51
|
Anelli T, Panina-Bordignon P. How to Avoid a No-Deal ER Exit. Cells 2019; 8:cells8091051. [PMID: 31500301 PMCID: PMC6769657 DOI: 10.3390/cells8091051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 01/01/2023] Open
Abstract
Efficiency and fidelity of protein secretion are achieved thanks to the presence of different steps, located sequentially in time and space along the secretory compartment, controlling protein folding and maturation. After entering into the endoplasmic reticulum (ER), secretory proteins attain their native structure thanks to specific chaperones and enzymes. Only correctly folded molecules are allowed by quality control (QC) mechanisms to leave the ER and proceed to downstream compartments. Proteins that cannot fold properly are instead retained in the ER to be finally destined to proteasomal degradation. Exiting from the ER requires, in most cases, the use of coated vesicles, departing at the ER exit sites, which will fuse with the Golgi compartment, thus releasing their cargoes. Protein accumulation in the ER can be caused by a too stringent QC or by ineffective transport: these situations could be deleterious for the organism, due to the loss of the secreted protein, and to the cell itself, because of abnormal increase of protein concentration in the ER. In both cases, diseases can arise. In this review, we will describe the pathophysiology of protein folding and transport between the ER and the Golgi compartment.
Collapse
Affiliation(s)
- Tiziana Anelli
- Vita-Salute San Raffaele University, 20132 Milan, Italy.
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Paola Panina-Bordignon
- Vita-Salute San Raffaele University, 20132 Milan, Italy.
- Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
52
|
Arakel EC, Huranova M, Estrada AF, Rau EM, Spang A, Schwappach B. Dissection of GTPase-activating proteins reveals functional asymmetry in the COPI coat of budding yeast. J Cell Sci 2019; 132:jcs.232124. [PMID: 31331965 PMCID: PMC6737914 DOI: 10.1242/jcs.232124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
The Arf GTPase controls formation of the COPI vesicle coat. Recent structural models of COPI revealed the positioning of two Arf1 molecules in contrasting molecular environments. Each of these pockets for Arf1 is expected to also accommodate an Arf GTPase-activating protein (ArfGAP). Structural evidence and protein interactions observed between isolated domains indirectly suggest that each niche preferentially recruits one of the two ArfGAPs known to affect COPI, i.e. Gcs1/ArfGAP1 and Glo3/ArfGAP2/3, although only partial structures are available. The functional role of the unique non-catalytic domain of either ArfGAP has not been integrated into the current COPI structural model. Here, we delineate key differences in the consequences of triggering GTP hydrolysis through the activity of one versus the other ArfGAP. We demonstrate that Glo3/ArfGAP2/3 specifically triggers Arf1 GTP hydrolysis impinging on the stability of the COPI coat. We show that the Snf1 kinase complex, the yeast homologue of AMP-activated protein kinase (AMPK), phosphorylates the region of Glo3 that is crucial for this effect and, thereby, regulates its function in the COPI-vesicle cycle. Our results revise the model of ArfGAP function in the molecular context of COPI. This article has an associated First Person interview with the first author of the paper. Highlighted Article: The regulatory domain of the COPI-associated ArfGAP Glo3 can stabilize the COPI coat. GTP hydrolysis is necessary to resolve the stabilised state. This mechanism is regulated by phosphorylation.
Collapse
Affiliation(s)
- Eric C Arakel
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Martina Huranova
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.,Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Alejandro F Estrada
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - E-Ming Rau
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Anne Spang
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Blanche Schwappach
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany .,Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
53
|
Peotter J, Kasberg W, Pustova I, Audhya A. COPII-mediated trafficking at the ER/ERGIC interface. Traffic 2019; 20:491-503. [PMID: 31059169 PMCID: PMC6640837 DOI: 10.1111/tra.12654] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022]
Abstract
Coat proteins play multiple roles in the life cycle of a membrane-bound transport intermediate, functioning in lipid bilayer remodeling, cargo selection and targeting to an acceptor compartment. The Coat Protein complex II (COPII) coat is known to act in each of these capacities, but recent work highlights the necessity for numerous accessory factors at all stages of transport carrier existence. Here, we review recent findings that highlight the roles of COPII and its regulators in the biogenesis of tubular COPII-coated carriers in mammalian cells that enable cargo transport between the endoplasmic reticulum and ER-Golgi intermediate compartments, the first step in a series of trafficking events that ultimately allows for the distribution of biosynthetic secretory cargoes throughout the entire endomembrane system.
Collapse
Affiliation(s)
- Jennifer Peotter
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - William Kasberg
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Iryna Pustova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
54
|
Coat flexibility in the secretory pathway: a role in transport of bulky cargoes. Curr Opin Cell Biol 2019; 59:104-111. [PMID: 31125831 PMCID: PMC7116127 DOI: 10.1016/j.ceb.2019.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/19/2023]
Abstract
Membrane trafficking in eukaryotic cells is a highly dynamic process, which needs to adapt to a variety of cargo proteins. The COPII coat mediates ER export of thousands of proteins with a wide range of sizes by generating coated membrane vesicles that incapsulate cargo. The process of assembly and disassembly of COPII, regulated by GTP hydrolysis, is a major determinant of the size and shape of transport carriers. Here, we analyse our knowledge of the COPII coat architecture and it assembly/disassembly dynamics, and link coat flexibility to the role of COPII in transport of large cargoes. We propose a common mechanism of action of regulatory factors that modulate COPII GTP hydrolysis cycle to promote budding.
Collapse
|
55
|
Markova EA, Zanetti G. Visualizing membrane trafficking through the electron microscope: cryo-tomography of coat complexes. Acta Crystallogr D Struct Biol 2019; 75:467-474. [PMID: 31063149 PMCID: PMC6503763 DOI: 10.1107/s2059798319005011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/12/2019] [Indexed: 11/23/2022] Open
Abstract
Coat proteins mediate vesicular transport between intracellular compartments, which is essential for the distribution of molecules within the eukaryotic cell. The global arrangement of coat proteins on the membrane is key to their function, and cryo-electron tomography and subtomogram averaging have been used to study membrane-bound coat proteins, providing crucial structural insight. This review outlines a workflow for the structural elucidation of coat proteins, incorporating recent developments in the collection and processing of cryo-electron tomography data. Recent work on coat protein I, coat protein II and retromer performed on in vitro reconstitutions or in situ is summarized. These studies have answered long-standing questions regarding the mechanisms of membrane binding, polymerization and assembly regulation of coat proteins.
Collapse
Affiliation(s)
- Evgenia A. Markova
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
| | - Giulia Zanetti
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, England
| |
Collapse
|
56
|
Yehia L, Jindal S, Komar AA, Eng C. Non-canonical role of cancer-associated mutant SEC23B in the ribosome biogenesis pathway. Hum Mol Genet 2019; 27:3154-3164. [PMID: 29893852 PMCID: PMC6121187 DOI: 10.1093/hmg/ddy226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
SEC23B is a component of coat protein complex II (COPII) vesicles that transport secretory proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. Loss-of-function SEC23B mutations cause a rare form of anemia, resulting from decreased SEC23B levels. We recently identified germline heterozygous SEC23B variants as potentially cancer-predisposing. Mutant SEC23B associated with ER stress-mediated tumorigenesis, without decreased SEC23B expression. However, our understanding of the processes behind these observations remain limited. Here, we show mutant SEC23B exists within nucleoli, in addition to classical distribution at the ER/Golgi. This occurs independent of other COPII proteins and does not compromise secretory function. Mutant cells have increased ribosomal protein and translation-related gene expression, and enhanced translational capacity, in the presence of ER stress. We show that mutant SEC23B binds to UBF transcription factor, with increased UBF transcription factor binding at the ribosomal DNA promoter. Our data indicate SEC23B has potential non-canonical COPII-independent function, particularly within the ribosome biogenesis pathway, and that may contribute to the pathogenesis of cancer-predisposition.
Collapse
Affiliation(s)
- Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Supriya Jindal
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Anton A Komar
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA.,Germline High Risk Cancer Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Germline High Risk Cancer Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.,Taussig Cancer Institute, Cleveland Clinic, OH, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
57
|
Zhao S, Liu J, Guan G, Liu A, Li Y, Yin H, Luo J. Theileria annulata Cyclophilin1 (TaCyp1) Interacts With Host Cell MED21. Front Microbiol 2018; 9:2973. [PMID: 30559736 PMCID: PMC6286986 DOI: 10.3389/fmicb.2018.02973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/19/2018] [Indexed: 11/29/2022] Open
Abstract
Host cells infected by Theileria annulata schizonts show the character of permanent proliferation in vitro, also named transformation. To explore the molecular mechanism a T. annulata Cyp1 (TaCyp1) protein potentially involved in regulating cell transformation was used as bait to screen for its interacting proteins by yeast-two-hybrid assay. Additional GST-pull down experiments confirmed that only MED21 specifically interacted with TaCyp1. Moreover, the distribution of TaCyp1 around T. annulata schizonts facilitated interaction with host cell MED21. As a component of mediator complex, MED21 is normally involved in regulating the transcription of nearly all RNA polymerase II-dependent genes. Therefore, to explore its influence on NF-κB signaling MED21 RNA interference and parasite killing with BW720c treatment were performed. Knock down of MED21 resulted in a significant decrease in NF-κB1/2 mRNA expressions, but no significant change in P105, P52 levels, nor detectable alteration in levels of phosphorylated IκBα/β. By contrast, BW720c treatment induced an obvious decrease in the phosphorylation status of P52 and IκBα/β, but no obvious change in that of P105. This suggests that BW720c-induced parasite death had a significant negative influence on NF-κB signaling, whereas knock down of MED21 had no obvious effect on NF-κB signaling. Characterization of TaCyp1 provides information on the function of parasite cyclophilins and leads to a better understanding of the interactions between T. annulata and its host leukocytes.
Collapse
Affiliation(s)
- Shuaiyang Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Aihong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
58
|
Melville D, Gorur A, Schekman R. Fatty-acid binding protein 5 modulates the SAR1 GTPase cycle and enhances budding of large COPII cargoes. Mol Biol Cell 2018; 30:387-399. [PMID: 30485159 PMCID: PMC6589570 DOI: 10.1091/mbc.e18-09-0548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
COPII-coated vesicles are the primary mediators of ER-to-Golgi trafficking. Sar1, one of the five core COPII components, is a highly conserved small GTPase, which, upon GTP binding, recruits the other COPII proteins to the ER membrane. It has been hypothesized that the changes in the kinetics of SAR1 GTPase may allow for the secretion of large cargoes. Here we developed a cell-free assay to recapitulate COPII-dependent budding of large lipoprotein cargoes from the ER. We identified fatty-acid binding protein 5 (FABP5) as an enhancer of this budding process. We found that FABP5 promotes the budding of particles ∼150 nm in diameter and modulates the kinetics of the SAR1 GTPase cycle. We further found that FABP5 enhances the trafficking of lipoproteins and of other cargoes, including collagen. These data identify a novel regulator of SAR1 GTPase activity and highlight the importance of this activity for trafficking of large cargoes.
Collapse
Affiliation(s)
- David Melville
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Amita Gorur
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
59
|
Halperin D, Kadir R, Perez Y, Drabkin M, Yogev Y, Wormser O, Berman EM, Eremenko E, Rotblat B, Shorer Z, Gradstein L, Shelef I, Birk R, Abdu U, Flusser H, Birk OS. SEC31A mutation affects ER homeostasis, causing a neurological syndrome. J Med Genet 2018; 56:139-148. [PMID: 30464055 DOI: 10.1136/jmedgenet-2018-105503] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 11/03/2022]
Abstract
BACKGROUND Consanguineous kindred presented with an autosomal recessive syndrome of intrauterine growth retardation, marked developmental delay, spastic quadriplegia with profound contractures, pseudobulbar palsy with recurrent aspirations, epilepsy, dysmorphism, neurosensory deafness and optic nerve atrophy with no eye fixation. Affected individuals died by the age of 4. Brain MRI demonstrated microcephaly, semilobar holoprosencephaly and agenesis of corpus callosum. We aimed at elucidating the molecular basis of this disease. METHODS Genome-wide linkage analysis combined with whole exome sequencing were performed to identify disease-causing variants. Functional consequences were investigated in fruit flies null mutant for the Drosophila SEC31A orthologue. SEC31A knockout SH-SY5Y and HEK293T cell-lines were generated using CRISPR/Cas9 and studied through qRT-PCR, immunoblotting and viability assays. RESULTS Through genetic studies, we identified a disease-associated homozygous nonsense mutation in SEC31A. We demonstrate that SEC31A is ubiquitously expressed, and that the mutation triggers nonsense-mediated decay of its transcript, comprising a practical null mutation. Similar to the human disease phenotype, knockdown SEC31A flies had defective brains and early lethality. Moreover, in line with SEC31A encoding one of the two coating layers comprising the Coat protein complex II (COP-II) complex, trafficking newly synthesised proteins from the endoplasmic reticulum (ER) to the Golgi, CRISPR/Cas9-mediated SEC31A null mutant cells demonstrated reduced viability through upregulation of ER-stress pathways. CONCLUSION We demonstrate through human and Drosophila genetic and in vitro molecular studies, that a severe neurological syndrome is caused by a null mutation in SEC31A, reducing cell viability through enhanced ER-stress response, in line with SEC31A's role in the COP-II complex.
Collapse
Affiliation(s)
- Daniel Halperin
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Rotem Kadir
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yonatan Perez
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Max Drabkin
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Erez M Berman
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ekaterina Eremenko
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev; Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Barak Rotblat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Zamir Shorer
- Pediatric Neurology Unit, Division of Pediatrics, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Libe Gradstein
- Department of Ophthalmology, Clalit Health Services, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ilan Shelef
- Department of Imaging, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ruth Birk
- Department of Nutrition, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Hagit Flusser
- Zussman Child Development Center, Division of Pediatrics, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Genetics Institute, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
60
|
Paraan M, Bhattacharya N, Uversky VN, Stagg SM. Flexibility of the Sec13/31 cage is influenced by the Sec31 C-terminal disordered domain. J Struct Biol 2018; 204:250-260. [PMID: 30172710 PMCID: PMC6188663 DOI: 10.1016/j.jsb.2018.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 01/30/2023]
Abstract
In COPII mediated vesicle formation, Sec13/Sec31 heterotetramers play a role in organizing the membranes into a spherical vesicle. There they oligomerize into a cage that interacts with the other COPII proteins to direct vesicle formation and concentrate cargo into a bud. In this role they must be flexible to accommodate different sizes and shapes of cargo, but also have elements that provide rigidity to help deform the membrane. Here we characterize the influence the C-terminal disordered region of Sec31 has on cage flexibility and rigidity. After deleting this region (residues 820-1220), we characterized Sec13/Sec31ΔC heterotetramers biophysically and structurally through cryo-EM. Our results show that Sec13/31ΔC self-assembles into canonical cuboctahedral cages in vitro at buffer conditions similar to wild type. The distribution of cage sizes indicated that unlike the wild type, Sec13/31ΔC cages have a more homogeneous geometry. However, the structure of cuboctahedrons exhibited more conformational heterogeneity than wild type. Through localized reconstruction of cage vertices and molecular dynamics flexible fitting we found a new hinge for the flexing of Sec31 β-propeller domain and more flexibility of the previously known hinge. Together, these results show that the C-terminal region of Sec31 regulates the flexing of other domains such that flexibility and rigidity are not compromised during transport of large and/or asymmetric cargo.
Collapse
Affiliation(s)
- Mohammadreza Paraan
- Institute of Molecular Biophysics, 91 Chieftan Way, Florida State University, Tallahassee, FL 32306, USA
| | - Nilakshee Bhattacharya
- Institute of Molecular Biophysics, 91 Chieftan Way, Florida State University, Tallahassee, FL 32306, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Scott M Stagg
- Institute of Molecular Biophysics, 91 Chieftan Way, Florida State University, Tallahassee, FL 32306, USA; Department of Chemistry and Biochemistry, 95 Chieftain Way, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
61
|
Subtomogram averaging of COPII assemblies reveals how coat organization dictates membrane shape. Nat Commun 2018; 9:4154. [PMID: 30297805 PMCID: PMC6175875 DOI: 10.1038/s41467-018-06577-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/11/2018] [Indexed: 11/08/2022] Open
Abstract
Eukaryotic cells employ membrane-bound carriers to transport cargo between compartments in a process essential to cell functionality. Carriers are generated by coat complexes that couple cargo capture to membrane deformation. The COPII coat mediates export from the endoplasmic reticulum by assembling in inner and outer layers, yielding carriers of variable shape and size that allow secretion of thousands of diverse cargo. Despite detailed understanding of COPII subunits, the molecular mechanisms of coat assembly and membrane deformation are unclear. Here we present a 4.9 Å cryo-tomography subtomogram averaging structure of in vitro-reconstituted membrane-bound inner coat. We show that the outer coat (Sec13-Sec31) bridges inner coat subunits (Sar1-Sec23-Sec24), promoting their assembly into a tight lattice. We directly visualize the membrane-embedded Sar1 amphipathic helix, revealing that lattice formation induces parallel helix insertions, yielding tubular curvature. We propose that regulators like the procollagen receptor TANGO1 modulate this mechanism to determine vesicle shape and size.
Collapse
|
62
|
Shibata H. Adaptor functions of the Ca 2+-binding protein ALG-2 in protein transport from the endoplasmic reticulum. Biosci Biotechnol Biochem 2018; 83:20-32. [PMID: 30259798 DOI: 10.1080/09168451.2018.1525274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apoptosis-linked gene 2 (ALG-2) is a Ca2+-binding protein with five repetitive EF-hand motifs, named penta-EF-hand (PEF) domain. It interacts with various target proteins and functions as a Ca2+-dependent adaptor in diverse cellular activities. In the cytoplasm, ALG-2 is predominantly localized to a specialized region of the endoplasmic reticulum (ER), called the ER exit site (ERES), through its interaction with Sec31A. Sec31A is an outer coat protein of coat protein complex II (COPII) and is recruited from the cytosol to the ERES to form COPII-coated transport vesicles. I will overview current knowledge of the physiological significance of ALG-2 in regulating ERES localization of Sec31A and the following adaptor functions of ALG-2, including bridging Sec31A and annexin A11 to stabilize Sec31A at the ERES, polymerizing the Trk-fused gene (TFG) product, and linking MAPK1-interacting and spindle stabilizing (MISS)-like (MISSL) and microtubule-associated protein 1B (MAP1B) to promote anterograde transport from the ER.
Collapse
Affiliation(s)
- Hideki Shibata
- a Department of Applied Biosciences, Graduate School of Bioagricultural Sciences , Nagoya University , Chikusa-ku , Nagoya , Japan
| |
Collapse
|
63
|
Aridor M. COPII gets in shape: Lessons derived from morphological aspects of early secretion. Traffic 2018; 19:823-839. [DOI: 10.1111/tra.12603] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Meir Aridor
- Department of Cell Biology; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| |
Collapse
|
64
|
McCaughey J, Stephens DJ. COPII-dependent ER export in animal cells: adaptation and control for diverse cargo. Histochem Cell Biol 2018; 150:119-131. [PMID: 29916038 PMCID: PMC6096569 DOI: 10.1007/s00418-018-1689-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2018] [Indexed: 12/31/2022]
Abstract
The export of newly synthesized proteins from the endoplasmic reticulum is fundamental to the ongoing maintenance of cell and tissue structure and function. After co-translational translocation into the ER, proteins destined for downstream intracellular compartments or secretion from the cell are sorted and packaged into transport vesicles by the COPII coat protein complex. The fundamental discovery and characterization of the pathway has now been augmented by a greater understanding of the role of COPII in diverse aspects of cell function. We now have a deep understanding of how COPII contributes to the trafficking of diverse cargoes including extracellular matrix molecules, developmental signalling proteins, and key metabolic factors such as lipoproteins. Structural and functional studies have shown that the COPII coat is both highly flexible and subject to multiple modes of regulation. This has led to new discoveries defining roles of COPII in development, autophagy, and tissue organization. Many of these newly emerging features of the canonical COPII pathway are placed in a context of procollagen secretion because of the fundamental interest in how a coat complex that typically generates 80-nm transport vesicles can package a cargo reported to be over 300 nm. Here we review the current understanding of COPII and assess the current consensus on its role in packaging diverse cargo proteins.
Collapse
Affiliation(s)
- Janine McCaughey
- Cell Biology Laboratories, School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
65
|
Melero A, Chiaruttini N, Karashima T, Riezman I, Funato K, Barlowe C, Riezman H, Roux A. Lysophospholipids Facilitate COPII Vesicle Formation. Curr Biol 2018; 28:1950-1958.e6. [PMID: 29887313 PMCID: PMC6013297 DOI: 10.1016/j.cub.2018.04.076] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/05/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022]
Abstract
Coat protein complex II (COPII) proteins form vesicles from the endoplasmic reticulum to export cargo molecules to the Golgi apparatus. Among the many proteins involved in this process, Sec12 is a key regulator, functioning as the guanosine diphosphate (GDP) exchange factor for Sar1p, the small guanosine triphosphatase (GTPase) that initiates COPII assembly. Here we show that overexpression of phospholipase B3 in the thermosensitive sec12-4 mutant partially restores growth and protein transport at non-permissive temperatures. Lipidomics analyses of these cells show a higher content of lysophosphatidylinositol (lysoPI), consistent with the lipid specificity of PLB3. Furthermore, we show that lysoPI is specifically enriched in COPII vesicles isolated from in vitro budding assays. As these results suggested that lysophospholipids could facilitate budding under conditions of defective COPII coat dynamics, we reconstituted COPII binding onto giant liposomes with purified proteins and showed that lysoPI decreases membrane rigidity and enhances COPII recruitment to liposomes. Our results support a mechanical facilitation of COPII budding by lysophospholipids. COPII mutant sec12-4 is rescued by the overexpression of an ER resident phospholipase Lipidomic analysis of COPII vesicles shows enrichment in lysophospholipids Recruitment of COPII proteins to liposomes increases in presence of lysophospholipids Lysophosphatidylinositol lowers the rigidity of membranes in vitro
Collapse
Affiliation(s)
- Alejandro Melero
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; Swiss National Centre for Competence in Research in Chemical Biology, 1211 Geneva, Switzerland
| | | | - Takefumi Karashima
- Department of Bioresource Science and Technology, Hiroshima University, Hiroshima 739-8528, Japan
| | - Isabelle Riezman
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Kouichi Funato
- Department of Bioresource Science and Technology, Hiroshima University, Hiroshima 739-8528, Japan
| | - Charles Barlowe
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844, USA
| | - Howard Riezman
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; Swiss National Centre for Competence in Research in Chemical Biology, 1211 Geneva, Switzerland.
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; Swiss National Centre for Competence in Research in Chemical Biology, 1211 Geneva, Switzerland.
| |
Collapse
|
66
|
Abstract
Plant vacuoles are multifunctional organelles. On the one hand, most vegetative tissues develop lytic vacuoles that have a role in degradation. On the other hand, seed cells have two types of storage vacuoles: protein storage vacuoles (PSVs) in endosperm and embryonic cells and metabolite storage vacuoles in seed coats. Vacuolar proteins and metabolites are synthesized on the endoplasmic reticulum and then transported to the vacuoles via Golgi-dependent and Golgi-independent pathways. Proprotein precursors delivered to the vacuoles are converted into their respective mature forms by vacuolar processing enzyme, which also regulates various kinds of programmed cell death in plants. We summarize two types of vacuolar membrane dynamics that occur during defense responses: vacuolar membrane collapse to attack viral pathogens and fusion of vacuolar and plasma membranes to attack bacterial pathogens. We also describe the chemical defense against herbivores brought about by the presence of PSVs in the idioblast myrosin cell.
Collapse
Affiliation(s)
- Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
| | - Junpei Takagi
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| | - Takuji Ichino
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Makoto Shirakawa
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Ikuko Hara-Nishimura
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
67
|
Abstract
In eukaryotes, distinct transport vesicles functionally connect various intracellular compartments. These carriers mediate transport of membranes for the biogenesis and maintenance of organelles, secretion of cargo proteins and peptides, and uptake of cargo into the cell. Transport vesicles have distinct protein coats that assemble on a donor membrane where they can select cargo and curve the membrane to form a bud. A multitude of structural elements of coat proteins have been solved by X-ray crystallography. More recently, the architectures of the COPI and COPII coats were elucidated in context with their membrane by cryo-electron tomography. Here, we describe insights gained from the structures of these two coat lattices and discuss the resulting functional implications.
Collapse
Affiliation(s)
- Julien Béthune
- Heidelberg University Biochemistry Centre, 69120 Heidelberg, Germany; ,
| | - Felix T Wieland
- Heidelberg University Biochemistry Centre, 69120 Heidelberg, Germany; ,
| |
Collapse
|
68
|
Cox NJ, Unlu G, Bisnett BJ, Meister TR, Condon BM, Luo PM, Smith TJ, Hanna M, Chhetri A, Soderblom EJ, Audhya A, Knapik EW, Boyce M. Dynamic Glycosylation Governs the Vertebrate COPII Protein Trafficking Pathway. Biochemistry 2017; 57:91-107. [PMID: 29161034 DOI: 10.1021/acs.biochem.7b00870] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The COPII coat complex, which mediates secretory cargo trafficking from the endoplasmic reticulum, is a key control point for subcellular protein targeting. Because misdirected proteins cannot function, protein sorting by COPII is critical for establishing and maintaining normal cell and tissue homeostasis. Indeed, mutations in COPII genes cause a range of human pathologies, including cranio-lenticulo-sutural dysplasia (CLSD), which is characterized by collagen trafficking defects, craniofacial abnormalities, and skeletal dysmorphology. Detailed knowledge of the COPII pathway is required to understand its role in normal cell physiology and to devise new treatments for disorders in which it is disrupted. However, little is known about how vertebrates dynamically regulate COPII activity in response to developmental, metabolic, or pathological cues. Several COPII proteins are modified by O-linked β-N-acetylglucosamine (O-GlcNAc), a dynamic form of intracellular protein glycosylation, but the biochemical and functional effects of these modifications remain unclear. Here, we use a combination of chemical, biochemical, cellular, and genetic approaches to demonstrate that site-specific O-GlcNAcylation of COPII proteins mediates their protein-protein interactions and modulates cargo secretion. In particular, we show that individual O-GlcNAcylation sites of SEC23A, an essential COPII component, are required for its function in human cells and vertebrate development, because mutation of these sites impairs SEC23A-dependent in vivo collagen trafficking and skeletogenesis in a zebrafish model of CLSD. Our results indicate that O-GlcNAc is a conserved and critical regulatory modification in the vertebrate COPII-dependent trafficking pathway.
Collapse
Affiliation(s)
| | - Gokhan Unlu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | | | | | | | | | | | - Michael Hanna
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health , Madison, Wisconsin 53706, United States
| | | | - Erik J Soderblom
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University , Durham, North Carolina 27710, United States
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health , Madison, Wisconsin 53706, United States
| | - Ela W Knapik
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | | |
Collapse
|
69
|
Using Homology Modeling to Understand the Structural Basis of Specific Interaction of a Plant-Specific AtSar1a-AtSec23a Pair Involved in Protein ER Export. Methods Mol Biol 2017. [PMID: 28861817 DOI: 10.1007/978-1-4939-7262-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Homology modeling allows the prediction of a protein structure based on sequence similarity to a known structure of homologous proteins. In this chapter, we use a plant-specific AtSar1a-Atsec23a pair of proteins as a case study to illustrate how to use homology modeling to understand the specificity of the pairwise interaction between AtSar1a and AtSec23a. The detailed procedures described here are also useful in structure prediction of other protein complexes.
Collapse
|
70
|
TFG facilitates outer coat disassembly on COPII transport carriers to promote tethering and fusion with ER-Golgi intermediate compartments. Proc Natl Acad Sci U S A 2017; 114:E7707-E7716. [PMID: 28851831 DOI: 10.1073/pnas.1709120114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The conserved coat protein complex II (COPII) mediates the initial steps of secretory protein trafficking by assembling onto subdomains of the endoplasmic reticulum (ER) in two layers to generate cargo-laden transport carriers that ultimately fuse with an adjacent ER-Golgi intermediate compartment (ERGIC). Here, we demonstrate that Trk-fused gene (TFG) binds directly to the inner layer of the COPII coat. Specifically, the TFG C terminus interacts with Sec23 through a shared interface with the outer COPII coat and the cargo receptor Tango1/cTAGE5. Our findings indicate that TFG binding to Sec23 outcompetes these other associations in a concentration-dependent manner and ultimately promotes outer coat dissociation. Additionally, we demonstrate that TFG tethers vesicles harboring the inner COPII coat, which contributes to their clustering between the ER and ERGIC in cells. Together, our studies define a mechanism by which COPII transport carriers are retained locally at the ER/ERGIC interface after outer coat disassembly, which is a prerequisite for fusion with ERGIC membranes.
Collapse
|
71
|
Saito K, Maeda M, Katada T. Regulation of the Sar1 GTPase Cycle Is Necessary for Large Cargo Secretion from the Endoplasmic Reticulum. Front Cell Dev Biol 2017; 5:75. [PMID: 28879181 PMCID: PMC5572378 DOI: 10.3389/fcell.2017.00075] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/10/2017] [Indexed: 12/22/2022] Open
Abstract
Proteins synthesized within the endoplasmic reticulum (ER) are transported to the Golgi via coat protein complex II (COPII)-coated vesicles. The formation of COPII-coated vesicles is regulated by the GTPase cycle of Sar1. Activated Sar1 is recruited to ER membranes and forms a pre-budding complex with cargoes and the inner-coat complex. The outer-coat complex then stimulates Sar1 inactivation and completes vesicle formation. The mechanisms of forming transport carriers are well-conserved among species; however, in mammalian cells, several cargo molecules such as collagen, and chylomicrons are too large to be accommodated in conventional COPII-coated vesicles. Thus, special cargo-receptor complexes are required for their export from the ER. cTAGE5/TANGO1 complexes and their isoforms have been identified as cargo receptors for these macromolecules. Recent reports suggest that the cTAGE5/TANGO1 complex interacts with the GEF and the GAP of Sar1 and tightly regulates its GTPase cycle to accomplish large cargo secretion.
Collapse
Affiliation(s)
- Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of TokyoTokyo, Japan
| | - Miharu Maeda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of TokyoTokyo, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of TokyoTokyo, Japan
| |
Collapse
|
72
|
Iwasaki H, Yorimitsu T, Sato K. Microscopy analysis of reconstituted COPII coat polymerization and Sec16 dynamics. J Cell Sci 2017; 130:2893-2902. [PMID: 28747320 DOI: 10.1242/jcs.203844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/14/2017] [Indexed: 01/10/2023] Open
Abstract
The COPII coat and the small GTPase Sar1 mediate protein export from the endoplasmic reticulum (ER) via specialized domains known as the ER exit sites. The peripheral ER protein Sec16 has been proposed to organize ER exit sites. However, it remains unclear how these molecules drive COPII coat polymerization. Here, we characterized the spatiotemporal relationships between the Saccharomyces cerevisiae COPII components during their polymerization by performing fluorescence microscopy of an artificial planar membrane. We demonstrated that Sar1 dissociates from the membrane shortly after the COPII coat recruitment, and Sar1 is then no longer required for the COPII coat to bind to the membrane. Furthermore, we found that Sec16 is incorporated within the COPII-cargo clusters, and that this is dependent on the Sar1 GTPase cycle. These data show how Sar1 drives the polymerization of COPII coat and how Sec16 is spatially distributed during COPII coat polymerization.
Collapse
Affiliation(s)
- Hirohiko Iwasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Tomohiro Yorimitsu
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Ken Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
73
|
Brandizzi F. Transport from the endoplasmic reticulum to the Golgi in plants: Where are we now? Semin Cell Dev Biol 2017; 80:94-105. [PMID: 28688928 DOI: 10.1016/j.semcdb.2017.06.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/11/2017] [Accepted: 06/27/2017] [Indexed: 11/26/2022]
Abstract
The biogenesis of about one third of the cellular proteome is initiated in the endoplasmic reticulum (ER), which exports proteins to the Golgi apparatus for sorting to their final destination. Notwithstanding the close proximity of the ER with other secretory membranes (e.g., endosomes, plasma membrane), the ER is also important for the homeostasis of non-secretory organelles such as mitochondria, peroxisomes, and chloroplasts. While how the plant ER interacts with most of the non-secretory membranes is largely unknown, the knowledge on the mechanisms for ER-to-Golgi transport is relatively more advanced. Indeed, over the last fifteen years or so, a large number of exciting results have contributed to draw parallels with non-plant species but also to highlight the complexity of the plant ER-Golgi interface, which bears unique features. This review reports and discusses results on plant ER-to-Golgi traffic, focusing mainly on research on COPII-mediated transport in the model species Arabidopsis thaliana.
Collapse
Affiliation(s)
- Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
74
|
Parashar S, Mukhopadhyay A. GTPase Sar1 regulates the trafficking and secretion of the virulence factor gp63 in Leishmania. J Biol Chem 2017; 292:12111-12125. [PMID: 28576830 DOI: 10.1074/jbc.m117.784033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/30/2017] [Indexed: 12/30/2022] Open
Abstract
Metalloprotease gp63 (Leishmania donovani gp63 (Ldgp63)) is a critical virulence factor secreted by Leishmania However, how newly synthesized Ldgp63 exits the endoplasmic reticulum (ER) and is secreted by this parasite is unknown. Here, we cloned, expressed, and characterized the GTPase LdSar1 and other COPII components like LdSec23, LdSec24, LdSec13, and LdSec31 from Leishmania to understand their role in ER exit of Ldgp63. Using dominant-positive (LdSar1:H74L) and dominant-negative (LdSar1:T34N) mutants of LdSar1, we found that GTP-bound LdSar1 specifically binds to LdSec23, which binds, in turn, with LdSec24(1-702) to form a prebudding complex. Moreover, LdSec13 specifically interacted with His6-LdSec31(1-603), and LdSec31 bound the prebudding complex via LdSec23. Interestingly, dileucine 594/595 and valine 597 residues present in the Ldgp63 C-terminal domain were critical for binding with LdSec24(703-966), and GFP-Ldgp63L594A/L595A or GFP-Ldgp63V597S mutants failed to exit from the ER. Moreover, Ldgp63-containing COPII vesicle budding from the ER was inhibited by LdSar1:T34N in an in vitro budding assay, indicating that GTP-bound LdSar1 is required for budding of Ldgp63-containing COPII vesicles. To directly demonstrate the function of LdSar1 in Ldgp63 trafficking, we coexpressed RFP-Ldgp63 along with LdSar1:WT-GFP or LdSar1:T34N-GFP and found that LdSar1:T34N overexpression blocks Ldgp63 trafficking and secretion in Leishmania Finally, we noted significantly compromised survival of LdSar1:T34N-GFP-overexpressing transgenic parasites in macrophages. Taken together, these results indicated that Ldgp63 interacts with the COPII complex via LdSec24 for Ldgp63 ER exit and subsequent secretion.
Collapse
Affiliation(s)
- Smriti Parashar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
75
|
Sun J, Yu S, Zhang X, Capac C, Aligbe O, Daudelin T, Bonder EM, Gao N. A Wntless-SEC12 complex on the ER membrane regulates early Wnt secretory vesicle assembly and mature ligand export. J Cell Sci 2017; 130:2159-2171. [PMID: 28515233 DOI: 10.1242/jcs.200634] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/11/2017] [Indexed: 01/02/2023] Open
Abstract
Wntless (Wls) transports Wnt molecules for secretion; however, the cellular mechanism underlying the initial assembly of Wnt secretory vesicles is still not fully defined. Here, we performed proteomic and mutagenic analyses of mammalian Wls, and report a mechanism for formation of early Wnt secretory vesicles on ER membrane. Wls forms a complex with SEC12 (also known as PREB), an ER membrane-localized guanine nucleotide-exchange factor (GEF) activator of the SAR1 (the SAR1A isoform) small GTPase. Compared to palmitoylation-deficient Wnt molecules, binding of mature Wnt to Wls increases Wls-SEC12 interaction and promotes association of Wls with SAR1, the key activator of the COPII machinery. Incorporation of Wls into this exporting ER compartment is affected by Wnt ligand binding and SEC12 binding to Wls, as well as the structural integrity and, potentially, the folding of the cytosolic tail of Wls. In contrast, Wls-SEC12 binding is stable, with the interacting interface biochemically mapped to cytosolic segments of individual proteins. Mutant Wls that fails to communicate with the COPII machinery cannot effectively support Wnt secretion. These data suggest that formation of early Wnt secretory vesicles is carefully regulated to ensure proper export of functional ligands.
Collapse
Affiliation(s)
- Jiaxin Sun
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Shiyan Yu
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Xiao Zhang
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Catherine Capac
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | | | - Timothy Daudelin
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA .,Rutgers Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
76
|
Gan W, Zhang C, Siu KY, Satoh A, Tanner JA, Yu S. ULK1 phosphorylates Sec23A and mediates autophagy-induced inhibition of ER-to-Golgi traffic. BMC Cell Biol 2017; 18:22. [PMID: 28486929 PMCID: PMC5424413 DOI: 10.1186/s12860-017-0138-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/20/2017] [Indexed: 02/04/2023] Open
Abstract
Background Autophagy is an inducible autodigestive process that allows cells to recycle proteins and other materials for survival during stress and nutrient deprived conditions. The kinase ULK1 is required to activate this process. ULK1 phosphorylates a number of target proteins and regulates many cellular processes including the early secretory pathway. Recently, ULK1 has been demonstrated to phosphorylate Sec16 and affects the transport of serotonin transporter at the ER exit sites (ERES), but whether ULK1 may affect the transport of other cargo proteins and general secretion has not been fully addressed. Results In this study, we identified Sec23A, a component of the COPII vesicle coat, as a target of ULK1 phosphorylation. Elevated autophagy, induced by amino acid starvation, rapamycin, or overexpression of ULK1 caused aggregation of the ERES, a region of the ER dedicated for the budding of COPII vesicles. Transport of cargo proteins was also inhibited under these conditions and was retained at the ERES. ULK1 phosphorylation of Sec23A reduced the interaction between Sec23A and Sec31A. We identified serine 207, serine 312 and threonine 405 on Sec23A as ULK1 phosphorylation sites. Among these residues, serine 207, when changed to phospho-deficient and phospho-mimicking mutants, most faithfully recapitulated the above-mentioned effects of ULK1 phospho-regulation. Conclusion These findings identify Sec23A as a new target of ULK1 and uncover a mechanism of coordinating intracellular protein transport and autophagy. Electronic supplementary material The online version of this article (doi:10.1186/s12860-017-0138-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjia Gan
- School of Biomedical Sciences, Shatin, N.T., Hong Kong, Special Administrative Region of China.,Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Caiyun Zhang
- School of Biomedical Sciences, Shatin, N.T., Hong Kong, Special Administrative Region of China
| | - Ka Yu Siu
- School of Biomedical Sciences, Shatin, N.T., Hong Kong, Special Administrative Region of China
| | - Ayano Satoh
- The Graduate School of Natural Science and Technology, Okayama University, Tsushima naka 3-1-1, Okayama, 7008530, Japan
| | - Julian A Tanner
- School of Biomedical Sciences, University of Hong Kong, 21 Sassoon Road, Pok Fu Lam, Hong Kong, Special Administrative Region of China
| | - Sidney Yu
- School of Biomedical Sciences, Shatin, N.T., Hong Kong, Special Administrative Region of China. .,Epithelial Cell Biology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, Special Administrative Region of China.
| |
Collapse
|
77
|
Amodio G, Margarucci L, Moltedo O, Casapullo A, Remondelli P. Identification of Cysteine Ubiquitylation Sites on the Sec23A Protein of the COPII Complex Required for Vesicle Formation from the ER. Open Biochem J 2017; 11:36-46. [PMID: 28553408 PMCID: PMC5427705 DOI: 10.2174/1874091x01711010036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/09/2017] [Accepted: 03/17/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND COPII is a multiprotein complex that surrounds carrier vesicles budding from the Endoplasmic Reticulum and allows the recruitment of secretory proteins. The Sec23a protein plays a crucial role in the regulation of the dynamics of COPII formation ensuring the proper function of the secretory pathway. OBJECTIVE Since few evidences suggest that ubiquitylation could have a role in the COPII regulation, the present study was aimed to establish whether the Sec23a component of the vesicular envelope COPII could be ubiquitylated. METHOD Sec23a ubiquitylation was revealed by co-immunoprecipitation experiments. Recombinant Sec23a was gel-purified and analyzed by mass spectrometry subjected to trypsin proteolysis. Signature peptides were identified by the presence of Gly-Gly remnants from the C-terminus of the ubiquitin attached to the amino acid residues of the substrate. Recombinant Sec23a proteins bearing mutations in the ubiquitylation sites were used to evaluate the effect of ubiquitylation in the formation of COPII. RESULTS We identified two cysteine ubiquitylation sites showed at position 432 and 449 of the Sec23a protein sequence. Interestingly, we revealed that the amino acid residues of Sec23a joined to ubiquitin were cysteine instead of the conventional lysine residues. This unconventional ubiquitylation consists of the addition of one single ubiquitin moiety that is not required for Sec23a degradation. Immunofluorescence results showed that Sec23a ubiquitylation might influence COPII formation by modulating Sec23a interaction with the ER membrane. Presumably, this regulation could occur throughout continual ubiquitylation/de-ubiquityliation cycles. CONCLUSION Our results suggest a novel regulatory mechanism for the Sec23a function that could be crucial in several pathophysiological events known to alter COPII recycling.
Collapse
Affiliation(s)
- Giuseppina Amodio
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università degli Studi di Salerno, 84084 Baronissi-Salerno, Italy
| | - Luigi Margarucci
- Dipartimento di Farmacia, Università degli Studi di Salerno, 84034 Fisciano-Salerno, Italy
| | - Ornella Moltedo
- Dipartimento di Farmacia, Università degli Studi di Salerno, 84034 Fisciano-Salerno, Italy
| | - Agostino Casapullo
- Dipartimento di Farmacia, Università degli Studi di Salerno, 84034 Fisciano-Salerno, Italy
| | - Paolo Remondelli
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università degli Studi di Salerno, 84084 Baronissi-Salerno, Italy
| |
Collapse
|
78
|
Maeda M, Katada T, Saito K. TANGO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion. J Cell Biol 2017; 216:1731-1743. [PMID: 28442536 PMCID: PMC5461033 DOI: 10.1083/jcb.201703084] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/27/2022] Open
Abstract
Mammalian endoplasmic reticulum (ER) exit sites export a variety of cargo molecules including oversized cargoes such as collagens. However, the mechanisms of their assembly and organization are not fully understood. TANGO1L is characterized as a collagen receptor, but the function of TANGO1S remains to be investigated. Here, we show that direct interaction between both isoforms of TANGO1 and Sec16 is not only important for their correct localization but also critical for the organization of ER exit sites. The depletion of TANGO1 disassembles COPII components as well as membrane-bound ER-resident complexes, resulting in fewer functional ER exit sites and delayed secretion. The ectopically expressed TANGO1 C-terminal domain responsible for Sec16 binding in mitochondria is capable of recruiting Sec16 and other COPII components. Moreover, TANGO1 recruits membrane-bound macromolecular complexes consisting of cTAGE5 and Sec12 to the ER exit sites. These data suggest that mammalian ER exit sites are organized by TANGO1 acting as a scaffold, in cooperation with Sec16 for efficient secretion.
Collapse
Affiliation(s)
- Miharu Maeda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
79
|
Aguilera-Gomez A, Rabouille C. Membrane-bound organelles versus membrane-less compartments and their control of anabolic pathways in Drosophila. Dev Biol 2017; 428:310-317. [PMID: 28377034 DOI: 10.1016/j.ydbio.2017.03.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/29/2022]
Abstract
Classically, we think of cell compartmentalization as being achieved by membrane-bound organelles. It has nevertheless emerged that membrane-less assemblies also largely contribute to this compartmentalization. Here, we compare the characteristics of both types of compartmentalization in term of maintenance of functional identities. Furthermore, membrane less-compartments are critical for sustaining developmental and cell biological events as they control major metabolic pathways. We describe two examples related to this issue in Drosophila, the role of P-bodies in the translational control of gurken in the Drosophila oocyte, and the formation of Sec bodies upon amino-acid starvation in Drosophila cells.
Collapse
Affiliation(s)
| | - Catherine Rabouille
- Hubrecht Institute of the KNAW & UMC Utrecht, 3584 CT Utrecht, The Netherlands; Department of Cell Biology, UMC Utrecht, The Netherlands; Department of Cell Biology, UMC Groningen, The Netherlands.
| |
Collapse
|
80
|
Gimeno-Ferrer F, Pastor-Cantizano N, Bernat-Silvestre C, Selvi-Martínez P, Vera-Sirera F, Gao C, Perez-Amador MA, Jiang L, Aniento F, Marcote MJ. α2-COP is involved in early secretory traffic in Arabidopsis and is required for plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:391-401. [PMID: 28025315 PMCID: PMC5441910 DOI: 10.1093/jxb/erw446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
COP (coat protein) I-coated vesicles mediate intra-Golgi transport and retrograde transport from the Golgi to the endoplasmic reticulum. These vesicles form through the action of the small GTPase ADP-ribosylation factor 1 (ARF1) and the COPI heptameric protein complex (coatomer), which consists of seven subunits (α-, β-, β'-, γ-, δ-, ε- and ζ-COP). In contrast to mammals and yeast, several isoforms for coatomer subunits, with the exception of γ and δ, have been identified in Arabidopsis. To understand the role of COPI proteins in plant biology, we have identified and characterized a loss-of-function mutant of α2-COP, an Arabidopsis α-COP isoform. The α2-cop mutant displayed defects in plant growth, including small rosettes, stems and roots and mislocalization of p24δ5, a protein of the p24 family containing a C-terminal dilysine motif involved in COPI binding. The α2-cop mutant also exhibited abnormal morphology of the Golgi apparatus. Global expression analysis of the α2-cop mutant revealed altered expression of plant cell wall-associated genes. In addition, a strong upregulation of SEC31A, which encodes a subunit of the COPII coat, was observed in the α2-cop mutant; this also occurs in a mutant of a gene upstream of COPI assembly, GNL1, which encodes an ARF-guanine nucleotide exchange factor (GEF). These findings suggest that loss of α2-COP affects the expression of secretory pathway genes.
Collapse
Affiliation(s)
- Fátima Gimeno-Ferrer
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Burjassot, Spain
| | - Noelia Pastor-Cantizano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Spain
| | - César Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Spain
| | - Pilar Selvi-Martínez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Burjassot, Spain
| | - Francisco Vera-Sirera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Caiji Gao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Miguel Angel Perez-Amador
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Spain
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Spain
| |
Collapse
|
81
|
Gomez-Navarro N, Miller E. Protein sorting at the ER-Golgi interface. J Cell Biol 2016; 215:769-778. [PMID: 27903609 PMCID: PMC5166505 DOI: 10.1083/jcb.201610031] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/02/2016] [Accepted: 11/17/2016] [Indexed: 01/01/2023] Open
Abstract
In this review, Gomez-Navarro and Miller summarize the principles of cargo sorting by the vesicle traffic machinery and consider the diverse mechanisms by which cargo proteins are selected and captured into different transport vesicles. Protein traffic is of critical importance for normal cellular physiology. In eukaryotes, spherical transport vesicles move proteins and lipids from one internal membrane-bound compartment to another within the secretory pathway. The process of directing each individual protein to a specific destination (known as protein sorting) is a crucial event that is intrinsically linked to vesicle biogenesis. In this review, we summarize the principles of cargo sorting by the vesicle traffic machinery and consider the diverse mechanisms by which cargo proteins are selected and captured into different transport vesicles. We focus on the first two compartments of the secretory pathway: the endoplasmic reticulum and Golgi. We provide an overview of the complexity and diversity of cargo adaptor function and regulation, focusing on recent mechanistic discoveries that have revealed insight into protein sorting in cells.
Collapse
Affiliation(s)
- Natalia Gomez-Navarro
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Elizabeth Miller
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| |
Collapse
|
82
|
Davis S, Wang J, Zhu M, Stahmer K, Lakshminarayan R, Ghassemian M, Jiang Y, Miller EA, Ferro-Novick S. Sec24 phosphorylation regulates autophagosome abundance during nutrient deprivation. eLife 2016; 5. [PMID: 27855785 PMCID: PMC5148606 DOI: 10.7554/elife.21167] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/14/2016] [Indexed: 12/29/2022] Open
Abstract
Endoplasmic Reticulum (ER)-derived COPII coated vesicles constitutively transport secretory cargo to the Golgi. However, during starvation-induced stress, COPII vesicles have been implicated as a membrane source for autophagosomes, distinct organelles that engulf cellular components for degradation by macroautophagy (hereafter called autophagy). How cells regulate core trafficking machinery to fulfill dramatically different cellular roles in response to environmental cues is unknown. Here we show that phosphorylation of conserved amino acids on the membrane-distal surface of the Saccharomyces cerevisiae COPII cargo adaptor, Sec24, reprograms COPII vesicles for autophagy. We also show casein kinase 1 (Hrr25) is a key kinase that phosphorylates this regulatory surface. During autophagy, Sec24 phosphorylation regulates autophagosome number and its interaction with the C-terminus of Atg9, a component of the autophagy machinery required for autophagosome initiation. We propose that the acute need to produce autophagosomes during starvation drives the interaction of Sec24 with Atg9 to increase autophagosome abundance. DOI:http://dx.doi.org/10.7554/eLife.21167.001 When cells experience stressful conditions, such as a shortage of nutrients, they can digest their own material via a ‘self-eating’ process called autophagy and then recycle the products for further use. When autophagy is triggered, a new membrane structure called the autophagosome forms within the cell as it engulfs the material that is to be digested. The autophagosome delivers these materials to a compartment where they are broken down into smaller parts and the resulting raw materials are reused as needed. The membranes that make up the autophagosome are derived from other membranes within the cell. These include small membrane-bound compartments called vesicles, which carry proteins from one part of the cell to another, or to the outside of the cell. COPII vesicles, for example, carry out the first transport step in the pathway that leads out of the cell – the so-called secretory pathway. Recently it was found that, when cells are starving, COPII vesicles can be diverted to the autophagy pathway and provide a source of membrane to build the autophagosome. However, it was not understood how the membrane of a COPII vesicle is reprogrammed so that it can interact with the cellular machinery that builds autophagosomes. Using genetic and biochemical methods, Davis et al. have now teased apart the distinct roles of COPII vesicles in autophagy and the secretory pathway in budding yeast. The results show that a protein called Sec24, a component of the coat on the vesicles, interacts with another protein called Atg9, which is needed for the first steps of autophagosome formation. Davis et al. observed that Sec24 could be modified by the attachment of phosphate groups at a distinct site on the surface of Sec24. This modification promotes Sec24 to interact with Atg9 and increases the number of autophagosomes that form when cells are starving. Davis et al. also found that the enzyme casein kinase 1 is one of the enzymes responsible for attaching phosphate groups to Sec24. Following on from this work, it will be important to test whether modification of vesicle coat proteins is a widespread mechanism for reprogramming membranes for different uses in other situations as well. DOI:http://dx.doi.org/10.7554/eLife.21167.002
Collapse
Affiliation(s)
- Saralin Davis
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Juan Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Ming Zhu
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Kyle Stahmer
- Department of Biological Sciences, Columbia University, New York, United States
| | | | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, United States.,Biomolecular and Proteomics Mass Spectrometry Facility, University of California, San Diego, San Diego, United States
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Elizabeth A Miller
- Department of Biological Sciences, Columbia University, New York, United States.,MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Susan Ferro-Novick
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| |
Collapse
|
83
|
Wang Y, Liu F, Ren Y, Wang Y, Liu X, Long W, Wang D, Zhu J, Zhu X, Jing R, Wu M, Hao Y, Jiang L, Wang C, Wang H, Bao Y, Wan J. GOLGI TRANSPORT 1B Regulates Protein Export from the Endoplasmic Reticulum in Rice Endosperm Cells. THE PLANT CELL 2016; 28:2850-2865. [PMID: 27803308 PMCID: PMC5155349 DOI: 10.1105/tpc.16.00717] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 05/04/2023]
Abstract
Coat protein complex II (COPII) mediates the first step of anterograde transport of newly synthesized proteins from the endoplasmic reticulum (ER) to other endomembrane compartments in eukaryotes. A group of evolutionarily conserved proteins (Sar1, Sec23, Sec24, Sec13, and Sec31) constitutes the basic COPII coat machinery; however, the details of how the COPII coat assembly is regulated remain unclear. Here, we report a protein transport mutant of rice (Oryza sativa), named glutelin precursor accumulation4 (gpa4), which accumulates 57-kD glutelin precursors and forms two types of ER-derived abnormal structures. GPA4 encodes the evolutionarily conserved membrane protein GOT1B (also known as GLUP2), homologous to the Saccharomyces cerevisiae GOT1p. The rice GOT1B protein colocalizes with Arabidopsis thaliana Sar1b at Golgi-associated ER exit sites (ERESs) when they are coexpressed in Nicotiana benthamiana Moreover, GOT1B physically interacts with rice Sec23, and both proteins are present in the same complex(es) with rice Sar1b. The distribution of rice Sar1 in the endomembrane system, its association with rice Sec23c, and the ERES organization pattern are significantly altered in the gpa4 mutant. Taken together, our results suggest that GOT1B plays an important role in mediating COPII vesicle formation at ERESs, thus facilitating anterograde transport of secretory proteins in plant cells.
Collapse
Affiliation(s)
- Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Feng Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Wuhua Long
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Di Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jianping Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaopin Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Ruonan Jing
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Mingming Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yuanyuan Hao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Haiyang Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
84
|
TANGO1/cTAGE5 receptor as a polyvalent template for assembly of large COPII coats. Proc Natl Acad Sci U S A 2016; 113:10061-6. [PMID: 27551091 DOI: 10.1073/pnas.1605916113] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The supramolecular cargo procollagen is loaded into coat protein complex II (COPII)-coated carriers at endoplasmic reticulum (ER) exit sites by the receptor molecule TANGO1/cTAGE5. Electron microscopy studies have identified a tubular carrier of suitable dimensions that is molded by a distinctive helical array of the COPII inner coat protein Sec23/24•Sar1; the helical arrangement is absent from canonical COPII-coated small vesicles. In this study, we combined X-ray crystallographic and biochemical analysis to characterize the association of TANGO1/cTAGE5 with COPII proteins. The affinity for Sec23 is concentrated in the proline-rich domains (PRDs) of TANGO1 and cTAGE5, but Sec23 recognizes merely a PPP motif. The PRDs contain repeated PPP motifs separated by proline-rich linkers, so a single TANGO1/cTAGE5 receptor can bind multiple copies of coat protein in a close-packed array. We propose that TANGO1/cTAGE5 promotes the accretion of inner coat proteins to the helical lattice. Furthermore, we show that PPP motifs in the outer coat protein Sec31 also bind to Sec23, suggesting that stepwise COPII coat assembly will ultimately displace TANGO1/cTAGE5 and compartmentalize its operation to the base of the growing COPII tubule.
Collapse
|
85
|
Adolf F, Rhiel M, Reckmann I, Wieland FT. Sec24C/D-isoform-specific sorting of the preassembled ER-Golgi Q-SNARE complex. Mol Biol Cell 2016; 27:2697-707. [PMID: 27413010 PMCID: PMC5007090 DOI: 10.1091/mbc.e16-04-0229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/08/2016] [Indexed: 11/18/2022] Open
Abstract
SNAREs are incorporated into COPII vesicles by direct interaction with Sec24. In mammals, Sec24 isoforms recruit either Sec22b or the Q-SNARE complex comprising Syntaxin5, GS27, and Bet1. Analysis of immunoisolated COPII vesicles and intracellular localization of Sec24 isoforms indicates that all ER-Golgi SNAREs are present on the same vesicles. Secretory proteins are exported from the endoplasmic reticulum in COPII vesicles. SNARE proteins—core machinery for membrane fusion—are incorporated into COPII vesicles by direct interaction with Sec24. Here we report a novel mechanism for sorting of the ER–Golgi Q-SNAREs into COPII vesicles. Different mammalian Sec24 isoforms recruit either the R-SNARE Sec22b or the Q-SNAREs Syntaxin5, GS27, and Bet1. Syntaxin5 is the only Q-SNARE that directly interacts with Sec24C, requiring its “open” conformation. Mutation within the IxM cargo-binding site of Sec24C led to a drastic reduction in sorting of all three Q-SNAREs into COPII vesicles, implying their ER export as a preassembled complex. Analysis of immunoisolated COPII vesicles and intracellular localization of Sec24 isoforms indicate that all ER–Golgi SNAREs are present on the same vesicle. Combined with existing data, our findings yield a general concept of how Sec24 isoforms can recruit fusogenic SNARE subunits to keep them functionally apart and thus prime mammalian COPII vesicles for homotypic fusion.
Collapse
Affiliation(s)
- Frank Adolf
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Manuel Rhiel
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Ingeborg Reckmann
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Felix T Wieland
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
86
|
Khoriaty R, Everett L, Chase J, Zhu G, Hoenerhoff M, McKnight B, Vasievich MP, Zhang B, Tomberg K, Williams J, Maillard I, Ginsburg D. Pancreatic SEC23B deficiency is sufficient to explain the perinatal lethality of germline SEC23B deficiency in mice. Sci Rep 2016; 6:27802. [PMID: 27297878 PMCID: PMC4906273 DOI: 10.1038/srep27802] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/25/2016] [Indexed: 01/18/2023] Open
Abstract
In humans, loss of function mutations in SEC23B result in Congenital Dyserythropoietic Anemia type II (CDAII), a disease limited to defective erythroid development. Patients with two nonsense SEC23B mutations have not been reported, suggesting that complete SEC23B deficiency might be lethal. We previously reported that SEC23B-deficient mice die perinatally, exhibiting massive pancreatic degeneration and that mice with hematopoietic SEC23B deficiency do not exhibit CDAII. We now show that SEC23B deficiency restricted to the pancreas is sufficient to explain the lethality observed in mice with global SEC23B-deficiency. Immunohistochemical stains demonstrate an acinar cell defect but normal islet cells. Mammalian genomes contain two Sec23 paralogs, Sec23A and Sec23B. The encoded proteins share ~85% amino acid sequence identity. We generate mice with pancreatic SEC23A deficiency and demonstrate that these mice survive normally, exhibiting normal pancreatic weights and histology. Taken together, these data demonstrate that SEC23B but not SEC23A is essential for murine pancreatic development. We also demonstrate that two BAC transgenes spanning Sec23b rescue the lethality of mice homozygous for a Sec23b gene trap allele, excluding a passenger gene mutation as the cause of the pancreatic lethality, and indicating that the regulatory elements critical for Sec23b pancreatic function reside within the BAC transgenes.
Collapse
Affiliation(s)
- Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lesley Everett
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer Chase
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Guojing Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Mark Hoenerhoff
- In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Brooke McKnight
- College of Literature Science and the Arts, University of Michigan, Ann Arbor, MI, USA
| | | | - Bin Zhang
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Kärt Tomberg
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - John Williams
- Department of Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Ivan Maillard
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - David Ginsburg
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
87
|
Rayl M, Truitt M, Held A, Sargeant J, Thorsen K, Hay JC. Penta-EF-Hand Protein Peflin Is a Negative Regulator of ER-To-Golgi Transport. PLoS One 2016; 11:e0157227. [PMID: 27276012 PMCID: PMC4898701 DOI: 10.1371/journal.pone.0157227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/26/2016] [Indexed: 11/18/2022] Open
Abstract
Luminal calcium regulates vesicle transport early in the secretory pathway. In ER-to-Golgi transport, depletion of luminal calcium leads to significantly reduced transport and a buildup of budding and newly budded COPII vesicles and vesicle proteins. Effects of luminal calcium on transport may be mediated by cytoplasmic calcium sensors near ER exits sites (ERES). The penta-EF-hand (PEF) protein apoptosis-linked gene 2 (ALG-2) stabilizes sec31A at ER exit sites (ERES) and promotes the assembly of inner and outer shell COPII components. However, in vitro and intact cell approaches have not determined whether ALG-2 is a negative or positive regulator, or a regulator at all, under basal physiological conditions. ALG-2 interacts with another PEF protein, peflin, to form cytosolic heterodimers that dissociate in response to calcium. However, a biological function for peflin has not been demonstrated and whether peflin and the ALG-2/peflin interaction modulates transport has not been investigated. Using an intact, single cell, morphological assay for ER-to-Golgi transport in normal rat kidney (NRK) cells, we found that depletion of peflin using siRNA resulted in significantly faster transport of the membrane cargo VSV-G. Double depletion of peflin and ALG-2 blocked the increased transport resulting from peflin depletion, demonstrating a role for ALG-2 in the increased transport. Furthermore, peflin depletion caused increased targeting of ALG-2 to ERES and increased ALG-2/sec31A interactions, suggesting that peflin may normally inhibit transport by preventing ALG-2/sec31A interactions. This work identifies for the first time a clear steady state role for a PEF protein in ER-to-Golgi transport—peflin is a negative regulator of transport.
Collapse
Affiliation(s)
- Mariah Rayl
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT, United States of America
| | - Mishana Truitt
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT, United States of America
| | - Aaron Held
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT, United States of America
| | - John Sargeant
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT, United States of America
| | - Kevin Thorsen
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT, United States of America
| | - Jesse C. Hay
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT, United States of America
- * E-mail:
| |
Collapse
|
88
|
McCaughey J, Miller VJ, Stevenson NL, Brown AK, Budnik A, Heesom KJ, Alibhai D, Stephens DJ. TFG Promotes Organization of Transitional ER and Efficient Collagen Secretion. Cell Rep 2016; 15:1648-59. [PMID: 27184855 PMCID: PMC4885023 DOI: 10.1016/j.celrep.2016.04.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/16/2016] [Accepted: 04/15/2016] [Indexed: 12/30/2022] Open
Abstract
Collagen is the most abundant protein in the animal kingdom. It is of fundamental importance during development for cell differentiation and tissue morphogenesis as well as in pathological processes such as fibrosis and cancer cell migration. However, our understanding of the mechanisms of procollagen secretion remains limited. Here, we show that TFG organizes transitional ER (tER) and ER exit sites (ERESs) into larger structures. Depletion of TFG results in dispersion of tER elements that remain associated with individual ER-Golgi intermediate compartments (ERGICs) as largely functional ERESs. We show that TFG is not required for the transport and packaging of small soluble cargoes but is necessary for the export of procollagen from the ER. Our work therefore suggests a key relationship between the structure and function of ERESs and a central role for TFG in optimizing COPII assembly for procollagen export.
Collapse
Affiliation(s)
- Janine McCaughey
- Cell Biology Laboratories, School of Biochemistry, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK; Institut für Biophysik, Leibniz Universität Hannover, Herrenhäuserstraβe 2, 30419 Hannover, Germany
| | - Victoria J Miller
- Cell Biology Laboratories, School of Biochemistry, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Anna K Brown
- Cell Biology Laboratories, School of Biochemistry, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Annika Budnik
- Cell Biology Laboratories, School of Biochemistry, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Kate J Heesom
- Proteomics Facility, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Dominic Alibhai
- Wolfson Bioimaging Facility, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
89
|
Abstract
Secretion is the cellular process present in every organism that delivers soluble proteins and cargoes to the extracellular space. In eukaryotes, conventional protein secretion (CPS) is the trafficking route that secretory proteins undertake when are transported from the endoplasmic reticulum (ER) to the Golgi apparatus (GA), and subsequently to the plasma membrane (PM) via secretory vesicles or secretory granules. This book chapter recalls the fundamental steps in cell biology research contributing to the elucidation of CPS; it describes the most prominent examples of conventionally secreted proteins in eukaryotic cells and the molecular mechanisms necessary to regulate each step of this process.
Collapse
|
90
|
Hanna MG, Mela I, Wang L, Henderson RM, Chapman ER, Edwardson JM, Audhya A. Sar1 GTPase Activity Is Regulated by Membrane Curvature. J Biol Chem 2015; 291:1014-27. [PMID: 26546679 PMCID: PMC4714187 DOI: 10.1074/jbc.m115.672287] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Indexed: 12/15/2022] Open
Abstract
The majority of biosynthetic secretory proteins initiate their journey through the endomembrane system from specific subdomains of the endoplasmic reticulum. At these locations, coated transport carriers are generated, with the Sar1 GTPase playing a critical role in membrane bending, recruitment of coat components, and nascent vesicle formation. How these events are appropriately coordinated remains poorly understood. Here, we demonstrate that Sar1 acts as the curvature-sensing component of the COPII coat complex and highlight the ability of Sar1 to bind more avidly to membranes of high curvature. Additionally, using an atomic force microscopy-based approach, we further show that the intrinsic GTPase activity of Sar1 is necessary for remodeling lipid bilayers. Consistent with this idea, Sar1-mediated membrane remodeling is dramatically accelerated in the presence of its guanine nucleotide-activating protein (GAP), Sec23-Sec24, and blocked upon addition of guanosine-5′-[(β,γ)-imido]triphosphate, a poorly hydrolysable analog of GTP. Our results also indicate that Sar1 GTPase activity is stimulated by membranes that exhibit elevated curvature, potentially enabling Sar1 membrane scission activity to be spatially restricted to highly bent membranes that are characteristic of a bud neck. Taken together, our data support a stepwise model in which the amino-terminal amphipathic helix of GTP-bound Sar1 stably penetrates the endoplasmic reticulum membrane, promoting local membrane deformation. As membrane bending increases, Sar1 membrane binding is elevated, ultimately culminating in GTP hydrolysis, which may destabilize the bilayer sufficiently to facilitate membrane fission.
Collapse
Affiliation(s)
- Michael G Hanna
- From the Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Ioanna Mela
- the Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD Cambridge, United Kingdom, and
| | - Lei Wang
- From the Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Robert M Henderson
- the Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD Cambridge, United Kingdom, and
| | - Edwin R Chapman
- the Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705
| | - J Michael Edwardson
- the Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD Cambridge, United Kingdom, and
| | - Anjon Audhya
- From the Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53706,
| |
Collapse
|
91
|
Verissimo F, Halavatyi A, Pepperkok R, Weiss M. A microtubule-independent role of p150glued in secretory cargo concentration at endoplasmic reticulum exit sites. J Cell Sci 2015; 128:4160-70. [PMID: 26459637 DOI: 10.1242/jcs.172395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 10/05/2015] [Indexed: 01/08/2023] Open
Abstract
Newly synthesized proteins are sorted into COPII-coated transport carriers at the endoplasmic reticulum (ER). Assembly of the COPII coat complex, which occurs at ER exit sites (ERES), is initiated by membrane association and GTP loading of SAR1, followed by the recruitment of the SEC23-SEC24 and SEC13-SEC31 subcomplexes. Both of these two subcomplexes stimulate GTP hydrolysis and coat disassembly. This inherent disassembly capacity of COPII complexes needs to be regulated to allow sufficient time for cargo sorting and transport carrier formation. By performing fluorescence recovery after photobleaching (FRAP) and mathematical modeling, we show that p150(glued) (also known as DCTN1), a component of the dynactin complex, stabilizes the COPII pre-budding complex on ER membranes in a microtubule-independent manner. Concentration of the secretory marker ts-O45-G at ERES is reduced in the presence of a C-terminal p150(glued) fragment that prevents binding of endogenous p150(glued) to SEC23. A similar cargo reduction is observed upon p150(glued) knockdown. Taken together, our data suggest that cargo concentration at ERES is regulated by p150(glued) to coordinate protein sorting and transport carrier formation with the subsequent long-range transport towards the Golgi complex along microtubules.
Collapse
Affiliation(s)
- Fatima Verissimo
- Cell Biology and Biophysics Unit, EMBL, Meyerhofstraße 1, Heidelberg D-69117, Germany
| | - Aliaksandr Halavatyi
- Cell Biology and Biophysics Unit, EMBL, Meyerhofstraße 1, Heidelberg D-69117, Germany
| | - Rainer Pepperkok
- Cell Biology and Biophysics Unit, EMBL, Meyerhofstraße 1, Heidelberg D-69117, Germany
| | - Matthias Weiss
- Experimental Physics I, Universitaetsstr. 30, University of Bayreuth, Bayreuth D-95440, Germany
| |
Collapse
|
92
|
Ypt1 and COPII vesicles act in autophagosome biogenesis and the early secretory pathway. Biochem Soc Trans 2015; 43:92-6. [PMID: 25619251 DOI: 10.1042/bst20140247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The GTPase Ypt1, Rab1 in mammals functions on multiple intracellular trafficking pathways. Ypt1 has an established role on the early secretory pathway in targeting coat protein complex II (COPII) coated vesicles to the cis-Golgi. Additionally, Ypt1 functions during the initial stages of macroautophagy, a process of cellular degradation induced during periods of cell stress. In the present study, we discuss the role of Ypt1 and other secretory machinery during macroautophagy, highlighting commonalities between these two pathways.
Collapse
|
93
|
Structure and Switch Cycle of SRβ as Ancestral Eukaryotic GTPase Associated with Secretory Membranes. Structure 2015; 23:1838-1847. [PMID: 26299945 DOI: 10.1016/j.str.2015.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/15/2015] [Accepted: 07/19/2015] [Indexed: 11/22/2022]
Abstract
G proteins of the Ras-family of small GTPases trace the evolution of eukaryotes. The earliest branching involves the closely related Arf, Sar1, and SRβ GTPases associated with secretory membranes. SRβ is an integral membrane component of the signal recognition particle (SRP) receptor that targets ribosome-nascent chain complexes to the ER. How SRβ integrates into the regulation of SRP-dependent membrane protein biogenesis is not known. Here we show that SRβ-GTP interacts with ribosomes only in presence of SRα and present crystal structures of SRβ in complex with the SRX domain of SRα in the GTP-bound state at 3.2 Å, and of GDP- and GDP · Mg(2+)-bound SRβ at 1.9 Å and 2.4 Å, respectively. We define the GTPase switch cycle of SRβ and identify specific differences to the Arf and Sar1 families with implications for GTPase regulation. Our data allow a better integration of SRβ into the scheme of protein targeting.
Collapse
|
94
|
Han J, Li E, Chen L, Zhang Y, Wei F, Liu J, Deng H, Wang Y. The CREB coactivator CRTC2 controls hepatic lipid metabolism by regulating SREBP1. Nature 2015; 524:243-6. [PMID: 26147081 DOI: 10.1038/nature14557] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 04/28/2015] [Indexed: 12/18/2022]
Abstract
Abnormal accumulation of triglycerides in the liver, caused in part by increased de novo lipogenesis, results in non-alcoholic fatty liver disease and insulin resistance. Sterol regulatory element-binding protein 1 (SREBP1), an important transcriptional regulator of lipogenesis, is synthesized as an inactive precursor that binds to the endoplasmic reticulum (ER). In response to insulin signalling, SREBP1 is transported from the ER to the Golgi in a COPII-dependent manner, processed by proteases in the Golgi, and then shuttled to the nucleus to induce lipogenic gene expression; however, the mechanisms underlying enhanced SREBP1 activity in insulin-resistant obesity and diabetes remain unclear. Here we show in mice that CREB regulated transcription coactivator 2 (CRTC2) functions as a mediator of mTOR signalling to modulate COPII-dependent SREBP1 processing. CRTC2 competes with Sec23A, a subunit of the COPII complex, to interact with Sec31A, another COPII subunit, thus disrupting SREBP1 transport. During feeding, mTOR phosphorylates CRTC2 and attenuates its inhibitory effect on COPII-dependent SREBP1 maturation. As hepatic overexpression of an mTOR-defective CRTC2 mutant in obese mice improved the lipogenic program and insulin sensitivity, these results demonstrate how the transcriptional coactivator CRTC2 regulates mTOR-mediated lipid homeostasis in the fed state and in obesity.
Collapse
Affiliation(s)
- Jinbo Han
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Erwei Li
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liqun Chen
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Zhang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fangchao Wei
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jieyuan Liu
- Proteomics Facility, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- Proteomics Facility, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yiguo Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
95
|
Schekman R. [The genes and proteins which control the process of secretion]. Biol Aujourdhui 2015; 209:35-61. [PMID: 26115712 DOI: 10.1051/jbio/2015011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
96
|
Fang J, Liu M, Zhang X, Sakamoto T, Taatjes DJ, Jena BP, Sun F, Woods J, Bryson T, Kowluru A, Zhang K, Chen X. COPII-Dependent ER Export: A Critical Component of Insulin Biogenesis and β-Cell ER Homeostasis. Mol Endocrinol 2015; 29:1156-69. [PMID: 26083833 DOI: 10.1210/me.2015-1012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic β-cells possess a highly active protein synthetic and export machinery in the endoplasmic reticulum (ER) to accommodate the massive production of proinsulin. ER homeostasis is vital for β-cell functions and is maintained by the delicate balance between protein synthesis, folding, export, and degradation. Disruption of ER homeostasis by diabetes-causing factors leads to β-cell death. Among the 4 components to maintain ER homeostasis in β-cells, the role of ER export in insulin biogenesis is the least understood. To address this knowledge gap, the present study investigated the molecular mechanism of proinsulin ER export in MIN6 cells and primary islets. Two inhibitory mutants of the secretion-associated RAS-related protein (Sar)1 small GTPase, known to specifically block coat protein complex II (COPII)-dependent ER export, were overexpressed in β-cells using recombinant adenoviruses. Results from this approach, as well as small interfering RNA-mediated Sar1 knockdown, demonstrated that defective Sar1 function blocked proinsulin ER export and abolished its conversion to mature insulin in MIN6 cells, isolated mouse, and human islets. It is further revealed, using an in vitro vesicle formation assay, that proinsulin was packaged into COPII vesicles in a GTP- and Sar1-dependent manner. Blockage of COPII-dependent ER exit by Sar1 mutants strongly induced ER morphology change, ER stress response, and β-cell apoptosis. These responses were mediated by the PKR (double-stranded RNA-dependent kinase)-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (p-eIF2α) and inositol-requiring protein 1 (IRE1)/x-box binding protein 1 (Xbp1) pathways but not via activating transcription factor 6 (ATF6). Collectively, results from the study demonstrate that COPII-dependent ER export plays a vital role in insulin biogenesis, ER homeostasis, and β-cell survival.
Collapse
Affiliation(s)
- Jingye Fang
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Ming Liu
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Xuebao Zhang
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Takeshi Sakamoto
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Douglas J Taatjes
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Bhanu P Jena
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Fei Sun
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - James Woods
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Tim Bryson
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Anjaneyulu Kowluru
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Kezhong Zhang
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Xuequn Chen
- Department of Physiology (J.F., B.P.J., F.S., J.W., T.B., X.C.) and Center for Molecular Medicine and Genetics (X.Z., K.Z.), School of Medicine, Department of Physics and Astronomy (T.S.), College of Liberal Arts and Sciences, and Department of Pharmaceutical Sciences (A.K.), Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, and John D. Dingell VA Medical Center (A.K.), Detroit, Michigan 48201; Department of Internal Medicine (M.L.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Pathology (D.J.T.), Microscopy Imaging Center, University of Vermont College of Medicine, Burlington, Vermont 05405
| |
Collapse
|
97
|
Saito K, Katada T. Mechanisms for exporting large-sized cargoes from the endoplasmic reticulum. Cell Mol Life Sci 2015; 72:3709-20. [PMID: 26082182 PMCID: PMC4565863 DOI: 10.1007/s00018-015-1952-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/18/2015] [Accepted: 06/08/2015] [Indexed: 12/14/2022]
Abstract
Cargo proteins exported from the endoplasmic reticulum to the Golgi apparatus are typically transported in coat protein complex II (COPII)-coated vesicles of 60–90 nm diameter. Several cargo molecules including collagens and chylomicrons form structures that are too large to be accommodated by these vesicles, but their secretion still requires COPII proteins. Here, we first review recent progress on large cargo secretions derived especially from animal models and human diseases, which indicate the importance of COPII proteins. We then discuss the recent isolation of specialized factors that modulate the process of COPII-dependent cargo formation to facilitate the exit of large-sized cargoes from the endoplasmic reticulum. Based on these findings, we propose a model that describes the importance of the GTPase cycle for secretion of oversized cargoes. Next, we summarize reports that describe the structures of COPII proteins and how these results provide insight into the mechanism of assembly of the large cargo carriers. Finally, we discuss what issues remain to be solved in the future.
Collapse
Affiliation(s)
- Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
98
|
Iwasaki H, Yorimitsu T, Sato K. Distribution of Sec24 isoforms to each ER exit site is dynamically regulated in Saccharomyces cerevisiae. FEBS Lett 2015; 589:1234-9. [PMID: 25896017 DOI: 10.1016/j.febslet.2015.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/27/2015] [Accepted: 04/06/2015] [Indexed: 02/05/2023]
Abstract
COPII vesicles are formed at specific subdomains of the ER, termed ER exit sites (ERESs). Depending on the cell type, ERESs number from a few to several hundred per cell. However, whether these ERESs are functionally and compositionally identical at the cellular level remains unclear. Our live cell-imaging analysis in Saccharomyces cerevisiae revealed that the isoforms of cargo-adaptor subunits are unequally distributed to each ERES at steady state, whereas this distribution is altered in response to UPR activation. These results suggest that in S. cerevisiae cargo loading to ERES is dynamically controlled in response to environmental changes.
Collapse
Affiliation(s)
- Hirohiko Iwasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Tomohiro Yorimitsu
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Ken Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
99
|
Paczkowski JE, Richardson BC, Fromme JC. Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis. Trends Cell Biol 2015; 25:408-16. [PMID: 25795254 DOI: 10.1016/j.tcb.2015.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/11/2015] [Accepted: 02/19/2015] [Indexed: 12/29/2022]
Abstract
Cargo adaptors sort transmembrane protein cargos into nascent vesicles by binding directly to their cytosolic domains. Recent studies have revealed previously unappreciated roles for cargo adaptors and regulatory mechanisms governing their function. The adaptor protein (AP)-1 and AP-2 clathrin adaptors switch between open and closed conformations that ensure they function at the right place at the right time. The exomer cargo adaptor has a direct role in remodeling the membrane for vesicle fission. Several different cargo adaptors functioning in distinct trafficking pathways at the Golgi are similarly regulated through bivalent binding to the ADP-ribosylation factor 1 (Arf1) GTPase, potentially enabling regulation by a threshold concentration of Arf1. Taken together, these studies highlight that cargo adaptors do more than just adapt cargos.
Collapse
Affiliation(s)
- Jon E Paczkowski
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Brian C Richardson
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
100
|
Johnson A, Bhattacharya N, Hanna M, Pennington JG, Schuh AL, Wang L, Otegui MS, Stagg SM, Audhya A. TFG clusters COPII-coated transport carriers and promotes early secretory pathway organization. EMBO J 2015; 34:811-27. [PMID: 25586378 DOI: 10.15252/embj.201489032] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In mammalian cells, cargo-laden secretory vesicles leave the endoplasmic reticulum (ER) en route to ER-Golgi intermediate compartments (ERGIC) in a manner dependent on the COPII coat complex. We report here that COPII-coated transport carriers traverse a submicron, TFG (Trk-fused gene)-enriched zone at the ER/ERGIC interface. The architecture of TFG complexes as determined by three-dimensional electron microscopy reveals the formation of flexible, octameric cup-like structures, which are able to self-associate to generate larger polymers in vitro. In cells, loss of TFG function dramatically slows protein export from the ER and results in the accumulation of COPII-coated carriers throughout the cytoplasm. Additionally, the tight association between ER and ERGIC membranes is lost in the absence of TFG. We propose that TFG functions at the ER/ERGIC interface to locally concentrate COPII-coated transport carriers and link exit sites on the ER to ERGIC membranes. Our findings provide a new mechanism by which COPII-coated carriers are retained near their site of formation to facilitate rapid fusion with neighboring ERGIC membranes upon uncoating, thereby promoting interorganellar cargo transport.
Collapse
Affiliation(s)
- Adam Johnson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | | | - Michael Hanna
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Janice G Pennington
- Departments of Botany and Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Amber L Schuh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Lei Wang
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Marisa S Otegui
- Departments of Botany and Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott M Stagg
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|