51
|
Richmond D, Rizkallah R, Liang F, Hurt MM, Wang Y. Slk19 clusters kinetochores and facilitates chromosome bipolar attachment. Mol Biol Cell 2013; 24:566-77. [PMID: 23283988 PMCID: PMC3583661 DOI: 10.1091/mbc.e12-07-0552] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Yeast kinetochore protein Slk19 is required for kinetochore clustering, and nocodazole exposure to slk19 mutant cells causes impaired kinetochore capture and delayed chromosome bipolar attachment after nocodazole washout. In all eukaryotic cells, DNA is packaged into multiple chromosomes that are linked to microtubules through a large protein complex called a kinetochore. Previous data show that the kinetochores are clustered together during most of the cell cycle, but the mechanism and the biological significance of kinetochore clustering are unknown. As a kinetochore protein in budding yeast, the role of Slk19 in the stability of the anaphase spindle has been well studied, but its function in chromosome segregation has remained elusive. Here we show that Slk19 is required for kinetochore clustering when yeast cells are treated with the microtubule-depolymerizing agent nocodazole. We further find that slk19Δ mutant cells exhibit delayed kinetochore capture and chromosome bipolar attachment after the disruption of the kinetochore–microtubule interaction by nocodazole, which is likely attributed to defective kinetochore clustering. In addition, we show that Slk19 interacts with itself, suggesting that the dimerization of Slk19 may mediate the interaction between kinetochores for clustering. Therefore Slk19 likely acts as kinetochore glue that clusters kinetochores to facilitate efficient and faithful chromosome segregation.
Collapse
Affiliation(s)
- Daniel Richmond
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | |
Collapse
|
52
|
Best HA, Matthews JH, Heathcott RW, Hanna R, Leahy DC, Coorey NVC, Bellows DS, Atkinson PH, Miller JH. Laulimalide and peloruside A inhibit mitosis of Saccharomyces cerevisiae by preventing microtubule depolymerisation-dependent steps in chromosome separation and nuclear positioning. MOLECULAR BIOSYSTEMS 2013; 9:2842-52. [DOI: 10.1039/c3mb70211a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
53
|
Pivoting of microtubules around the spindle pole accelerates kinetochore capture. Nat Cell Biol 2012; 15:82-7. [PMID: 23222841 DOI: 10.1038/ncb2640] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 11/05/2012] [Indexed: 12/17/2022]
Abstract
During cell division, spindle microtubules attach to chromosomes through kinetochores, protein complexes on the chromosome. The central question is how microtubules find kinetochores. According to the pioneering idea termed search-and-capture, numerous microtubules grow from a centrosome in all directions and by chance capture kinetochores. The efficiency of search-and-capture can be improved by a bias in microtubule growth towards the kinetochores, by nucleation of microtubules at the kinetochores and at spindle microtubules, by kinetochore movement, or by a combination of these processes. Here we show in fission yeast that kinetochores are captured by microtubules pivoting around the spindle pole, instead of growing towards the kinetochores. This pivoting motion of microtubules is random and independent of ATP-driven motor activity. By introducing a theoretical model, we show that the measured random movement of microtubules and kinetochores is sufficient to explain the process of kinetochore capture. Our theory predicts that the speed of capture depends mainly on how fast microtubules pivot, which was confirmed experimentally by speeding up and slowing down microtubule pivoting. Thus, pivoting motion allows microtubules to explore space laterally, as they search for targets such as kinetochores.
Collapse
|
54
|
Akiyoshi B, Biggins S. Reconstituting the kinetochore–microtubule interface: what, why, and how. Chromosoma 2012; 121:235-50. [PMID: 22289864 DOI: 10.1007/s00412-012-0362-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/15/2012] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
Abstract
The kinetochore is the proteinaceous complex that governs the movement of duplicated chromosomes by interacting with spindle microtubules during mitosis and meiosis. Faithful chromosome segregation requires that kinetochores form robust load-bearing attachments to the tips of dynamic spindle microtubules, correct microtubule attachment errors, and delay the onset of anaphase until all chromosomes have made proper attachments. To understand how this macromolecular machine operates to segregate duplicated chromosomes with exquisite accuracy, it is critical to reconstitute and study kinetochore–microtubule interactions in vitro using defined components. Here, we review the current status of reconstitution as well as recent progress in understanding the microtubule-binding functions of kinetochores in vivo.
Collapse
Affiliation(s)
- Bungo Akiyoshi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | | |
Collapse
|
55
|
Erlemann S, Neuner A, Gombos L, Gibeaux R, Antony C, Schiebel E. An extended γ-tubulin ring functions as a stable platform in microtubule nucleation. J Cell Biol 2012; 197:59-74. [PMID: 22472440 PMCID: PMC3317808 DOI: 10.1083/jcb.201111123] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/05/2012] [Indexed: 11/28/2022] Open
Abstract
γ-Tubulin complexes are essential for microtubule (MT) nucleation. The γ-tubulin small complex (γ-TuSC) consists of two molecules of γ-tubulin and one molecule each of Spc97 and Spc98. In vitro, γ-TuSCs oligomerize into spirals of 13 γ-tubulin molecules per turn. However, the properties and numbers of γ-TuSCs at MT nucleation sites in vivo are unclear. In this paper, we show by fluorescence recovery after photobleaching analysis that γ-tubulin was stably integrated into MT nucleation sites and was further stabilized by tubulin binding. Importantly, tubulin showed a stronger interaction with the nucleation site than with the MT plus end, which probably provides the basis for MT nucleation. Quantitative analysis of γ-TuSCs on single MT minus ends argued for nucleation sites consisting of approximately seven γ-TuSCs with approximately three additional γ-tubulin molecules. Nucleation and anchoring of MTs required the same number of γ-tubulin molecules. We suggest that a spiral of seven γ-TuSCs with a slight surplus of γ-tubulin nucleates MTs in vivo.
Collapse
Affiliation(s)
- Sarah Erlemann
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ–ZMBH Allianz, 69120 Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ–ZMBH Allianz, 69120 Heidelberg, Germany
| | - Linda Gombos
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ–ZMBH Allianz, 69120 Heidelberg, Germany
| | - Romain Gibeaux
- Cell Biology and Biophysics, European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany
| | - Claude Antony
- Cell Biology and Biophysics, European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ–ZMBH Allianz, 69120 Heidelberg, Germany
| |
Collapse
|
56
|
Gay G, Courtheoux T, Reyes C, Tournier S, Gachet Y. A stochastic model of kinetochore-microtubule attachment accurately describes fission yeast chromosome segregation. ACTA ACUST UNITED AC 2012; 196:757-74. [PMID: 22412019 PMCID: PMC3308688 DOI: 10.1083/jcb.201107124] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In fission yeast, erroneous attachments of spindle microtubules to kinetochores are frequent in early mitosis. Most are corrected before anaphase onset by a mechanism involving the protein kinase Aurora B, which destabilizes kinetochore microtubules (ktMTs) in the absence of tension between sister chromatids. In this paper, we describe a minimal mathematical model of fission yeast chromosome segregation based on the stochastic attachment and detachment of ktMTs. The model accurately reproduces the timing of correct chromosome biorientation and segregation seen in fission yeast. Prevention of attachment defects requires both appropriate kinetochore orientation and an Aurora B-like activity. The model also reproduces abnormal chromosome segregation behavior (caused by, for example, inhibition of Aurora B). It predicts that, in metaphase, merotelic attachment is prevented by a kinetochore orientation effect and corrected by an Aurora B-like activity, whereas in anaphase, it is corrected through unbalanced forces applied to the kinetochore. These unbalanced forces are sufficient to prevent aneuploidy.
Collapse
Affiliation(s)
- Guillaume Gay
- Laboratoire de biologie cellulaire et moléculaire du contrôle de la proliferation, Université de Toulouse, F-31062 Toulouse, France
| | | | | | | | | |
Collapse
|
57
|
Abstract
Mitosis is the process by which eukaryotic cells organize and segregate their chromosomes in preparation for cell division. It is accomplished by a cellular machine composed largely of microtubules (MTs) and their associated proteins. This article reviews literature on mitosis from a biophysical point of view, drawing attention to the assembly and motility processes required to do this complex job with precision. Work from both the recent and the older literature is integrated into a description of relevant biological events and the experiments that probe their mechanisms. Theoretical work on specific subprocesses is also reviewed. Our goal is to provide a document that will expose biophysicists to the fascination of this quite amazing process and provide them with a good background from which they can pursue their own research interests in the subject.
Collapse
|
58
|
Kinetochore-dependent microtubule rescue ensures their efficient and sustained interactions in early mitosis. Dev Cell 2012; 21:920-33. [PMID: 22075150 PMCID: PMC3277888 DOI: 10.1016/j.devcel.2011.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/14/2011] [Accepted: 09/12/2011] [Indexed: 12/16/2022]
Abstract
How kinetochores regulate microtubule dynamics to ensure proper kinetochore-microtubule interactions is unknown. Here, we studied this during early mitosis in Saccharomyces cerevisiae. When a microtubule shrinks and its plus end reaches a kinetochore bound to its lateral surface, the microtubule end attempts to tether the kinetochore. This process often fails and, responding to this failure, microtubule rescue (conversion from shrinkage to growth) occurs, preventing kinetochore detachment from the microtubule end. This rescue is promoted by Stu2 transfer (ortholog of vertebrate XMAP215/ch-TOG) from the kinetochore to the microtubule end. Meanwhile, microtubule rescue distal to the kinetochore is also promoted by Stu2, which is transported by a kinesin-8 motor Kip3 along the microtubule from the kinetochore. Microtubule extension following rescue facilitates interaction with other widely scattered kinetochores, diminishing long delays in collecting the complete set of kinetochores by microtubules. Thus, kinetochore-dependent microtubule rescue ensures efficient and sustained kinetochore-microtubule interactions in early mitosis.
Collapse
|
59
|
Teixidó-Travesa N, Roig J, Lüders J. The where, when and how of microtubule nucleation – one ring to rule them all. J Cell Sci 2012; 125:4445-56. [DOI: 10.1242/jcs.106971] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The function of microtubules depends on their arrangement into highly ordered arrays. Spatio-temporal control over the formation of new microtubules and regulation of their properties are central to the organization of these arrays. The nucleation of new microtubules requires γ-tubulin, an essential protein that assembles into multi-subunit complexes and is found in all eukaryotic organisms. However, the way in which γ-tubulin complexes are regulated and how this affects nucleation and, potentially, microtubule behavior, is poorly understood. γ-tubulin has been found in complexes of various sizes but several lines of evidence suggest that only large, ring-shaped complexes function as efficient microtubule nucleators. Human γ-tubulin ring complexes (γTuRCs) are composed of γ-tubulin and the γ-tubulin complex components (GCPs) 2, 3, 4, 5 and 6, which are members of a conserved protein family. Recent work has identified additional unrelated γTuRC subunits, as well as a large number of more transient γTuRC interactors. In this Commentary, we discuss the regulation of γTuRC-dependent microtubule nucleation as a key mechanism of microtubule organization. Specifically, we focus on the regulatory roles of the γTuRC subunits and interactors and present an overview of other mechanisms that regulate γTuRC-dependent microtubule nucleation and organization.
Collapse
|
60
|
Gan L, Ladinsky MS, Jensen GJ. Organization of the smallest eukaryotic spindle. Curr Biol 2011; 21:1578-83. [PMID: 21906950 DOI: 10.1016/j.cub.2011.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 06/17/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
In metazoans, plants, and fungi, the spindle checkpoint delays mitosis until each chromosome is attached to one or more of its own kinetochore microtubules (kMTs). Some unicellular eukaryotes, however, have been reported to have fewer kMTs than chromosomes [1-5]. If this is the case, it is unclear how the spindle checkpoint could be satisfied. In the vast majority of the previous studies, mitotic cells were chemically fixed at room temperature, but this does not always preserve dynamic and/or small structures like spindle MTs and kinetochores [6]. Indeed, later higher-resolution studies have reversed some earlier claims [7-11]. Here we show that in Ostreococcus tauri (the smallest eukaryote known), mitosis does involve fewer spindle microtubules than chromosomes. O. tauri cultures were enriched for mitotic cells, high-pressure frozen, and then imaged in 3D both in plastic and in a near-native ("frozen-hydrated") state through electron tomography. Mitotic cells have a distinctive intranuclear heterochromatin-free "spindle tunnel" with approximately four short and occasionally one long, incomplete (unclosed) microtubule at each end of the spindle tunnel. Because other aspects of O. tauri's spindle checkpoint seem typical, these data suggest that O. tauri's 20 chromosomes are physically linked and segregated as just one or a small number of groups.
Collapse
Affiliation(s)
- Lu Gan
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
61
|
Al-Bassam J, Chang F. Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP. Trends Cell Biol 2011; 21:604-14. [PMID: 21782439 DOI: 10.1016/j.tcb.2011.06.007] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 12/17/2022]
Abstract
The molecular mechanisms by which microtubule-associated proteins (MAPs) regulate the dynamic properties of microtubules (MTs) are still poorly understood. We review recent advances in our understanding of two conserved families of MAPs, the XMAP215/Dis1 and CLASP family of proteins. In vivo and in vitro studies show that XMAP215 proteins act as microtubule polymerases at MT plus ends to accelerate MT assembly, and CLASP proteins promote MT rescue and suppress MT catastrophe events. These are structurally related proteins that use conserved TOG domains to recruit tubulin dimers to MTs. We discuss models for how these proteins might use these individual tubulin dimers to regulate dynamic behavior of MT plus ends.
Collapse
Affiliation(s)
- Jawdat Al-Bassam
- Department of Molecular Cellular Biology, University of California, Davis, CA, USA.
| | | |
Collapse
|
62
|
Wadsworth P, Lee WL, Murata T, Baskin TI. Variations on theme: spindle assembly in diverse cells. PROTOPLASMA 2011; 248:439-46. [PMID: 20830494 PMCID: PMC5290749 DOI: 10.1007/s00709-010-0205-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 08/26/2010] [Indexed: 05/18/2023]
Abstract
The mitotic spindle faithfully separates the genetic material, and has been reverently observed for well over a century. Across eukaryotes, while the mechanisms for moving chromosomes seem quite conserved, mechanisms for assembling the spindle often seem distinct. Two major pathways for spindle assembly are known, one based on centrosomes and the other based on chromatin, and these pathways are usually considered to be fundamentally different. We review observations of spindle assembly in animals, fungi, and plants, and argue that microtubule assembly at a particular location, centrosomes, or chromatin, reflects contingent, cell-type specific factors, rather than reflecting a fundamental distinction in the process of spindle building. We hypothesize that the essential process for spindle assembly is the motor-driven organization of microtubules that accumulate in the form of dense bundles at or near the chromosomes.
Collapse
Affiliation(s)
- Patricia Wadsworth
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | |
Collapse
|
63
|
Jiang K, Akhmanova A. Microtubule tip-interacting proteins: a view from both ends. Curr Opin Cell Biol 2011; 23:94-101. [PMID: 20817499 DOI: 10.1016/j.ceb.2010.08.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 08/08/2010] [Indexed: 10/19/2022]
Abstract
Microtubule ends serve as sites of tubulin addition and removal, and at the same time play crucial roles in microtubule capture, stabilization and attachment to different cellular structures. Microtubule plus and minus-ends possess distinct structural and dynamic properties, and are recognized, bound and regulated by diverse factors. These include specific capping factors such as γ-tubulin, motors, such as plus-end and minus-end directed kinesins, highly specialized kinetochore-bound microtubule-associated proteins, and comet-making plus-end tracking proteins such as EB1 and its partners. Here, we provide an overview of microtubule tip-interacting proteins and the mechanisms responsible for their association with microtubule ends, and discuss the functional cross-talk between microtubule plus and minus-end binding factors.
Collapse
Affiliation(s)
- Kai Jiang
- Department of Cell Biology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | | |
Collapse
|
64
|
Tanaka TU. Kinetochore-microtubule interactions: steps towards bi-orientation. EMBO J 2010; 29:4070-82. [PMID: 21102558 PMCID: PMC3018795 DOI: 10.1038/emboj.2010.294] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 10/29/2010] [Indexed: 11/08/2022] Open
Abstract
Eukaryotic cells segregate their chromosomes accurately to opposite poles during mitosis, which is necessary for maintenance of their genetic integrity. This process mainly relies on the forces generated by kinetochore-microtubule (KT-MT) attachment. During prometaphase, the KT initially interacts with a single MT extending from a spindle pole and then moves towards a spindle pole. Subsequently, MTs from the other spindle pole also interact with the KT. Eventually, one sister KT becomes attached to MTs from one pole while the other sister to those from the other pole (sister KT bi-orientation). If sister KTs interact with MTs with aberrant orientation, this must be corrected to attain proper bi-orientation (error correction) before the anaphase is initiated. Here, I discuss how KTs initially interact with MTs and how this interaction develops into bi-orientation; both processes are fundamentally crucial for proper chromosome segregation in the subsequent anaphase.
Collapse
Affiliation(s)
- Tomoyuki U Tanaka
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Angus, UK.
| |
Collapse
|
65
|
Mukhopadhyay D, Dasso M. The fate of metaphase kinetochores is weighed in the balance of SUMOylation during S phase. Cell Cycle 2010; 9:3194-201. [PMID: 20724819 DOI: 10.4161/cc.9.16.12619] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetic evidence suggests that conjugation of Small Ubiquitin-like Modifier proteins (SUMOs) plays an important role in kinetochore function, although the mechanism underlying these observations are poorly defined. We found that depletion of the SUMO protease SENP6 from HeLa cells causes chromosome misalignment, prolonged mitotic arrest and chromosome missegregation. Many inner kinetochore proteins (IKPs) were mis-localized in SENP6-depleted cells. This gross mislocalization of IKPs is due to proteolytic degradation of CENP-I and CENP-H via the SUMO targeted Ubiquitin Ligase (STUbL) pathway. Our findings show that SENP6 is a key regulator of inner kinetochore assembly that antagonizes the cellular STUbL pathway to protect IKPs from degradation during S phase. Here, we will briefly review the implications of our findings and present new data on how SUMOylation during S phase can control chromosome alignment in the subsequent metaphase.
Collapse
|
66
|
Microtubule teamwork. Nat Rev Mol Cell Biol 2010. [DOI: 10.1038/nrm2874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
67
|
Gouveia SM, Akhmanova A. Cell and Molecular Biology of Microtubule Plus End Tracking Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:1-74. [DOI: 10.1016/b978-0-12-381047-2.00001-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|