperm motility. Here, we applied HTS to identify new compounds from a novel small molecule library that increase intracellular calcium ([Ca2+ ]i ), promote human sperm cell motility, and systematically determine the mechanism of action. EXPERIMENTAL APPROACH A validated HTS fluorometric [Ca2+ ]i assay was used to screen an in-house library of compounds. Trequinsin hydrochloride (a PDE3 inhibitor) was selected for detailed molecular (plate reader assays, electrophysiology, and cyclic nucleotide measurement) and functional (motility and acrosome reaction) testing in sperm from healthy volunteer donors and, where possible, patients. KEY RESULTS Fluorometric assays identified trequinsin as an efficacious agonist of [Ca2+ ]i , although less potent than progesterone. Functionally, trequinsin significantly increased cell hyperactivation and penetration into viscous medium in all donor sperm samples and cell hyperactivation in 22/25 (88%) patient sperm samples. Trequinsin-induced [Ca2+ ]i responses were cross-desensitised consistently by PGE1 but not progesterone. Whole-cell patch clamp electrophysiology confirmed that trequinsin activated CatSper and partly inhibited potassium channel activity. Trequinsin also increased intracellular cGMP. CONCLUSION AND IMPLICATIONS Trequinsin exhibits a novel pharmacological profile in human sperm and may be a suitable lead compound for the development of new agents to improve patient sperm function and fertilisation potential.
Collapse
Affiliation(s)
- Rachel C McBrinn
- School of Science, Engineering and Technology, Abertay University, Dundee, UK
| | - Joanna Fraser
- School of Science, Engineering and Technology, Abertay University, Dundee, UK
| | - Anthony G Hope
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - David W Gray
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Christopher L R Barratt
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Sarah J Martins da Silva
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Sean G Brown
- School of Science, Engineering and Technology, Abertay University, Dundee, UK
| |
Collapse
|
86
|
Mewes M, Lenders M, Stappers F, Scharnetzki D, Nedele J, Fels J, Wedlich-Söldner R, Brand SM, Schmitz B, Brand E. Soluble adenylyl cyclase (sAC) regulates calcium signaling in the vascular endothelium. FASEB J 2019; 33:13762-13774. [PMID: 31585052 DOI: 10.1096/fj.201900724r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vascular endothelium acts as a selective barrier between the bloodstream and extravascular tissues. Intracellular [Ca2+]i signaling is essential for vasoactive agonist-induced stimulation of endothelial cells (ECs), typically including Ca2+ release from the endoplasmic reticulum (ER). Although it is known that interactions of Ca2+ and cAMP as ubiquitous messengers are involved in this process, the individual contribution of cAMP-generating adenylyl cyclases (ACs), including the only soluble AC (sAC; ADCY10), remains less clear. Using life-cell microscopy and plate reader-based [Ca2+]i measurements, we found that human immortalized ECs, primary aortic and cardiac microvascular ECs, and primary vascular smooth muscle cells treated with sAC-specific inhibitor KH7 or anti-sAC-small interfering RNA did not show endogenous or exogenous ATP-induced [Ca2+]i elevation. Of note, a transmembrane AC (tmAC) inhibitor did not prevent ATP-induced [Ca2+]i elevation in ECs. Moreover, l-phenylephrine-dependent constriction of ex vivo mouse aortic ring segments was also reduced by KH7. Analysis of the inositol-1,4,5-trisphosphate (IP3) pathway revealed reduced IP3 receptor phosphorylation after KH7 application, which also prevented [Ca2+]i elevation induced by IP3 receptor agonist adenophostin A. Our results suggest that sAC rather than tmAC controls the agonist-induced ER-dependent Ca2+ response in ECs and may represent a treatment target in arterial hypertension and heart failure.-Mewes, M., Lenders, M., Stappers, F., Scharnetzki, D., Nedele, J., Fels, J., Wedlich-Söldner, R., Brand, S.-M., Schmitz, B., Brand, E. Soluble adenylyl cyclase (sAC) regulates calcium signaling in the vascular endothelium.
Collapse
Affiliation(s)
- Mirja Mewes
- Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Malte Lenders
- Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Franciska Stappers
- Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - David Scharnetzki
- Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Johanna Nedele
- Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Johannes Fels
- Institute for Cell Dynamics and Imaging, Medical Faculty, University of Muenster, Muenster, Germany.,Department of Physiology, Pathophysiology, and Toxicology and Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany
| | - Roland Wedlich-Söldner
- Institute for Cell Dynamics and Imaging, Medical Faculty, University of Muenster, Muenster, Germany
| | - Stefan-Martin Brand
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Boris Schmitz
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Eva Brand
- Internal Medicine D, Department of Nephrology, Hypertension, and Rheumatology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
87
|
Priyadarshana C, Tajima A, Ishikawa N, Asano A. Membrane rafts regulate sperm acrosome reaction via cAMP-dependent pathway in chickens (Gallus gallus domesticus). Biol Reprod 2019; 99:1000-1009. [PMID: 29788183 DOI: 10.1093/biolre/ioy120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/16/2018] [Indexed: 11/13/2022] Open
Abstract
Both transcriptionally and translationally inactive sperm need preassembled pathways into specific cellular compartments to function. Although initiation of the acrosome reaction (AR) involves several signaling pathways including protein kinase A (PKA) activation, how these are regulated remains poorly understood in avian sperm. Membrane rafts are specific membrane regions enriched in sterols and functional proteins and play important roles in diverse cellular processes, including signal transduction. Our recent studies on chicken sperm demonstrated that membrane rafts exist and play a role in multistage fertilization. These, combined with the functional importance of membrane rafts in mammalian sperm AR, prompted us to investigate the roles of membrane rafts in signaling pathways leading to AR in chicken sperm. Using 2-hydroxypropyl-β-cyclodextrin (2-OHCD), we found that the disruption of membrane rafts inhibits PKA activity and AR without affecting protein tyrosine phosphorylation; however, these inhibitions were abolished in the presence of a cyclic 3,5-adenosine monophosphate (cAMP) analog. In addition, biochemical experiments showed a decrease in cAMP content in 2-OHCD-treated sperm, suggesting the involvement of soluble adenylyl cyclase (sAC) and transmembrane adenylyl cyclase (tmAC). Pharmacological experiments, combined with transcriptome analysis, showed that sAC and tmAC are present and involved in AR induction in chicken sperm. Furthermore, stimulation of both isoforms reversed the inhibition of PKA activity and AR in 2-OHCD-treated sperm. In conclusion, our results demonstrated that membrane rafts play an important role in AR induction by regulating the cAMP-dependent pathway and that they provide a mechanistic insight into membrane regulation of AR and sperm function in birds.
Collapse
Affiliation(s)
- Chathura Priyadarshana
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Atsushi Tajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoto Ishikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Atsushi Asano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
88
|
Xu M, Jiang Z, Wang C, Li N, Bo L, Zha Y, Bian J, Zhang Y, Deng X. Acetate attenuates inflammasome activation through GPR43-mediated Ca 2+-dependent NLRP3 ubiquitination. Exp Mol Med 2019; 51:1-13. [PMID: 31337751 PMCID: PMC6802670 DOI: 10.1038/s12276-019-0276-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/16/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Acetate has been indicated to be elevated and to regulate inflammation in inflammatory and metabolic diseases. The inflammasome serves as a key component of immune homeostasis, and its dysregulation can lead to various inflammatory disorders. However, little is known about the effects of acetate on inflammasome activation and the underlying mechanism. Here, we demonstrate that acetate attenuates inflammasome activation via GPR43 in a Ca2+-dependent manner. Through binding to GPR43, acetate activates the Gq/11 subunit and subsequent phospholipase C-IP3 signaling to decrease Ca2+ mobilization. In addition, acetate activates soluble adenylyl cyclase (sAC), promotes NLRP3 inflammasome ubiquitination by PKA, and ultimately induces NLRP3 degradation through autophagy. In vivo, acetate protects mice from NLRP3 inflammasome-dependent peritonitis and LPS-induced endotoxemia. Collectively, our research demonstrates that acetate regulates the NLRP3 inflammasome via GPR43 and Ca2+-dependent mechanisms, which reveals the mechanism of metabolite-mediated NLRP3 inflammasome attenuation and highlights acetate as a possible therapeutic strategy for NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Mengda Xu
- 0000 0004 0369 1660grid.73113.37Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China ,Department of Anesthesiology, Wuhan General Hospital, PLA, 430070 Wuhan, Hubei Province China
| | - Zhengyu Jiang
- 0000 0004 0369 1660grid.73113.37Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China
| | - Changli Wang
- 0000 0004 0369 1660grid.73113.37Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China
| | - Na Li
- 0000 0004 0369 1660grid.73113.37Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China
| | - Lulong Bo
- 0000 0004 0369 1660grid.73113.37Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China
| | - Yanping Zha
- 0000 0004 0369 1660grid.73113.37Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China
| | - Jinjun Bian
- 0000 0004 0369 1660grid.73113.37Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China
| | - Yan Zhang
- 0000 0004 0369 1660grid.73113.37Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China
| | - Xiaoming Deng
- 0000 0004 0369 1660grid.73113.37Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, 200433 Shanghai, China
| |
Collapse
|
89
|
Raju DN, Hansen JN, Rassmann S, Stüven B, Jikeli JF, Strünker T, Körschen HG, Möglich A, Wachten D. Cyclic Nucleotide-Specific Optogenetics Highlights Compartmentalization of the Sperm Flagellum into cAMP Microdomains. Cells 2019; 8:cells8070648. [PMID: 31252584 PMCID: PMC6679001 DOI: 10.3390/cells8070648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 11/16/2022] Open
Abstract
Inside the female genital tract, mammalian sperm undergo a maturation process called capacitation, which primes the sperm to navigate across the oviduct and fertilize the egg. Sperm capacitation and motility are controlled by 3′,5′-cyclic adenosine monophosphate (cAMP). Here, we show that optogenetics, the control of cellular signaling by genetically encoded light-activated proteins, allows to manipulate cAMP dynamics in sperm flagella and, thereby, sperm capacitation and motility by light. To this end, we used sperm that express the light-activated phosphodiesterase LAPD or the photo-activated adenylate cyclase bPAC. The control of cAMP by LAPD or bPAC combined with pharmacological interventions provides spatiotemporal precision and allows to probe the physiological function of cAMP compartmentalization in mammalian sperm.
Collapse
Affiliation(s)
- Diana N Raju
- Institute of Innate Immunity, Biophysical Imaging, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Centrum für Reproduktionsmedizin und Andrologie (CeRA), Universitätsklinikum Münster, Universität Münster, 48129 Münster, Germany
| | - Jan N Hansen
- Institute of Innate Immunity, Biophysical Imaging, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Sebastian Rassmann
- Institute of Innate Immunity, Biophysical Imaging, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Birthe Stüven
- Institute of Innate Immunity, Biophysical Imaging, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
- Lehrstuhl für Biochemie, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Jan F Jikeli
- Institute of Innate Immunity, Biophysical Imaging, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Timo Strünker
- Centrum für Reproduktionsmedizin und Andrologie (CeRA), Universitätsklinikum Münster, Universität Münster, 48129 Münster, Germany
| | - Heinz G Körschen
- Center of Advanced European Studies and Research (caesar), Molecular Sensory Systems, 53175 Bonn, Germany
| | - Andreas Möglich
- Lehrstuhl für Biochemie, Universität Bayreuth, 95447 Bayreuth, Germany
- Research Center for Bio-Macromolecules, Universität Bayreuth, 95447 Bayreuth, Germany
- Bayreuth Center for Biochemistry & Molecular Biology, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany.
- Center of Advanced European Studies and Research (caesar), Molecular Physiology, 53175 Bonn, Germany.
| |
Collapse
|
90
|
Bernecic NC, Gadella BM, Leahy T, de Graaf SP. Novel methods to detect capacitation-related changes in spermatozoa. Theriogenology 2019; 137:56-66. [PMID: 31230703 DOI: 10.1016/j.theriogenology.2019.05.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Prior to interaction with the oocyte, spermatozoa must undergo capacitation, which involves a series of physio-chemical transformations that occur in the female tract. As capacitation is a pre-requisite for successful fertilisation, it is a topic of great interest for sperm biologists, but the complexity of the numerous biochemical and biophysical processes involved make it difficult to measure. Capacitation is an extremely complex event that encompasses numerous integrated processes that can occur concurrently during this window of time. The identification of techniques to accurately assess and quantify capacitation is therefore crucial to gain a meaningful insight into this fascinating sperm maturation event. Whilst there are extensive reviews in the literature that focus on the functional changes to spermatozoa during capacitation, few have examined the methods required to measure these changes. The aim of this review is to highlight frequently used methods to quantify different stages of capacitation and identify promising novel techniques. Factors that are able to modulate various capacitation processes will also be discussed. The overall outcome is to provide researchers with a toolbox of methods that can be used to gain a deeper understanding of the intricacies of capacitation in spermatozoa.
Collapse
Affiliation(s)
- Naomi C Bernecic
- The University of Sydney, Faculty of Science, NSW, 2006, Australia.
| | - Bart M Gadella
- Department of Biochemistry & Cell Biology, Utrecht University, the Netherlands; Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Tamara Leahy
- The University of Sydney, Faculty of Science, NSW, 2006, Australia
| | - Simon P de Graaf
- The University of Sydney, Faculty of Science, NSW, 2006, Australia
| |
Collapse
|
91
|
Increased Levels of cAMP by the Calcium-Dependent Activation of Soluble Adenylyl Cyclase in Parkin-Mutant Fibroblasts. Cells 2019; 8:cells8030250. [PMID: 30875974 PMCID: PMC6468892 DOI: 10.3390/cells8030250] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
Almost half of autosomal recessive early-onset parkinsonism has been associated with mutations in PARK2, coding for parkin, which plays an important role in mitochondria function and calcium homeostasis. Cyclic adenosine monophosphate (cAMP) is a major second messenger regulating mitochondrial metabolism, and it is strictly interlocked with calcium homeostasis. Parkin-mutant (Pt) fibroblasts, exhibiting defective mitochondrial respiratory/OxPhos activity, showed a significant higher value of basal intracellular level of cAMP, as compared with normal fibroblasts (CTRL). Specific pharmacological inhibition/activation of members of the adenylyl cyclase- and of the phosphodiesterase-families, respectively, as well as quantitative reverse transcription polymerase chain reaction (RT-qPCR) analysis, indicate that the higher level of cAMP observed in Pt fibroblasts can contribute to a higher level of activity/expression by soluble adenylyl cyclase (sAC) and to low activity/expression of the phosphodiesterase isoform 4 (PDE4). As Ca2+ regulates sAC, we performed quantitative calcium-fluorimetric analysis, showing a higher level of Ca2+ in the both cytosol and mitochondria of Pt fibroblasts as compared with CTRL. Most notably, inhibition of the mitochondrial Ca2+ uniporter decreased, specifically the cAMP level in PD fibroblasts. All together, these findings support the occurrence of an altered mitochondrial Ca2+-mediated cAMP homeostasis in fibroblasts with the parkin mutation.
Collapse
|
92
|
Urizar-Arenaza I, Osinalde N, Akimov V, Puglia M, Candenas L, Pinto FM, Muñoa-Hoyos I, Gianzo M, Matorras R, Irazusta J, Blagoev B, Subiran N, Kratchmarova I. Phosphoproteomic and Functional Analyses Reveal Sperm-specific Protein Changes Downstream of Kappa Opioid Receptor in Human Spermatozoa. Mol Cell Proteomics 2019; 18:S118-S131. [PMID: 30622161 PMCID: PMC6427232 DOI: 10.1074/mcp.ra118.001133] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/27/2018] [Indexed: 12/11/2022] Open
Abstract
G-protein coupled receptors (GPCRs) belong to the seven transmembrane receptor superfamily that transduce signals via G proteins in response to external stimuli to initiate different intracellular signaling pathways which culminate in specific cellular responses. The expression of diverse GPCRs at the plasma membrane of human spermatozoa suggests their involvement in the regulation of sperm fertility. However, the signaling events downstream of many GPCRs in spermatozoa remain uncharacterized. Here, we selected the kappa-opioid receptor (KOR) as a study model and applied phosphoproteomic approach based on TMT labeling and LC-MS/MS analyses. Quantitative coverage of more than 5000 proteins with over 3500 phosphorylation sites revealed changes in the phosphorylation levels of sperm-specific proteins involved in the regulation of the sperm fertility in response to a specific agonist of KOR, U50488H. Further functional studies indicate that KOR could be involved in the regulation of sperm fertile capacity by modulation of calcium channels. Our findings suggest that human spermatozoa possess unique features in the molecular mechanisms downstream of GPCRs which could be key regulators of sperm fertility and improved knowledge of these specific processes may contribute to the development of useful biochemical tools for diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Itziar Urizar-Arenaza
- From the ‡Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain, 49840;; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain, 48903
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Araba, Spain, 01006
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark, 5320
| | - Michele Puglia
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark, 5320
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC, Sevilla, Spain, 41092
| | | | - Iraia Muñoa-Hoyos
- From the ‡Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain, 49840;; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain, 48903
| | - Marta Gianzo
- From the ‡Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain, 49840;; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain, 48903
| | - Roberto Matorras
- Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain, 48903
| | - Jon Irazusta
- From the ‡Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain, 49840
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark, 5320
| | - Nerea Subiran
- From the ‡Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain, 49840;; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain, 48903;.
| | - Irina Kratchmarova
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark, 5320;.
| |
Collapse
|
93
|
Soriano-Úbeda C, Romero-Aguirregomezcorta J, Matás C, Visconti PE, García-Vázquez FA. Manipulation of bicarbonate concentration in sperm capacitation media improvesin vitro fertilisation output in porcine species. J Anim Sci Biotechnol 2019; 10:19. [PMID: 30899459 PMCID: PMC6410524 DOI: 10.1186/s40104-019-0324-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/17/2019] [Indexed: 05/30/2023] Open
Abstract
Background The in vivo concentration of bicarbonate (HCO3 -), one of the essential sperm capacitating effectors, varies greatly in the different environments sperm go through from cauda epididymis to the fertilisation site. On the contrary, porcine in vitro sperm capacitation and fertilisation media usually contains a standard concentration of 25 mmol/L, and one of the main problems presented is the unacceptable high incidence of polyspermy. This work hypothesised that by modifying the HCO3 - concentration of the medium, the output of in vitro sperm capacitation and fertilisation could be increased. Results Once exposed to the capacitation medium, the intracellular pH (pHi) of spermatozoa increased immediately even at low concentrations of HCO3 -, but only extracellular concentrations of and above 15 mmol/L increased the substrates protein kinase A phosphorylation (pPKAs). Although with a significant delay, 15 mmol/L of HCO3 - stimulated sperm linear motility and increased other late events in capacitation such as tyrosine phosphorylation (Tyr-P) to levels similar to those obtained with 25 mmol/L. This information allowed the establishment of a new in vitro fertilisation (IVF) system based on the optimization of HCO3 - concentration to 15 mmol/L, which led to a 25.3% increment of the viable zygotes (8.6% in the standard system vs. 33.9%). Conclusions Optimising HCO3 - concentrations allows for establishing an IVF method that significantly reduced porcine polyspermy and increased the production of viable zygotes. A concentration of 15 mmol/L of HCO3 - in the medium is sufficient to trigger the in vitro sperm capacitation and increase the fertilisation efficiency in porcine.
Collapse
Affiliation(s)
- Cristina Soriano-Úbeda
- 1Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.,2Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Jon Romero-Aguirregomezcorta
- 3Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Bizkaia Spain
| | - Carmen Matás
- 1Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.,2Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA USA
| | - Francisco A García-Vázquez
- 1Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.,2Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
94
|
Wang YY, Pu XY, Shi WG, Fang QQ, Chen XR, Xi HR, Gao YH, Zhou J, Xian CJ, Chen KM. Pulsed electromagnetic fields promote bone formation by activating the sAC-cAMP-PKA-CREB signaling pathway. J Cell Physiol 2019; 234:2807-2821. [PMID: 30067871 DOI: 10.1002/jcp.27098] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023]
Abstract
The application of pulsed electromagnetic fields (PEMFs) in the prevention and treatment of osteoporosis has long been an area of interest. However, the clinical application of PEMFs remains limited because of the poor understanding of the PEMF action mechanism. Here, we report that PEMFs promote bone formation by activating soluble adenylyl cyclase (sAC), cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), and cAMP response element-binding protein (CREB) signaling pathways. First, it was found that 50 Hz 0.6 millitesla (mT) PEMFs promoted osteogenic differentiation of rat calvarial osteoblasts (ROBs), and that PEMFs activated cAMP-PKA-CREB signaling by increasing intracellular cAMP levels, facilitating phosphorylation of PKA and CREB, and inducing nuclear translocation of phosphorylated (p)-CREB. Blocking the signaling by adenylate cyclase (AC) and PKA inhibitors both abolished the osteogenic effect of PEMFs. Second, expression of sAC isoform was found to be increased significantly by PEMF treatment. Blocking sAC using sAC-specific inhibitor KH7 dramatically inhibited the osteogenic differentiation of ROBs. Finally, the peak bone mass of growing rats was significantly increased after 2 months of PEMF treatment with 90 min/day. The serum cAMP content, p-PKA, and p-CREB as well as the sAC protein expression levels were all increased significantly in femurs of treated rats. The current study indicated that PEMFs promote bone formation in vitro and in vivo by activating sAC-cAMP-PKA-CREB signaling pathway of osteoblasts directly or indirectly.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- Department of Bioengineering, School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Xiu-Ying Pu
- Department of Bioengineering, School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Wen-Gui Shi
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Qing-Qing Fang
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Xin-Ru Chen
- Department of Biology, College of Life Sciences, Northwest A & F University, Yanglin, China
| | - Hui-Rong Xi
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Yu-Hai Gao
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Jian Zhou
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital of CPLA, Lanzhou, China
| |
Collapse
|
95
|
Orta G, de la Vega-Beltran JL, Martín-Hidalgo D, Santi CM, Visconti PE, Darszon A. CatSper channels are regulated by protein kinase A. J Biol Chem 2018; 293:16830-16841. [PMID: 30213858 DOI: 10.1074/jbc.ra117.001566] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/05/2018] [Indexed: 11/06/2022] Open
Abstract
Mammalian sperm must undergo capacitation as a preparation for entering into hyperactivated motility, undergoing the acrosome reaction, and acquiring fertilizing ability. One of the initial capacitation events occurs when sperm encounter an elevated HCO3 - concentration. This anion activates the atypical adenylyl cyclase Adcy10, increases intracellular cAMP, and stimulates protein kinase A (PKA). Moreover, an increase in intracellular Ca2+ concentration ([Ca2+] i ) is essential for sperm capacitation. Although a cross-talk between cAMP-dependent pathways and Ca2+ clearly plays an essential role in sperm capacitation, the connection between these signaling events is incompletely understood. Here, using three different approaches, we found that CatSper, the main sperm Ca2+ channel characterized to date, is up-regulated by a cAMP-dependent activation of PKA in mouse sperm. First, HCO3 - and the PKA-activating permeable compound 8-Br-cAMP induced an increase in [Ca2+] i , which was blocked by the PKA peptide inhibitor PKI, and H89, another PKA inhibitor, also abrogated the 8-Br-cAMP response. Second, HCO3 - increased the membrane depolarization induced upon divalent cation removal by promoting influx of monovalent cations through CatSper channels, which was inhibited by PKI, H89, and the CatSper blocker HC-056456. Third, electrophysiological patch clamp, whole-cell recordings revealed that CatSper activity is up-regulated by HCO3 - and by direct cAMP injection through the patch-clamp pipette. The activation by HCO3 - and cAMP was also blocked by PKI, H89, Rp-cAMPS, and HC-056456, and electrophysiological recordings in sperm from CatSper-KO mice confirmed CatSper's role in these activation modes. Our results strongly suggest that PKA-dependent phosphorylation regulates [Ca2+] i homeostasis by activating CatSper channel complexes.
Collapse
Affiliation(s)
- Gerardo Orta
- From the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62250, México
| | - José Luis de la Vega-Beltran
- From the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62250, México
| | - David Martín-Hidalgo
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts 01003, and
| | - Celia M Santi
- Department of Obstetrics and Gynecology and.,Department of Neurosciences, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts 01003, and
| | - Alberto Darszon
- From the Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62250, México,
| |
Collapse
|
96
|
Puga Molina LC, Luque GM, Balestrini PA, Marín-Briggiler CI, Romarowski A, Buffone MG. Molecular Basis of Human Sperm Capacitation. Front Cell Dev Biol 2018; 6:72. [PMID: 30105226 PMCID: PMC6078053 DOI: 10.3389/fcell.2018.00072] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
In the early 1950s, Austin and Chang independently described the changes that are required for the sperm to fertilize oocytes in vivo. These changes were originally grouped under name of “capacitation” and were the first step in the development of in vitro fertilization (IVF) in humans. Following these initial and fundamental findings, a remarkable number of observations led to characterization of the molecular steps behind this process. The discovery of certain sperm-specific molecules and the possibility to record ion currents through patch-clamp approaches helped to integrate the initial biochemical observation with the activity of ion channels. This is of particular importance in the male gamete due to the fact that sperm are transcriptionally inactive. Therefore, sperm must control all these changes that occur during their transit through the male and female reproductive tracts by complex signaling cascades that include post-translational modifications. This review is focused on the principal molecular mechanisms that govern human sperm capacitation with particular emphasis on comparing all the reported pieces of evidence with the mouse model.
Collapse
Affiliation(s)
- Lis C Puga Molina
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Paula A Balestrini
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Clara I Marín-Briggiler
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Ana Romarowski
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| |
Collapse
|
97
|
Baker DA, Drought LG, Flueck C, Nofal SD, Patel A, Penzo M, Walker EM. Cyclic nucleotide signalling in malaria parasites. Open Biol 2018; 7:rsob.170213. [PMID: 29263246 PMCID: PMC5746546 DOI: 10.1098/rsob.170213] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
The cyclic nucleotides 3′, 5′-cyclic adenosine monophosphate (cAMP) and 3′, 5′-cyclic guanosine monophosphate (cGMP) are intracellular messengers found in most animal cell types. They usually mediate an extracellular stimulus to drive a change in cell function through activation of their respective cyclic nucleotide-dependent protein kinases, PKA and PKG. The enzymatic components of the malaria parasite cyclic nucleotide signalling pathways have been identified, and the genetic and biochemical studies of these enzymes carried out to date are reviewed herein. What has become very clear is that cyclic nucleotides play vital roles in controlling every stage of the complex malaria parasite life cycle. Our understanding of the involvement of cyclic nucleotide signalling in orchestrating the complex biology of malaria parasites is still in its infancy, but the recent advances in our genetic tools and the increasing interest in signalling will deliver more rapid progress in the coming years.
Collapse
Affiliation(s)
- David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Laura G Drought
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Christian Flueck
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Stephanie D Nofal
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Avnish Patel
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Maria Penzo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.,Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760, Madrid, Spain
| | - Eloise M Walker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
98
|
Luque GM, Dalotto-Moreno T, Martín-Hidalgo D, Ritagliati C, Puga Molina LC, Romarowski A, Balestrini PA, Schiavi-Ehrenhaus LJ, Gilio N, Krapf D, Visconti PE, Buffone MG. Only a subpopulation of mouse sperm displays a rapid increase in intracellular calcium during capacitation. J Cell Physiol 2018; 233:9685-9700. [PMID: 29953592 DOI: 10.1002/jcp.26883] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
Abstract
Mammalian sperm must undergo a functionally defined process called capacitation to be able to fertilize oocytes. They become capacitated in vivo by interacting with the female reproductive tract or in vitro in a defined capacitation medium that contains bovine serum albumin, calcium (Ca2+ ), and bicarbonate (HCO3 - ). In this work, sperm were double stained with propidium iodide and the Ca2+ dye Fluo-4 AM and analyzed by flow cytometry to determine changes in intracellular Ca2+ concentration ([Ca2+ ]i ) in individual live sperm. An increase in [Ca2+ ]i was observed in a subpopulation of capacitated live sperm when compared with noncapacitated ones. Sperm exposed to the capacitating medium displayed a rapid increase in [Ca2+ ]i within 1 min of incubation, which remained sustained for 90 min. These rise in [Ca2+ ]i after 90 min of incubation in the capacitating medium was evidenced by an increase in the normalized median fluorescence intensity. This increase was dependent on the presence of extracellular Ca2+ and, at least in part, reflected the contribution of a new subpopulation of sperm with higher [Ca2+ ]i . In addition, it was determined that the capacitation-associated [Ca2+ ]i increase was dependent of CatSper channels, as sperm derived from CatSper knockout (CatSper KO) or incubated in the presence of CatSper inhibitors failed to increase [Ca2+ ]i . Surprisingly, a minimum increase in [Ca2+ ]i was also observed in CatSper KO sperm suggesting the existence of other Ca2+ transport systems. Altogether, these results indicate that a subpopulation of sperm increases [Ca2+ ]i very rapidly during capacitation mainly due to a CatSper-mediated influx of extracellular Ca2+ .
Collapse
Affiliation(s)
- Guillermina M Luque
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Tomas Dalotto-Moreno
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - David Martín-Hidalgo
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA
| | - Carla Ritagliati
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Lis C Puga Molina
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana Romarowski
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Liza J Schiavi-Ehrenhaus
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nicolas Gilio
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, MA
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
99
|
Roosterman D, Meyerhof W, Cottrell GS. Proton Transport Chains in Glucose Metabolism: Mind the Proton. Front Neurosci 2018; 12:404. [PMID: 29962930 PMCID: PMC6014028 DOI: 10.3389/fnins.2018.00404] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/25/2018] [Indexed: 01/11/2023] Open
Abstract
The Embden-Meyerhof-Parnas (EMP) pathway comprises eleven cytosolic enzymes interacting to metabolize glucose to lactic acid [CH3CH(OH)COOH]. Glycolysis is largely considered as the conversion of glucose to pyruvate (CH3COCOO-). We consider glycolysis to be a cellular process and as such, transporters mediating glucose uptake and lactic acid release and enable the flow of metabolites through the cell, must be considered as part of the EMP pathway. In this review, we consider the flow of metabolites to be coupled to a flow of energy that is irreversible and sufficient to form ordered structures. This latter principle is highlighted by discussing that lactate dehydrogenase (LDH) complexes irreversibly reduce pyruvate/H+ to lactate [CH3CH(OH)COO-], or irreversibly catalyze the opposite reaction, oxidation of lactate to pyruvate/H+. However, both LDH complexes are considered to be driven by postulated proton transport chains. Metabolism of glucose to two lactic acids is introduced as a unidirectional, continuously flowing pathway. In an organism, cell membrane-located proton-linked monocarboxylate transporters catalyze the final step of glycolysis, the release of lactic acid. Consequently, both pyruvate and lactate are discussed as intermediate products of glycolysis and substrates of regulated crosscuts of the glycolytic flow.
Collapse
Affiliation(s)
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | | |
Collapse
|
100
|
Balbach M, Beckert V, Hansen JN, Wachten D. Shedding light on the role of cAMP in mammalian sperm physiology. Mol Cell Endocrinol 2018; 468:111-120. [PMID: 29146556 DOI: 10.1016/j.mce.2017.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022]
Abstract
Mammalian fertilization relies on sperm finding the egg and penetrating the egg vestments. All steps in a sperm's lifetime crucially rely on changes in the second messenger cAMP (cyclic adenosine monophosphate). In recent years, it has become clear that signal transduction in sperm is not a continuum, but rather organized in subcellular domains, e.g. the sperm head and the sperm flagellum, with the latter being further separated into the midpiece, principal piece, and endpiece. To understand the underlying signaling pathways controlling sperm function in more detail, experimental approaches are needed that allow to study sperm signaling with spatial and temporal precision. Here, we will give a comprehensive overview on cAMP signaling in mammalian sperm, describing the molecular players involved in these pathways and the sperm functions that are controlled by cAMP. Furthermore, we will highlight recent advances in analyzing and manipulating sperm signaling with spatio-temporal precision using light.
Collapse
Affiliation(s)
- Melanie Balbach
- Center of Advanced European Studies and Research (caesar), Department of Molecular Sensory Systems, Bonn, Germany
| | - Vera Beckert
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Jan N Hansen
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany; Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany.
| |
Collapse
|