51
|
Co-evolving CENP-A and CAL1 Domains Mediate Centromeric CENP-A Deposition across Drosophila Species. Dev Cell 2016; 37:136-47. [PMID: 27093083 DOI: 10.1016/j.devcel.2016.03.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/04/2016] [Accepted: 03/22/2016] [Indexed: 11/20/2022]
Abstract
Centromeres mediate the conserved process of chromosome segregation, yet centromeric DNA and the centromeric histone, CENP-A, are rapidly evolving. The rapid evolution of Drosophila CENP-A loop 1 (L1) is thought to modulate the DNA-binding preferences of CENP-A to counteract centromere drive, the preferential transmission of chromosomes with expanded centromeric satellites. Consistent with this model, CENP-A from Drosophila bipectinata (bip) cannot localize to Drosophila melanogaster (mel) centromeres. We show that this result is due to the inability of the mel CENP-A chaperone, CAL1, to deposit bip CENP-A into chromatin. Co-expression of bip CENP-A and bip CAL1 in mel cells restores centromeric localization, and similar findings apply to other Drosophila species. We identify two co-evolving regions, CENP-A L1 and the CAL1 N terminus, as critical for lineage-specific CENP-A incorporation. Collectively, our data show that the rapid evolution of L1 modulates CAL1-mediated CENP-A assembly, suggesting an alternative mechanism for the suppression of centromere drive.
Collapse
|
52
|
Licensing of Centromeric Chromatin Assembly through the Mis18α-Mis18β Heterotetramer. Mol Cell 2016; 61:774-787. [PMID: 26942680 DOI: 10.1016/j.molcel.2016.02.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/31/2015] [Accepted: 02/10/2016] [Indexed: 01/06/2023]
Abstract
Centromeres are specialized chromatin domains specified by the centromere-specific CENP-A nucleosome. The stable inheritance of vertebrate centromeres is an epigenetic process requiring deposition of new CENP-A nucleosomes by HJURP. We show HJURP is recruited to centromeres through a direct interaction between the HJURP centromere targeting domain and the Mis18α-β C-terminal coiled-coil domains. We demonstrate Mis18α and Mis18β form a heterotetramer through their C-terminal coiled-coil domains. Mis18α-β heterotetramer formation is required for Mis18BP1 binding and centromere recognition. S. pombe contains a single Mis18 isoform that forms a homotetramer, showing tetrameric Mis18 is conserved from fission yeast to humans. HJURP binding disrupts the Mis18α-β heterotetramer and removes Mis18α from centromeres. We propose stable binding of Mis18 to centromeres in telophase licenses them for CENP-A deposition. Binding of HJURP deposits CENP-A at centromeres and facilitates the removal of Mis18, restricting CENP-A deposition to a single event per cell cycle.
Collapse
|
53
|
Kinetochore assembly and function through the cell cycle. Chromosoma 2016; 125:645-59. [DOI: 10.1007/s00412-016-0608-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/03/2023]
|
54
|
Pesenti ME, Weir JR, Musacchio A. Progress in the structural and functional characterization of kinetochores. Curr Opin Struct Biol 2016; 37:152-63. [PMID: 27039078 DOI: 10.1016/j.sbi.2016.03.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
Kinetochores are macromolecular complexes built on a specialized chromatin domain called the centromere. Kinetochores provide a site of attachment for spindle microtubules during mitosis. They also control a cell cycle checkpoint, the spindle assembly checkpoint, which coordinates mitotic exit with the completion of chromosome alignment on the mitotic spindle. Correct kinetochore operation is therefore indispensable for accurate chromosome segregation. With multiple copies of at least 30 structural core subunits and a myriad of regulatory subunits, kinetochores are among the largest known macromolecular machines. Biochemical reconstitution and structural analysis, together with functional studies, are bringing to light the organizational principles of these complex and fascinating structures. We summarize recent work and identify a few challenges for future work.
Collapse
Affiliation(s)
- Marion E Pesenti
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - John R Weir
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstraße, 45141 Essen, Germany.
| |
Collapse
|
55
|
Niikura Y, Kitagawa R, Kitagawa K. CENP-A Ubiquitylation Is Inherited through Dimerization between Cell Divisions. Cell Rep 2016; 15:61-76. [PMID: 27052173 DOI: 10.1016/j.celrep.2016.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/26/2016] [Accepted: 02/27/2016] [Indexed: 10/22/2022] Open
Abstract
The presence of chromatin containing the histone H3 variant CENP-A dictates the location of the centromere in a DNA sequence-independent manner. But the mechanism by which centromere inheritance occurs is largely unknown. We previously reported that CENP-A K124 ubiquitylation, mediated by CUL4A-RBX1-COPS8 E3 ligase activity, is required for CENP-A deposition at the centromere. Here, we show that pre-existing ubiquitylated CENP-A is necessary for recruitment of newly synthesized CENP-A to the centromere and that CENP-A ubiquitylation is inherited between cell divisions. In vivo and in vitro analyses using dimerization mutants and dimerization domain fusion mutants revealed that the inheritance of CENP-A ubiquitylation requires CENP-A dimerization. Therefore, we propose models in which CENP-A ubiquitylation is inherited and, through dimerization, determines centromere location. Consistent with this model is our finding that overexpression of a monoubiquitin-fused CENP-A mutant induces neocentromeres at noncentromeric regions of chromosomes.
Collapse
Affiliation(s)
- Yohei Niikura
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Risa Kitagawa
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Katsumi Kitagawa
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University, 700 Children's Drive, Columbus, OH 43205, USA.
| |
Collapse
|
56
|
Neumann P, Schubert V, Fuková I, Manning JE, Houben A, Macas J. Epigenetic Histone Marks of Extended Meta-Polycentric Centromeres of Lathyrus and Pisum Chromosomes. FRONTIERS IN PLANT SCIENCE 2016; 7:234. [PMID: 26973677 PMCID: PMC4771749 DOI: 10.3389/fpls.2016.00234] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/11/2016] [Indexed: 05/19/2023]
Abstract
Species of the legume genera Lathyrus and Pisum possess chromosomes that exhibit a unique structure of their centromeric regions, which is clearly apparent during metaphase by the formation of extended primary constrictions which span up to a third of the length of the chromosome. In addition, these species express two different variants of the CenH3 protein which are co-localized in multiple domains along the poleward surface of the primary constrictions. Here, we show that the constrictions represent a distinct type of chromatin differing from the chromosome arms. In metaphase, histone phosphorylation patterns including H3S10ph, H3S28ph, and H3T3ph were observed along the entire constriction, in a way similar to holocentric chromosomes. On the other hand, distribution of phosphorylated H2AT120 was different from that previously reported from either, holocentric and monocentric chromosomes, occurring at chromatin surrounding but not overlapping CenH3 domains. Since some of these phosphorylations play a role in chromatid cohesion, it can be assumed that they facilitate correct chromosome segregation by ensuring that multiple separate CenH3 domains present on the same chromatid are oriented toward the same pole. The constrictions also displayed distinct patterns of histone methylation marks, being enriched in H3K9me2 and depleted in H3K4me3 and H3K27me2 compared to the chromosome arms. Super-resolution fluorescence microscopy revealed that although both CenH3 protein variants are present in all CenH3 domains detected on metaphase chromosomes, they are only partially co-localized while there are chromatin subdomains which are mostly made of only one CenH3 variant. Taken together, these data revealed specific features of extended primary constrictions of Lathyrus and Pisum and support the idea that they may represent an intermediate stage between monocentric and holocentric chromosomes.
Collapse
Affiliation(s)
- Pavel Neumann
- Laboratory of Molecular Cytogenetics, Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular BiologyČeské Budějovice, Czech Republic
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Iva Fuková
- Laboratory of Molecular Cytogenetics, Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular BiologyČeské Budějovice, Czech Republic
| | - Jasper E. Manning
- Laboratory of Molecular Cytogenetics, Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular BiologyČeské Budějovice, Czech Republic
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Jiří Macas
- Laboratory of Molecular Cytogenetics, Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular BiologyČeské Budějovice, Czech Republic
- *Correspondence: Jiří Macas
| |
Collapse
|
57
|
Bailey AO, Panchenko T, Shabanowitz J, Lehman SM, Bai DL, Hunt DF, Black BE, Foltz DR. Identification of the Post-translational Modifications Present in Centromeric Chromatin. Mol Cell Proteomics 2015; 15:918-31. [PMID: 26685127 DOI: 10.1074/mcp.m115.053710] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Indexed: 01/15/2023] Open
Abstract
The centromere is the locus on the chromosome that acts as the essential connection point between the chromosome and the mitotic spindle. A histone H3 variant, CENP-A, defines the location of the centromere, but centromeric chromatin consists of a mixture of both CENP-A-containing and H3-containing nucleosomes. We report a surprisingly uniform pattern of primarily monomethylation on lysine 20 of histone H4 present in short polynucleosomes mixtures of CENP-A and H3 nucleosomes isolated from functional centromeres. Canonical H3 is not a component of CENP-A-containing nucleosomes at centromeres, so the H3 we copurify from these preparations comes exclusively from adjacent nucleosomes. We find that CENP-A-proximal H3 nucleosomes are not uniformly modified but contain a complex set of PTMs. Dually modified K9me2-K27me2 H3 nucleosomes are observed at the centromere. Side-chain acetylation of both histone H3 and histone H4 is low at the centromere. Prior to assembly at centromeres, newly expressed CENP-A is sequestered for a large portion of the cell cycle (late S-phase, G2, and most of mitosis) in a complex that contains its partner, H4, and its chaperone, HJURP. In contrast to chromatin associated centromeric histone H4, we show that prenucleosomal CENP-A-associated histone H4 lacks K20 methylation and contains side-chain and α-amino acetylation. We show HJURP displays a complex set of serine phosphorylation that may potentially regulate the deposition of CENP-A. Taken together, our findings provide key information regarding some of the key components of functional centromeric chromatin.
Collapse
Affiliation(s)
- Aaron O Bailey
- From the ‡Department of Cell Biology, University of Virginia, Charlottesville, Virginia, 22908
| | - Tanya Panchenko
- §Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6059
| | - Jeffrey Shabanowitz
- ¶Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22908
| | - Stephanie M Lehman
- ¶Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22908
| | - Dina L Bai
- ¶Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22908
| | - Donald F Hunt
- ¶Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22908
| | - Ben E Black
- §Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6059;
| | - Daniel R Foltz
- From the ‡Department of Cell Biology, University of Virginia, Charlottesville, Virginia, 22908; ‖Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, 22908; **Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago Illinois 60611
| |
Collapse
|
58
|
Shono N, Ohzeki JI, Otake K, Martins NMC, Nagase T, Kimura H, Larionov V, Earnshaw WC, Masumoto H. CENP-C and CENP-I are key connecting factors for kinetochore and CENP-A assembly. J Cell Sci 2015; 128:4572-87. [PMID: 26527398 PMCID: PMC4696500 DOI: 10.1242/jcs.180786] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/26/2015] [Indexed: 12/18/2022] Open
Abstract
Although it is generally accepted that chromatin containing the histone H3 variant CENP-A is an epigenetic mark maintaining centromere identity, the pathways leading to the formation and maintenance of centromere chromatin remain unclear. We previously generated human artificial chromosomes (HACs) whose centromeres contain a synthetic alpha-satellite (alphoid) DNA array containing the tetracycline operator (alphoid(tetO)). We also obtained cell lines bearing the alphoid(tetO) array at ectopic integration sites on chromosomal arms. Here, we have examined the regulation of CENP-A assembly at centromeres as well as de novo assembly on the ectopic arrays by tethering tetracycline repressor (tetR) fusions of substantial centromeric factors and chromatin modifiers. This analysis revealed four classes of factors that influence CENP-A assembly. Interestingly, many kinetochore structural components induced de novo CENP-A assembly at the ectopic site. We showed that these components work by recruiting CENP-C and subsequently recruiting M18BP1. Furthermore, we found that CENP-I can also recruit M18BP1 and, as a consequence, enhances M18BP1 assembly on centromeres in the downstream of CENP-C. Thus, we suggest that CENP-C and CENP-I are key factors connecting kinetochore to CENP-A assembly.
Collapse
Affiliation(s)
- Nobuaki Shono
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Jun-ichirou Ohzeki
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Koichiro Otake
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Nuno M C Martins
- Wellcome Trust Centre for Cell Biology University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Takahiro Nagase
- Public Relations Team, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Vladimir Larionov
- Developmental Therapeutic Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
59
|
Dawicki-McKenna JM, Langelier MF, DeNizio JE, Riccio AA, Cao CD, Karch KR, McCauley M, Steffen JD, Black BE, Pascal JM. PARP-1 Activation Requires Local Unfolding of an Autoinhibitory Domain. Mol Cell 2015; 60:755-768. [PMID: 26626480 PMCID: PMC4712911 DOI: 10.1016/j.molcel.2015.10.013] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/31/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) creates the posttranslational modification PAR from substrate NAD(+) to regulate multiple cellular processes. DNA breaks sharply elevate PARP-1 catalytic activity to mount a cell survival repair response, whereas persistent PARP-1 hyperactivation during severe genotoxic stress is associated with cell death. The mechanism for tight control of the robust catalytic potential of PARP-1 remains unclear. By monitoring PARP-1 dynamics using hydrogen/deuterium exchange-mass spectrometry (HXMS), we unexpectedly find that a specific portion of the helical subdomain (HD) of the catalytic domain rapidly unfolds when PARP-1 encounters a DNA break. Together with biochemical and crystallographic analysis of HD deletion mutants, we show that the HD is an autoinhibitory domain that blocks productive NAD(+) binding. Our molecular model explains how PARP-1 DNA damage detection leads to local unfolding of the HD that relieves autoinhibition, and has important implications for the design of PARP inhibitors.
Collapse
Affiliation(s)
- Jennine M Dawicki-McKenna
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | - Marie-France Langelier
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107-5544, USA
| | - Jamie E DeNizio
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA; Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | - Amanda A Riccio
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107-5544, USA
| | - Connie D Cao
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | - Kelly R Karch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA; Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | - Michael McCauley
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107-5544, USA
| | - Jamin D Steffen
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107-5544, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA; Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA.
| | - John M Pascal
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107-5544, USA.
| |
Collapse
|
60
|
McKinley KL, Cheeseman IM. The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol 2015; 17:16-29. [PMID: 26601620 DOI: 10.1038/nrm.2015.5] [Citation(s) in RCA: 428] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The centromere is the region of the chromosome that directs its segregation in mitosis and meiosis. Although the functional importance of the centromere has been appreciated for more than 130 years, elucidating the molecular features and properties that enable centromeres to orchestrate chromosome segregation is an ongoing challenge. Most eukaryotic centromeres are defined epigenetically and require the presence of nucleosomes containing the histone H3 variant centromere protein A (CENP-A; also known as CENH3). Ongoing work is providing important molecular insights into the central requirements for centromere identity and propagation, and the mechanisms by which centromeres recruit kinetochores to connect to spindle microtubules.
Collapse
Affiliation(s)
- Kara L McKinley
- Whitehead Institute and Department of Biology, MIT, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute and Department of Biology, MIT, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
61
|
Kuppu S, Tan EH, Nguyen H, Rodgers A, Comai L, Chan SWL, Britt AB. Point Mutations in Centromeric Histone Induce Post-zygotic Incompatibility and Uniparental Inheritance. PLoS Genet 2015; 11:e1005494. [PMID: 26352591 PMCID: PMC4564284 DOI: 10.1371/journal.pgen.1005494] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/12/2015] [Indexed: 12/04/2022] Open
Abstract
The centromeric histone 3 variant (CENH3, aka CENP-A) is essential for the segregation of sister chromatids during mitosis and meiosis. To better define CENH3 functional constraints, we complemented a null allele in Arabidopsis with a variety of mutant alleles, each inducing a single amino acid change in conserved residues of the histone fold domain. Many of these transgenic missense lines displayed wild-type growth and fertility on self-pollination, but exhibited frequent post-zygotic death and uniparental inheritance when crossed with wild-type plants. The failure of centromeres marked by these missense mutation in the histone fold domain of CENH3 reproduces the genome elimination syndromes described with chimeric CENH3 and CENH3 from diverged species. Additionally, evidence that a single point mutation is sufficient to generate a haploid inducer provide a simple one-step method for the identification of non-transgenic haploid inducers in existing mutagenized collections of crop species. As proof of the extreme simplicity of this approach to create haploid-inducing lines, we performed an in silico search for previously identified point mutations in CENH3 and identified an Arabidopsis line carrying the A86V substitution within the histone fold domain. This A87V non-transgenic line, while fully fertile on self-pollination, produced postzygotic death and uniparental haploids when crossed to wild type. The centromeric histone protein, CENH3, plays an important role in chromosome segregation during mitosis and meiosis. Here we show that single amino acid changes in CENH3, while producing no obvious effect on mitosis or meiosis, affect segregation postzygotically upon outcrossing to plants carrying wild-type centromeres. This results in uniparental inheritance among some progeny, and seed death in a larger fraction of progeny. Interestingly, changes competent to induce haploid in Arabidopsis existed in a TILLING population and in unrelated plant species. Our findings have two major consequences. First, uniparental inheritance facilitates the production of haploid plants that can easily be doubled to produce completely homozygous lines in a single generation. Secondly, our findings suggest that natural variation in CENH3 may result in partial reproductive isolation, because chromosomes of the mutant parent from F1 hybrid progeny are culled during embryonic development, while no reproductive defects are observed in self-pollinated plants. We do not know if the same mutations are haploid-inducing in other species, but uniparental chromosome loss, and the seed abortion that accompanies it results in an outcrossing-specific penalty that could potentially be involved in reproductive isolation.
Collapse
Affiliation(s)
- Sundaram Kuppu
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Ek Han Tan
- Plant Biology and Genome Center, University of California Davis, Davis, California, United States of America
| | - Hanh Nguyen
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Andrea Rodgers
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Luca Comai
- Plant Biology and Genome Center, University of California Davis, Davis, California, United States of America
| | - Simon W. L. Chan
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Anne B. Britt
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
62
|
An S, Kim H, Cho US. Mis16 Independently Recognizes Histone H4 and the CENP-ACnp1-Specific Chaperone Scm3sp. J Mol Biol 2015; 427:3230-3240. [PMID: 26343758 DOI: 10.1016/j.jmb.2015.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 12/14/2022]
Abstract
CENP-A is a centromere-specific histone H3 variant that is required for kinetochore assembly and accurate chromosome segregation. For it to function properly, CENP-A must be specifically localized to centromeres. In fission yeast, Scm3sp and the Mis18 complex, composed of Mis16, Eic1, and Mis18, function as a CENP-A(Cnp1)-specific chaperone and a recruiting factor, respectively, and together ensure accurate delivery of CENP-A(Cnp1) to centromeres. Although how Scm3sp specifically recognizes CENP-A(Cnp1) has been revealed recently, the recruiting mechanism of CENP-A(Cnp1) via the Mis18 complex remains unknown. In this study, we have determined crystal structures of Schizosaccharomyces japonicus Mis16 alone and in complex with the helix 1 of histone H4 (H4α1). Crystal structures followed by mutant analysis and affinity pull-downs have revealed that Mis16 recognizes both H4α1 and Scm3sp independently within the CENP-A(Cnp1)/H4:Scm3sp complex. This observation suggests that Mis16 gains CENP-A(Cnp1) specificity by recognizing both Scm3sp and histone H4. Our studies provide insights into the molecular mechanisms underlying specific recruitment of CENP-A(Cnp1)/H4:Scm3sp into centromeres.
Collapse
Affiliation(s)
- Sojin An
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, SPC 5606, Ann Arbor, MI 48109, USA
| | - Hanseong Kim
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, SPC 5606, Ann Arbor, MI 48109, USA
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, SPC 5606, Ann Arbor, MI 48109, USA.
| |
Collapse
|
63
|
Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proc Natl Acad Sci U S A 2015; 112:11211-6. [PMID: 26294252 DOI: 10.1073/pnas.1504333112] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The chromosomal position of the centromere-specific histone H3 variant CENH3 (also called "CENP-A") is the assembly site for the kinetochore complex of active centromeres. Any error in transcription, translation, modification, or incorporation can affect the ability to assemble intact CENH3 chromatin and can cause centromere inactivation [Allshire RC, Karpen GH (2008) Nat Rev Genet 9 (12):923-937]. Here we show that a single-point amino acid exchange in the centromere-targeting domain of CENH3 leads to reduced centromere loading of CENH3 in barley, sugar beet, and Arabidopsis thaliana. Haploids were obtained after cenh3 L130F-complemented cenh3-null mutant plants were crossed with wild-type A. thaliana. In contrast, in a noncompeting situation (i.e., centromeres possessing only mutated or only wild-type CENH3), no uniparental chromosome elimination occurs during early embryogenesis. The high degree of evolutionary conservation of the identified mutation site offers promising opportunities for application in a wide range of crop species in which haploid technology is of interest.
Collapse
|
64
|
Falk SJ, Guo LY, Sekulic N, Smoak EM, Mani T, Logsdon GA, Gupta K, Jansen LET, Van Duyne GD, Vinogradov SA, Lampson MA, Black BE. Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Science 2015; 348:699-703. [PMID: 25954010 DOI: 10.1126/science.1259308] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inheritance of each chromosome depends upon its centromere. A histone H3 variant, centromere protein A (CENP-A), is essential for epigenetically marking centromere location. We find that CENP-A is quantitatively retained at the centromere upon which it is initially assembled. CENP-C binds to CENP-A nucleosomes and is a prime candidate to stabilize centromeric chromatin. Using purified components, we find that CENP-C reshapes the octameric histone core of CENP-A nucleosomes, rigidifies both surface and internal nucleosome structure, and modulates terminal DNA to match the loose wrap that is found on native CENP-A nucleosomes at functional human centromeres. Thus, CENP-C affects nucleosome shape and dynamics in a manner analogous to allosteric regulation of enzymes. CENP-C depletion leads to rapid removal of CENP-A from centromeres, indicating their collaboration in maintaining centromere identity.
Collapse
Affiliation(s)
- Samantha J Falk
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucie Y Guo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nikolina Sekulic
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evan M Smoak
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tomoyasu Mani
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Glennis A Logsdon
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Gregory D Van Duyne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Lampson
- Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
65
|
Westhorpe FG, Fuller CJ, Straight AF. A cell-free CENP-A assembly system defines the chromatin requirements for centromere maintenance. J Cell Biol 2015; 209:789-801. [PMID: 26076692 PMCID: PMC4477859 DOI: 10.1083/jcb.201503132] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/20/2015] [Indexed: 11/22/2022] Open
Abstract
Studying CENP-A nucleosome assembly in a cell-free system defines the role of existing CENP-A nucleosomes in centromere maintenance. Centromeres are defined by the presence of CENP-A nucleosomes in chromatin and are essential for accurate chromosome segregation. Centromeric chromatin epigenetically seeds new CENP-A nucleosome formation, thereby maintaining functional centromeres as cells divide. The features within centromeric chromatin that direct new CENP-A assembly remain unclear. Here, we developed a cell-free CENP-A assembly system that enabled the study of chromatin-bound CENP-A and soluble CENP-A separately. We show that two distinct domains of CENP-A within existing CENP-A nucleosomes are required for new CENP-A assembly and that CENP-A nucleosomes recruit the CENP-A assembly factors CENP-C and M18BP1 independently. Furthermore, we demonstrate that the mechanism of CENP-C recruitment to centromeres is dependent on the density of underlying CENP-A nucleosomes.
Collapse
Affiliation(s)
| | - Colin J Fuller
- Department of Biochemistry, Stanford University Medical School, Stanford, CA 94305
| | - Aaron F Straight
- Department of Biochemistry, Stanford University Medical School, Stanford, CA 94305
| |
Collapse
|
66
|
Fang J, Liu Y, Wei Y, Deng W, Yu Z, Huang L, Teng Y, Yao T, You Q, Ruan H, Chen P, Xu RM, Li G. Structural transitions of centromeric chromatin regulate the cell cycle-dependent recruitment of CENP-N. Genes Dev 2015; 29:1058-73. [PMID: 25943375 PMCID: PMC4441053 DOI: 10.1101/gad.259432.115] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/13/2015] [Indexed: 11/24/2022]
Abstract
Specific recognition of centromere-specific histone variant CENP-A-containing chromatin by CENP-N is an essential process in the assembly of the kinetochore complex at centromeres prior to mammalian cell division. However, the mechanisms of CENP-N recruitment to centromeres/kinetochores remain unknown. Here, we show that a CENP-A-specific RG loop (Arg80/Gly81) plays an essential and dual regulatory role in this process. The RG loop assists the formation of a compact "ladder-like" structure of CENP-A chromatin, concealing the loop and thus impairing its role in recruiting CENP-N. Upon G1/S-phase transition, however, centromeric chromatin switches from the compact to an open state, enabling the now exposed RG loop to recruit CENP-N prior to cell division. Our results provide the first insights into the mechanisms by which the recruitment of CENP-N is regulated by the structural transitions between compaction and relaxation of centromeric chromatin during the cell cycle.
Collapse
Affiliation(s)
- Junnan Fang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenqiang Deng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhouliang Yu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Teng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Yao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinglong You
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haihe Ruan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ping Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
67
|
Mouysset J, Gilberto S, Meier MG, Lampert F, Belwal M, Meraldi P, Peter M. CRL4(RBBP7) is required for efficient CENP-A deposition at centromeres. J Cell Sci 2015; 128:1732-45. [PMID: 25795299 DOI: 10.1242/jcs.162305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 03/13/2015] [Indexed: 12/15/2022] Open
Abstract
The mitotic spindle drives chromosome movement during mitosis and attaches to chromosomes at dedicated genomic loci named centromeres. Centromeres are epigenetically specified by their histone composition, namely the presence of the histone H3 variant CENP-A, which is regulated during the cell cycle by its dynamic expression and localization. Here, we combined biochemical methods and quantitative imaging approaches to investigate a new function of CUL4-RING E3 ubiquitin ligases (CRL4) in regulating CENP-A dynamics. We found that the core components CUL4 and DDB1 are required for centromeric loading of CENP-A, but do not influence CENP-A maintenance or pre-nucleosomal CENP-A levels. Interestingly, we identified RBBP7 as a substrate-specific CRL4 adaptor required for this process, in addition to its role in binding and stabilizing soluble CENP-A. Our data thus suggest that the CRL4 complex containing RBBP7 (CRL4(RBBP7)) might regulate mitosis by promoting ubiquitin-dependent loading of newly synthesized CENP-A during the G1 phase of the cell cycle.
Collapse
Affiliation(s)
- Julien Mouysset
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Samuel Gilberto
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Michelle G Meier
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Fabienne Lampert
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Mukta Belwal
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Patrick Meraldi
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Matthias Peter
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| |
Collapse
|
68
|
Abstract
In this issue of Developmental Cell, Yu et al. (2015) demonstrate that CENP-A phosphorylation by CDK1 inhibits its association with the chaperone protein HJURP and that the removal of this modification at mitotic exit is a key regulatory event that controls the timing of new CENP-A nucleosome formation at centromeres.
Collapse
Affiliation(s)
- Matthew D D Miell
- Department of Biochemistry, Stanford University Medical School, Stanford, CA 94305, USA
| | - Aaron F Straight
- Department of Biochemistry, Stanford University Medical School, Stanford, CA 94305, USA.
| |
Collapse
|
69
|
Logsdon GA, Barrey EJ, Bassett EA, DeNizio JE, Guo LY, Panchenko T, Dawicki-McKenna JM, Heun P, Black BE. Both tails and the centromere targeting domain of CENP-A are required for centromere establishment. ACTA ACUST UNITED AC 2015; 208:521-31. [PMID: 25713413 PMCID: PMC4347640 DOI: 10.1083/jcb.201412011] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
New roles for the N-terminal histone tail and folded core of CENP-A are revealed by monitoring early steps in centromere establishment. The centromere—defined by the presence of nucleosomes containing the histone H3 variant, CENP-A—is the chromosomal locus required for the accurate segregation of chromosomes during cell division. Although the sequence determinants of human CENP-A required to maintain a centromere were reported, those that are required for early steps in establishing a new centromere are unknown. In this paper, we used gain-of-function histone H3 chimeras containing various regions unique to CENP-A to investigate early events in centromere establishment. We targeted histone H3 chimeras to chromosomally integrated Lac operator sequences by fusing each of the chimeras to the Lac repressor. Using this approach, we found surprising contributions from a small portion of the N-terminal tail and the CENP-A targeting domain in the initial recruitment of two essential constitutive centromere proteins, CENP-C and CENP-T. Our results indicate that the regions of CENP-A required for early events in centromere establishment differ from those that are required for maintaining centromere identity.
Collapse
Affiliation(s)
- Glennis A Logsdon
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Evelyne J Barrey
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3QR, UK Faculty of Biology, Albert Ludwigs Universität Freiburg, 79104 Freiburg, Germany
| | - Emily A Bassett
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jamie E DeNizio
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lucie Y Guo
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Tanya Panchenko
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jennine M Dawicki-McKenna
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Patrick Heun
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3QR, UK
| | - Ben E Black
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
70
|
Dynamic Phosphorylation of CENP-A at Ser68 Orchestrates Its Cell-Cycle-Dependent Deposition at Centromeres. Dev Cell 2015; 32:68-81. [DOI: 10.1016/j.devcel.2014.11.030] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 10/14/2014] [Accepted: 11/19/2014] [Indexed: 11/23/2022]
|
71
|
Westhorpe FG, Straight AF. The centromere: epigenetic control of chromosome segregation during mitosis. Cold Spring Harb Perspect Biol 2014; 7:a015818. [PMID: 25414369 DOI: 10.1101/cshperspect.a015818] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A fundamental challenge for the survival of all organisms is maintaining the integrity of the genome in all cells. Cells must therefore segregate their replicated genome equally during each cell division. Eukaryotic organisms package their genome into a number of physically distinct chromosomes, which replicate during S phase and condense during prophase of mitosis to form paired sister chromatids. During mitosis, cells form a physical connection between each sister chromatid and microtubules of the mitotic spindle, which segregate one copy of each chromatid to each new daughter cell. The centromere is the DNA locus on each chromosome that creates the site of this connection. In this review, we present a brief history of centromere research and discuss our current knowledge of centromere establishment, maintenance, composition, structure, and function in mitosis.
Collapse
Affiliation(s)
- Frederick G Westhorpe
- Department of Biochemistry, Stanford University Medical School, Stanford, California 94305
| | - Aaron F Straight
- Department of Biochemistry, Stanford University Medical School, Stanford, California 94305
| |
Collapse
|
72
|
Abstract
The centromere is a specific chromosomal locus that organizes the assembly of the kinetochore. It plays a fundamental role in accurate chromosome segregation. In most eukaryotic organisms, each chromosome contains a single centromere the position and function of which are epigenetically specified. Occasionally, centromeres form at ectopic loci, which can be detrimental to the cell. However, the mechanisms that protect the cell against ectopic centromeres (neocentromeres) remain poorly understood. Centromere protein-A (CENP-A), a centromere-specific histone 3 (H3) variant, is found in all centromeres and is indispensable for centromere function. Here we report that the overexpression of CENP-A(Cnp1) in fission yeast results in the assembly of CENP-A(Cnp1) at noncentromeric chromatin during mitosis and meiosis. The noncentromeric CENP-A preferentially assembles near heterochromatin and is capable of recruiting kinetochore components. Consistent with this, cells overexpressing CENP-A(Cnp1) exhibit severe chromosome missegregation and spindle microtubule disorganization. In addition, pulse induction of CENP-A(Cnp1) overexpression reveals that ectopic CENP-A chromatin can persist for multiple generations. Intriguingly, ectopic assembly of CENP-A(cnp1) is suppressed by overexpression of histone H3 or H4. Finally, we demonstrate that deletion of the N-terminal domain of CENP-A(cnp1) results in an increase in the number of ectopic CENP-A sites and provide evidence that the N-terminal domain of CENP-A prevents CENP-A assembly at ectopic loci via the ubiquitin-dependent proteolysis. These studies expand our current understanding of how noncentromeric chromatin is protected from mistakenly assembling CENP-A.
Collapse
|
73
|
Bodor DL, Mata JF, Sergeev M, David AF, Salimian KJ, Panchenko T, Cleveland DW, Black BE, Shah JV, Jansen LE. The quantitative architecture of centromeric chromatin. eLife 2014; 3:e02137. [PMID: 25027692 PMCID: PMC4091408 DOI: 10.7554/elife.02137] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The centromere, responsible for chromosome segregation during mitosis, is epigenetically defined by CENP-A containing chromatin. The amount of centromeric CENP-A has direct implications for both the architecture and epigenetic inheritance of centromeres. Using complementary strategies, we determined that typical human centromeres contain ∼400 molecules of CENP-A, which is controlled by a mass-action mechanism. This number, despite representing only ∼4% of all centromeric nucleosomes, forms a ∼50-fold enrichment to the overall genome. In addition, although pre-assembled CENP-A is randomly segregated during cell division, this amount of CENP-A is sufficient to prevent stochastic loss of centromere function and identity. Finally, we produced a statistical map of CENP-A occupancy at a human neocentromere and identified nucleosome positions that feature CENP-A in a majority of cells. In summary, we present a quantitative view of the centromere that provides a mechanistic framework for both robust epigenetic inheritance of centromeres and the paucity of neocentromere formation. DOI:http://dx.doi.org/10.7554/eLife.02137.001 The genetic information in a cell is packed into structures called chromosomes. These contain strands of DNA wrapped around proteins called histones, which helps the long DNA chains to fit inside the relatively small nucleus of the cell. When a cell divides, it is important that both of the new cells contain all of the genetic information found in the parent cell. Therefore, the chromosomes duplicate during cell division, with the two copies held together at a single region of the chromosome called the centromere. The centromere then recruits and coordinates the molecular machinery that separates the two copies into different cells. Centromeres are inherited in an epigenetic manner. This means that there is no specific DNA sequence that defines the location of this structure on the chromosomes. Rather, a special type of histone, called CENP-A, is involved in defining its location. Bodor et al. use multiple techniques to show that human centromeres normally contain around 400 molecules of CENP-A, and that this number is crucial for ensuring that centromeres form in the right place. Interestingly, only a minority of the CENP-A molecules are located at centromeres; yet this is more than at any other region of the chromosome. This explains why centromeres are only formed at a single position on each chromosome. When the chromosomes separate, the CENP-A molecules at the centromere are randomly divided between the two copies. In this way memory of the centromere location is maintained. If the number of copies of CENP-A inherited by one of the chromosomes drops below a threshold value, a centromere will not form. However, Bodor et al. found that the number of CENP-A molecules in a centromere is large enough, not only to support the formation of the centromere structure, but also to keep it above the threshold value in nearly all cases. This threshold is also high enough to make it unlikely that a centromere will form in the wrong place because of a random fluctuation in the number of CENP-A molecules. Therefore, the number of CENP-A molecules is crucial for controlling both the formation and the inheritance of the centromere. DOI:http://dx.doi.org/10.7554/eLife.02137.002
Collapse
Affiliation(s)
- Dani L Bodor
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - João F Mata
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Mikhail Sergeev
- Department of Systems Biology, Harvard Medical School, Boston, United States Renal Division, Brigham and Women's Hospital, Boston, United States
| | | | - Kevan J Salimian
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Tanya Panchenko
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, United States Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Jagesh V Shah
- Department of Systems Biology, Harvard Medical School, Boston, United States Renal Division, Brigham and Women's Hospital, Boston, United States
| | | |
Collapse
|
74
|
Müller S, Montes de Oca R, Lacoste N, Dingli F, Loew D, Almouzni G. Phosphorylation and DNA binding of HJURP determine its centromeric recruitment and function in CenH3(CENP-A) loading. Cell Rep 2014; 8:190-203. [PMID: 25001279 DOI: 10.1016/j.celrep.2014.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/21/2014] [Accepted: 06/01/2014] [Indexed: 01/20/2023] Open
Abstract
Centromeres, epigenetically defined by the presence of the histone H3 variant CenH3, are essential for ensuring proper chromosome segregation. In mammals, centromeric CenH3(CENP-A) deposition requires its dedicated chaperone HJURP and occurs during telophase/early G1. We find that the cell-cycle-dependent recruitment of HJURP to centromeres depends on its timely phosphorylation controlled via cyclin-dependent kinases. A nonphosphorylatable HJURP mutant localizes prematurely to centromeres in S and G2 phase. This unregulated targeting causes a premature loading of CenH3(CENP-A) at centromeres, and cell-cycle delays ensue. Once recruited to centromeres, HJURP functions to promote CenH3(CENP-A) deposition by a mechanism involving a unique DNA-binding domain. With our findings, we propose a model wherein (1) the phosphorylation state of HJURP controls its centromeric recruitment in a cell-cycle-dependent manner, and (2) HJURP binding to DNA is a mechanistic determinant in CenH3(CENP-A) loading.
Collapse
Affiliation(s)
- Sebastian Müller
- Institut Curie, Centre de Recherche, Paris 75248, France; CNRS, UMR3664, Paris 75248, France; Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris 75248, France; UPMC, UMR3664, Paris 75248, France; Sorbonne University, Paris 75005, France
| | - Rocio Montes de Oca
- Institut Curie, Centre de Recherche, Paris 75248, France; CNRS, UMR3664, Paris 75248, France; Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris 75248, France; UPMC, UMR3664, Paris 75248, France; Sorbonne University, Paris 75005, France
| | - Nicolas Lacoste
- Institut Curie, Centre de Recherche, Paris 75248, France; CNRS, UMR3664, Paris 75248, France; Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris 75248, France; UPMC, UMR3664, Paris 75248, France; Sorbonne University, Paris 75005, France
| | - Florent Dingli
- Institut Curie, Centre de Recherche, Paris 75248, France; Laboratory of Proteomic Mass Spectrometry, 75248 Paris Cedex 05, France
| | - Damarys Loew
- Institut Curie, Centre de Recherche, Paris 75248, France; Laboratory of Proteomic Mass Spectrometry, 75248 Paris Cedex 05, France
| | - Geneviève Almouzni
- Institut Curie, Centre de Recherche, Paris 75248, France; CNRS, UMR3664, Paris 75248, France; Equipe Labellisée Ligue contre le Cancer, UMR3664, Paris 75248, France; UPMC, UMR3664, Paris 75248, France; Sorbonne University, Paris 75005, France.
| |
Collapse
|
75
|
DeNizio JE, Elsässer SJ, Black BE. DAXX co-folds with H3.3/H4 using high local stability conferred by the H3.3 variant recognition residues. Nucleic Acids Res 2014; 42:4318-31. [PMID: 24493739 PMCID: PMC3985662 DOI: 10.1093/nar/gku090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/17/2013] [Accepted: 01/08/2014] [Indexed: 01/08/2023] Open
Abstract
Histone chaperones are a diverse class of proteins that facilitate chromatin assembly. Their ability to stabilize highly abundant histone proteins in the cellular environment prevents non-specific interactions and promotes nucleosome formation, but the various mechanisms for doing so are not well understood. We now focus on the dynamic features of the DAXX histone chaperone that have been elusive from previous structural studies. Using hydrogen/deuterium exchange coupled to mass spectrometry (H/DX-MS), we elucidate the concerted binding-folding of DAXX with histone variants H3.3/H4 and H3.2/H4 and find that high local stability at the variant-specific recognition residues rationalizes its known selectivity for H3.3. We show that the DAXX histone binding domain is largely disordered in solution and that formation of the H3.3/H4/DAXX complex induces folding and dramatic global stabilization of both histone and chaperone. Thus, DAXX uses a novel strategy as a molecular chaperone that paradoxically couples its own folding to substrate recognition and binding. Further, we propose a model for the chromatin assembly reaction it mediates, including a stepwise folding pathway that helps explain the fidelity of DAXX in associating with the H3.3 variant, despite an extensive and nearly identical binding surface on its counterparts, H3.1 and H3.2.
Collapse
Affiliation(s)
- Jamie E. DeNizio
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA and MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Simon J. Elsässer
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA and MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA and MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
76
|
A network of players in H3 histone variant deposition and maintenance at centromeres. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:241-50. [DOI: 10.1016/j.bbagrm.2013.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 11/21/2022]
|
77
|
Wang J, Liu X, Dou Z, Chen L, Jiang H, Fu C, Fu G, Liu D, Zhang J, Zhu T, Fang J, Zang J, Cheng J, Teng M, Ding X, Yao X. Mitotic regulator Mis18β interacts with and specifies the centromeric assembly of molecular chaperone holliday junction recognition protein (HJURP). J Biol Chem 2014; 289:8326-36. [PMID: 24519934 DOI: 10.1074/jbc.m113.529958] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The centromere is essential for precise and equal segregation of the parental genome into two daughter cells during mitosis. CENP-A is a unique histone H3 variant conserved in eukaryotic centromeres. The assembly of CENP-A to the centromere is mediated by Holliday junction recognition protein (HJURP) in early G1 phase. However, it remains elusive how HJURP governs CENP-A incorporation into the centromere. Here we show that human HJURP directly binds to Mis18β, a component of the Mis18 complex conserved in the eukaryotic kingdom. A minimal region of HJURP for Mis18β binding was mapped to residues 437-460. Depletion of Mis18β by RNA interference dramatically impaired HJURP recruitment to the centromere, indicating the importance of Mis18β in HJURP loading. Interestingly, phosphorylation of HJURP by CDK1 weakens its interaction with Mis18β, consistent with the notion that assembly of CENP-A to the centromere is achieved after mitosis. Taken together, these data define a novel molecular mechanism underlying the temporal regulation of CENP-A incorporation into the centromere by accurate Mis18β-HJURP interaction.
Collapse
Affiliation(s)
- Jianyu Wang
- From the Hefei National Laboratory of Physical Sciences at Microscale, University of Science and Technology of China School of Life Science, Hefei 230027, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Doherty K, Meere M, Piiroinen PT. A mathematical model of CENP-A incorporation in mammalian centromeres. Math Biosci 2014; 249:27-43. [PMID: 24472234 DOI: 10.1016/j.mbs.2014.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/21/2013] [Accepted: 01/16/2014] [Indexed: 12/01/2022]
Abstract
Centromere Protein A (CENP-A) is a histone H3 variant found at mammalian centromeres. Unlike canonical histones which are incorporated at centromeres in S phase, CENP-A is deposited at centromeric chromatin in G1. Although recent studies have elucidated many of the molecular details associated with the CENP-A incorporation pathway, some aspects of the process are still not fully understood. CENP-A incorporation in G1 requires multiple assembly factors for its recruitment and maintenance. In this study, the first mathematical model of the CENP-A incorporation pathway is developed. The model is based on what is currently known about the pathway and is calibrated by comparing numerical simulations with experimental observations taken from the literature. The model succinctly collates a large body of knowledge accumulated in recent decades concerning the pathway and produces results that are consistent with experimental findings. It identifies possible gaps in what is currently known about the pathway and suggests possible directions for future research. It is envisaged that the model will be expanded upon and improved as more information concerning the pathway comes to light.
Collapse
Affiliation(s)
- Kevin Doherty
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, University Road, Galway, Ireland.
| | - Martin Meere
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, University Road, Galway, Ireland.
| | - Petri T Piiroinen
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, University Road, Galway, Ireland.
| |
Collapse
|
79
|
Chen CC, Dechassa ML, Bettini E, Ledoux MB, Belisario C, Heun P, Luger K, Mellone BG. CAL1 is the Drosophila CENP-A assembly factor. ACTA ACUST UNITED AC 2014; 204:313-29. [PMID: 24469636 PMCID: PMC3912524 DOI: 10.1083/jcb.201305036] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Representing a unique family of histone assembly factors, CAL1 assembles the histone H3 variant CENP-A on centromeric DNA in Drosophila. Centromeres are specified epigenetically by the incorporation of the histone H3 variant CENP-A. In humans, amphibians, and fungi, CENP-A is deposited at centromeres by the HJURP/Scm3 family of assembly factors, but homologues of these chaperones are absent from a number of major eukaryotic lineages such as insects, fish, nematodes, and plants. In Drosophila, centromeric deposition of CENP-A requires the fly-specific protein CAL1. Here, we show that targeting CAL1 to noncentromeric DNA in Drosophila cells is sufficient to heritably recruit CENP-A, kinetochore proteins, and microtubule attachments. CAL1 selectively interacts with CENP-A and is sufficient to assemble CENP-A nucleosomes that display properties consistent with left-handed octamers. The CENP-A assembly activity of CAL1 resides within an N-terminal domain, whereas the C terminus mediates centromere recognition through an interaction with CENP-C. Collectively, this work identifies the “missing” CENP-A chaperone in flies, revealing fundamental conservation between insect and vertebrate centromere-specification mechanisms.
Collapse
Affiliation(s)
- Chin-Chi Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Karch KR, Denizio JE, Black BE, Garcia BA. Identification and interrogation of combinatorial histone modifications. Front Genet 2013; 4:264. [PMID: 24391660 PMCID: PMC3868920 DOI: 10.3389/fgene.2013.00264] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/15/2013] [Indexed: 11/13/2022] Open
Abstract
Histone proteins are dynamically modified to mediate a variety of cellular processes including gene transcription, DNA damage repair, and apoptosis. Regulation of these processes occurs through the recruitment of non-histone proteins to chromatin by specific combinations of histone post-translational modifications (PTMs). Mass spectrometry has emerged as an essential tool to discover and quantify histone PTMs both within and between samples in an unbiased manner. Developments in mass spectrometry that allow for characterization of large histone peptides or intact protein has made it possible to determine which modifications occur simultaneously on a single histone polypeptide. A variety of techniques from biochemistry, biophysics, and chemical biology have been employed to determine the biological relevance of discovered combinatorial codes. This review first describes advancements in the field of mass spectrometry that have facilitated histone PTM analysis and then covers notable approaches to probe the biological relevance of these modifications in their nucleosomal context.
Collapse
Affiliation(s)
- Kelly R Karch
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Jamie E Denizio
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Ben E Black
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
81
|
Elsässer SJ. A common structural theme in histone chaperones mimics interhistone contacts. Trends Biochem Sci 2013; 38:333-6. [PMID: 23790282 DOI: 10.1016/j.tibs.2013.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/25/2013] [Accepted: 04/03/2013] [Indexed: 11/20/2022]
Abstract
Histones are among the most conserved proteins in eukaryotes: the structural constraints of the nucleosome pose a challenge to evolving novel function. Nevertheless, confined histone surfaces have diversified, allowing the modulation of basic chromatin function through specialized histone chaperones. Recent structures of three histone-chaperone complexes, DAXX, HJURP, and Scm3, exemplify a common parsimonious solution to the restricted evolutionary space of histone recognition by their cognate histone chaperones: the reutilization of existing themes in histone structural biology.
Collapse
|
82
|
D'Arcy S, Martin KW, Panchenko T, Chen X, Bergeron S, Stargell LA, Black BE, Luger K. Chaperone Nap1 shields histone surfaces used in a nucleosome and can put H2A-H2B in an unconventional tetrameric form. Mol Cell 2013; 51:662-77. [PMID: 23973327 DOI: 10.1016/j.molcel.2013.07.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/06/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
The histone H2A-H2B heterodimer is an integral component of the nucleosome. The cellular localization and deposition of H2A-H2B into chromatin is regulated by numerous factors, including histone chaperones such as nucleosome assembly protein 1 (Nap1). We use hydrogen-deuterium exchange coupled to mass spectrometry to characterize H2A-H2B and Nap1. Unexpectedly, we find that at low ionic strength, the α helices in H2A-H2B are frequently sampling partially disordered conformations and that binding to Nap1 reduces this conformational sampling. We identify the interaction surface between H2A-H2B and Nap1 and confirm its relevance both in vitro and in vivo. We show that two copies of H2A-H2B bound to a Nap1 homodimer form a tetramer with contacts between H2B chains similar to those in the four-helix bundle structural motif. The organization of the complex reveals that Nap1 competes with histone-DNA and interhistone interactions observed in the nucleosome, thereby regulating the availability of histones for chromatin assembly.
Collapse
Affiliation(s)
- Sheena D'Arcy
- Howard Hughes Medical Institute, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | | | |
Collapse
|
83
|
A two-step mechanism for epigenetic specification of centromere identity and function. Nat Cell Biol 2013; 15:1056-66. [PMID: 23873148 DOI: 10.1038/ncb2805] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/11/2013] [Indexed: 02/06/2023]
Abstract
The basic determinant of chromosome inheritance, the centromere, is specified in many eukaryotes by an epigenetic mark. Using gene targeting in human cells and fission yeast, chromatin containing the centromere-specific histone H3 variant CENP-A is demonstrated to be the epigenetic mark that acts through a two-step mechanism to identify, maintain and propagate centromere function indefinitely. Initially, centromere position is replicated and maintained by chromatin assembled with the centromere-targeting domain (CATD) of CENP-A substituted into H3. Subsequently, nucleation of kinetochore assembly onto CATD-containing chromatin is shown to require either the amino- or carboxy-terminal tail of CENP-A for recruitment of inner kinetochore proteins, including stabilizing CENP-B binding to human centromeres or direct recruitment of CENP-C, respectively.
Collapse
|
84
|
Posttranslational modification of CENP-A influences the conformation of centromeric chromatin. Proc Natl Acad Sci U S A 2013; 110:11827-32. [PMID: 23818633 DOI: 10.1073/pnas.1300325110] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centromeres are chromosomal loci required for accurate segregation of sister chromatids during mitosis. The location of the centromere on the chromosome is not dependent on DNA sequence, but rather it is epigenetically specified by the histone H3 variant centromere protein A (CENP-A). The N-terminal tail of CENP-A is highly divergent from other H3 variants. Canonical histone N termini are hotspots of conserved posttranslational modification; however, no broadly conserved modifications of the vertebrate CENP-A tail have been previously observed. Here, we report three posttranslational modifications on human CENP-A N termini using high-resolution MS: trimethylation of Gly1 and phosphorylation of Ser16 and Ser18. Our results demonstrate that CENP-A is subjected to constitutive initiating methionine removal, similar to other H3 variants. The nascent N-terminal residue Gly1 becomes trimethylated on the α-amino group. We demonstrate that the N-terminal RCC1 methyltransferase is capable of modifying the CENP-A N terminus. Methylation occurs in the prenucleosomal form and marks the majority of CENP-A nucleosomes. Serine 16 and 18 become phosphorylated in prenucleosomal CENP-A and are phosphorylated on asynchronous and mitotic nucleosomal CENP-A and are important for chromosome segregation during mitosis. The double phosphorylation motif forms a salt-bridged secondary structure and causes CENP-A N-terminal tails to form intramolecular associations. Analytical ultracentrifugation of phospho-mimetic CENP-A nucleosome arrays demonstrates that phosphorylation results in greater intranucleosome associations and counteracts the hyperoligomerized state exhibited by unmodified CENP-A nucleosome arrays. Our studies have revealed that the major modifications on the N-terminal tail of CENP-A alter the physical properties of the chromatin fiber at the centromere.
Collapse
|
85
|
Bodor DL, Jansen LET. How two become one: HJURP dimerization drives CENP-A assembly. EMBO J 2013; 32:2090-2. [PMID: 23792427 PMCID: PMC3730231 DOI: 10.1038/emboj.2013.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Dani L Bodor
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
86
|
Zasadzińska E, Barnhart-Dailey MC, Kuich PHJL, Foltz DR. Dimerization of the CENP-A assembly factor HJURP is required for centromeric nucleosome deposition. EMBO J 2013; 32:2113-24. [PMID: 23771058 DOI: 10.1038/emboj.2013.142] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 05/23/2013] [Indexed: 11/09/2022] Open
Abstract
The epigenetic mark of the centromere is thought to be a unique centromeric nucleosome that contains the histone H3 variant, centromere protein-A (CENP-A). The deposition of new centromeric nucleosomes requires the CENP-A-specific chromatin assembly factor HJURP (Holliday junction recognition protein). Crystallographic and biochemical data demonstrate that the Scm3-like domain of HJURP binds a single CENP-A-histone H4 heterodimer. However, several lines of evidence suggest that HJURP forms an octameric CENP-A nucleosome. How an octameric CENP-A nucleosome forms from individual CENP-A/histone H4 heterodimers is unknown. Here, we show that HJURP forms a homodimer through its C-terminal domain that includes the second HJURP_C domain. HJURP exists as a dimer in the soluble preassembly complex and at chromatin when new CENP-A is deposited. Dimerization of HJURP is essential for the deposition of new CENP-A nucleosomes. The recruitment of HJURP to centromeres occurs independent of dimerization and CENP-A binding. These data provide a mechanism whereby the CENP-A pre-nucleosomal complex achieves assembly of the octameric CENP-A nucleosome through the dimerization of the CENP-A chaperone HJURP.
Collapse
Affiliation(s)
- Ewelina Zasadzińska
- Department of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | | | | | | |
Collapse
|
87
|
|
88
|
Vardabasso C, Hasson D, Ratnakumar K, Chung CY, Duarte LF, Bernstein E. Histone variants: emerging players in cancer biology. Cell Mol Life Sci 2013; 71:379-404. [PMID: 23652611 DOI: 10.1007/s00018-013-1343-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 01/01/2023]
Abstract
Histone variants are key players in shaping chromatin structure, and, thus, in regulating fundamental cellular processes such as chromosome segregation and gene expression. Emerging evidence points towards a role for histone variants in contributing to tumor progression, and, recently, the first cancer-associated mutation in a histone variant-encoding gene was reported. In addition, genetic alterations of the histone chaperones that specifically regulate chromatin incorporation of histone variants are rapidly being uncovered in numerous cancers. Collectively, these findings implicate histone variants as potential drivers of cancer initiation and/or progression, and, therefore, targeting histone deposition or the chromatin remodeling machinery may be of therapeutic value. Here, we review the mammalian histone variants of the H2A and H3 families in their respective cellular functions, and their involvement in tumor biology.
Collapse
Affiliation(s)
- Chiara Vardabasso
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | | | | | | | | | | |
Collapse
|
89
|
Hasson D, Panchenko T, Salimian KJ, Salman MU, Sekulic N, Alonso A, Warburton PE, Black BE. The octamer is the major form of CENP-A nucleosomes at human centromeres. Nat Struct Mol Biol 2013; 20:687-95. [PMID: 23644596 PMCID: PMC3760417 DOI: 10.1038/nsmb.2562] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/07/2013] [Indexed: 12/27/2022]
Abstract
The centromere is the chromosomal locus that ensures fidelity in genome transmission at cell division. Centromere protein A (CENP-A) is a histone H3 variant that specifies centromere location independently of DNA sequence. Conflicting evidence has emerged regarding the histone composition and stoichiometry of CENP-A nucleosomes. Here we show that the predominant form of the CENP-A particle at human centromeres is an octameric nucleosome. CENP-A nucleosomes are very highly phased on α-satellite 171 bp monomers at normal centromeres, and also display strong positioning at neocentromeres. At either type of functional centromere, CENP-A nucleosomes exhibit similar DNA wrapping behavior as octameric CENP-A nucleosomes reconstituted with recombinant components, having looser DNA termini than those on their conventional counterparts containing canonical H3. Thus, the fundamental unit of the chromatin that epigenetically specifies centromere location in mammals is an octameric nucleosome with loose termini.
Collapse
Affiliation(s)
- Dan Hasson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Westhorpe FG, Straight AF. Functions of the centromere and kinetochore in chromosome segregation. Curr Opin Cell Biol 2013; 25:334-40. [PMID: 23490282 DOI: 10.1016/j.ceb.2013.02.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/05/2013] [Indexed: 01/19/2023]
Abstract
Centromeres play essential roles in equal chromosome segregation by directing the assembly of the microtubule binding kinetochore and serving as the cohesion site between sister chromatids. Here, we review the significant recent progress in our understanding of centromere protein assembly and how centromere proteins form the foundation of the kinetochore.
Collapse
Affiliation(s)
- Frederick G Westhorpe
- Department of Biochemistry, Stanford University Medical School, Stanford, CA 94305, United States
| | | |
Collapse
|
91
|
Hong J, Feng H, Zhou Z, Ghirlando R, Bai Y. Identification of functionally conserved regions in the structure of the chaperone/CenH3/H4 complex. J Mol Biol 2013; 425:536-45. [PMID: 23178171 PMCID: PMC3557595 DOI: 10.1016/j.jmb.2012.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/15/2012] [Accepted: 11/16/2012] [Indexed: 01/26/2023]
Abstract
In eukaryotes, a variant of conventional histone H3 termed CenH3 epigenetically marks the centromere. The conserved CenH3 chaperone specifically recognizes CenH3 and is required for CenH3 deposition at the centromere. Recently, the structures of the chaperone/CenH3/H4 complexes have been determined for Homo sapiens (Hs) and the budding yeasts Saccharomyces cerevisiae (Sc) and Kluyveromyces lactis (Kl). Surprisingly, the three structures are very different, leading to different proposed structural bases for chaperone function. The question of which structural region of CenH3 provides the specificity determinant for the chaperone recognition is not fully answered. Here, we investigated these issues using solution NMR and site-directed mutagenesis. We discovered that, in contrast to previous findings, the structures of the Kl and Sc chaperone/CenH3/H4 complexes are actually very similar. This new finding reveals that both budding yeast and human chaperones use a similar structural region to block DNA from binding to the histones. Our mutational analyses further indicate that the N-terminal region of the CenH3 α2 helix is sufficient for specific recognition by the chaperone for both budding yeast and human. Thus, our studies have identified conserved structural bases of how the chaperones recognize CenH3 and perform the chaperone function.
Collapse
Affiliation(s)
- Jingjun Hong
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Hanqiao Feng
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Zheng Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
92
|
Bodor DL, Valente LP, Mata JF, Black BE, Jansen LET. Assembly in G1 phase and long-term stability are unique intrinsic features of CENP-A nucleosomes. Mol Biol Cell 2013; 24:923-32. [PMID: 23363600 PMCID: PMC3608502 DOI: 10.1091/mbc.e13-01-0034] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Centromeres are epigenetically defined by CENP-A nucleosomes. SNAP tagging is used to determine the composition of the heritable centromeric chromatin core. Assembly during G1 and stable maintenance at centromeres are restricted to CENP-A and H4. The CATD is the protein domain of CENP-A that is responsible for both features. Centromeres are the site of kinetochore formation during mitosis. Centromere protein A (CENP-A), the centromere-specific histone H3 variant, is essential for the epigenetic maintenance of centromere position. Previously we showed that newly synthesized CENP-A is targeted to centromeres exclusively during early G1 phase and is subsequently maintained across mitotic divisions. Using SNAP-based fluorescent pulse labeling, we now demonstrate that cell cycle–restricted chromatin assembly at centromeres is unique to CENP-A nucleosomes and does not involve assembly of other H3 variants. Strikingly, stable retention is restricted to the CENP-A/H4 core of the nucleosome, which we find to outlast general chromatin across several cell divisions. We further show that cell cycle timing of CENP-A assembly is independent of centromeric DNA sequences and instead is mediated by the CENP-A targeting domain. Unexpectedly, this domain also induces stable transmission of centromeric nucleosomes, independent of the CENP-A deposition factor HJURP. This demonstrates that intrinsic properties of the CENP-A protein direct its cell cycle–restricted assembly and induces quantitative mitotic transmission of the CENP-A/H4 nucleosome core, ensuring long-term stability and epigenetic maintenance of centromere position.
Collapse
Affiliation(s)
- Dani L Bodor
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
93
|
Padeganeh A, De Rop V, Maddox PS. Nucleosomal composition at the centromere: a numbers game. Chromosome Res 2013; 21:27-36. [PMID: 23328870 PMCID: PMC3601254 DOI: 10.1007/s10577-012-9335-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/27/2012] [Accepted: 12/27/2012] [Indexed: 12/01/2022]
Abstract
The Centromere is a unique chromosomal locus where the kinetochore is formed to mediate faithful chromosome partitioning, thus maintaining ploidy during cell division. Centromere identity is inherited via an epigenetic mechanism involving a histone H3 variant, called centromere protein A (CENP-A) which replaces H3 in centromeric chromatin. In spite of extensive efforts in field of centromere biology during the past decade, controversy persists over the structural nature of the CENP-A-containing epigenetic mark, both at nucleosomal and chromatin levels. Here, we review recent findings and hypotheses regarding the structure of CENP-A-containing complexes.
Collapse
Affiliation(s)
- Abbas Padeganeh
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, H3T1J4, QC, Canada
| | | | | |
Collapse
|
94
|
Bui M, Walkiewicz MP, Dimitriadis EK, Dalal Y. The CENP-A nucleosome: a battle between Dr Jekyll and Mr Hyde. Nucleus 2013; 4:37-42. [PMID: 23324462 PMCID: PMC3585026 DOI: 10.4161/nucl.23588] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structure of the centromere-specific histone centromeric protein A (CENP-A) nucleosome has been a hot topic of debate for the past five years. Structures proposed include octamers, hexamers, homotypic and heterotypic tetramers. This controversy has led to the proposal that CENP-A nucleosomes undergo cell-cycle dependent transitions between the multiple states previously documented to exist in vivo and in vitro. In recent work from our laboratory, we sought to test this hypothesis. We discovered that CENP-A nucleosomes undergo unique oscillations in human cells, a finding mirrored in a parallel study performed in budding yeast. This review provides additional insights into the potential mechanisms for the interconversion of CENP-A nucleosomal species, and speculates on a biological role for oscillations in vivo.
Collapse
Affiliation(s)
- Minh Bui
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | | | | | | |
Collapse
|
95
|
Phansalkar R, Lapierre P, Mellone BG. Evolutionary insights into the role of the essential centromere protein CAL1 in Drosophila. Chromosome Res 2012; 20:493-504. [PMID: 22820845 DOI: 10.1007/s10577-012-9299-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Centromeres are essential cis-elements on chromosomes that are crucial for the stable transmission of genetic information during mitotic and meiotic cell divisions. Different species employ a variety of centromere configurations, from small genetically defined centromeres in budding yeast to holocentric centromeres that occupy entire chromosomes in Caenorhabditis, yet the incorporation of nucleosomes containing the essential centromere-specific histone H3 variant CENP-A is a common feature of centromeres in all eukaryotes. In vertebrates and fungi, CENP-A is specifically deposited at centromeres by a conserved chaperone, called HJURP or Scm3, respectively. Surprisingly, homologs of these proteins have not been identified in Drosophila, Caenorhabditis, or plants. How CENP-A is targeted to centromeres in these organisms is not known. The Drosophila centromeric protein CAL1, found only in the Diptera genus, is essential for CENP-A localization, is recruited to centromeres at a similar time as CENP-A, and interacts with CENP-A in both chromatin and pre-nucleosomal complexes, making it a strong candidate for a CENP-A chaperone in this lineage. Here, we discuss the conservation and evolution of this essential centromere factor and report the identification of a "Scm3-domain"-like region with similarity to the corresponding region of fungal Scm3 as well as a shared predicted alpha-helical structure. Given the lack of common ancestry between Scm3 and CAL1, we propose that an optimal CENP-A binding region was independently acquired by CAL1, which caused the loss of an ancestral Scm3 protein from the Diptera lineage.
Collapse
Affiliation(s)
- Ragini Phansalkar
- Department of Molecular and Cell Biology, University of Connecticut, 354 Mansfield Road, U2131, R247, Storrs, CT 06269, USA
| | | | | |
Collapse
|
96
|
De Rop V, Padeganeh A, Maddox PS. CENP-A: the key player behind centromere identity, propagation, and kinetochore assembly. Chromosoma 2012; 121:527-38. [PMID: 23095988 PMCID: PMC3501172 DOI: 10.1007/s00412-012-0386-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 12/26/2022]
Abstract
Chromosome segregation is the one of the great problems in biology with complexities spanning from biophysics and polymer dynamics to epigenetics. Here, we summarize the current knowledge and highlight gaps in understanding of the mechanisms controlling epigenetic regulation of chromosome segregation.
Collapse
Affiliation(s)
- Valérie De Rop
- Institute for Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3J7 Canada
| | - Abbas Padeganeh
- Institute for Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3J7 Canada
| | - Paul S. Maddox
- Institute for Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3J7 Canada
| |
Collapse
|
97
|
Stellfox ME, Bailey AO, Foltz DR. Putting CENP-A in its place. Cell Mol Life Sci 2012; 70:387-406. [PMID: 22729156 DOI: 10.1007/s00018-012-1048-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/15/2012] [Accepted: 06/01/2012] [Indexed: 01/19/2023]
Abstract
The centromere is the chromosomal region that directs kinetochore assembly during mitosis in order to facilitate the faithful segregation of sister chromatids. The location of the human centromere is epigenetically specified. The presence of nucleosomes that contain the histone H3 variant, CENP-A, are thought to be the epigenetic mark that indicates active centromeres. Maintenance of centromeric identity requires the deposition of new CENP-A nucleosomes with each cell cycle. During S-phase, existing CENP-A nucleosomes are divided among the daughter chromosomes, while new CENP-A nucleosomes are deposited during early G1. The specific assembly of CENP-A nucleosomes at centromeres requires the Mis18 complex, which recruits the CENP-A assembly factor, HJURP. We will review the unique features of centromeric chromatin as well as the mechanism of CENP-A nucleosome deposition. We will also highlight a few recent discoveries that begin to elucidate the factors that temporally and spatially control CENP-A deposition.
Collapse
Affiliation(s)
- Madison E Stellfox
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical School, PO Box 800733, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
98
|
Lochmann B, Ivanov D. Histone H3 localizes to the centromeric DNA in budding yeast. PLoS Genet 2012; 8:e1002739. [PMID: 22693454 PMCID: PMC3364953 DOI: 10.1371/journal.pgen.1002739] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 04/14/2012] [Indexed: 11/30/2022] Open
Abstract
During cell division, segregation of sister chromatids to daughter cells is achieved by the poleward pulling force of microtubules, which attach to the chromatids by means of a multiprotein complex, the kinetochore. Kinetochores assemble at the centromeric DNA organized by specialized centromeric nucleosomes. In contrast to other eukaryotes, which typically have large repetitive centromeric regions, budding yeast CEN DNA is defined by a 125 bp sequence and assembles a single centromeric nucleosome. In budding yeast, as well as in other eukaryotes, the Cse4 histone variant (known in vertebrates as CENP-A) is believed to substitute for histone H3 at the centromeric nucleosome. However, the exact composition of the CEN nucleosome remains a subject of debate. We report the use of a novel ChIP approach to reveal the composition of the centromeric nucleosome and its localization on CEN DNA in budding yeast. Surprisingly, we observed a strong interaction of H3, as well as Cse4, H4, H2A, and H2B, but not histone chaperone Scm3 (HJURP in human) with the centromeric DNA. H3 localizes to centromeric DNA at all stages of the cell cycle. Using a sequential ChIP approach, we could demonstrate the co-occupancy of H3 and Cse4 at the CEN DNA. Our results favor a H3-Cse4 heterotypic octamer at the budding yeast centromere. Whether or not our model is correct, any future model will have to account for the stable association of histone H3 with the centromeric DNA. During cell division, replicated DNA molecules are pulled to daughter cells by microtubules, which originate at the spindle poles and attach to a multiprotein complex, the kinetochore. The kinetochore assembles at a special region of the chromosome, termed the centromere. The kinetochore is comprised of more than 50 different proteins whose precise functions are far from being fully understood. The kinetochore assembles on the foundation of a specialized centromeric nucleosome. A nucleosome is a complex of eight subunits, termed histones, which compacts the DNA by wrapping it around itself in 1.7 turns of a superhelix. The centromeric nucleosome is very special, and its stoichiometry and structure are a subject of intense debate. It is believed that the centromeric nucleosome is devoid of histone H3 and instead contains its variant, termed CENP-A in vertebrates or Cse4 in budding yeast. Here we report that in budding yeast both CENP-A and histone H3 localize to a small centromeric DNA fragment that, due to its size, cannot accommodate more than a single nucleosome. Our results necessitate a revision of what is known about the structure of the inner kinetochore and the role of CENP-A in its assembly.
Collapse
Affiliation(s)
| | - Dmitri Ivanov
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
- * E-mail:
| |
Collapse
|
99
|
Sekulic N, Black BE. Molecular underpinnings of centromere identity and maintenance. Trends Biochem Sci 2012; 37:220-9. [PMID: 22410197 DOI: 10.1016/j.tibs.2012.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/20/2012] [Accepted: 01/24/2012] [Indexed: 11/15/2022]
Abstract
Centromeres direct faithful chromosome inheritance at cell division but are not defined by a conserved DNA sequence. Instead, a specialized form of chromatin containing the histone H3 variant, CENP-A, epigenetically specifies centromere location. We discuss current models where CENP-A serves as the marker for the centromere during the entire cell cycle in addition to generating the foundational chromatin for the kinetochore in mitosis. Recent elegant experiments have indicated that engineered arrays of CENP-A-containing nucleosomes are sufficient to serve as the site of kinetochore formation and for seeding centromeric chromatin that self-propagates through cell generations. Finally, recent structural and dynamic studies of CENP-A-containing histone complexes - before and after assembly into nucleosomes - provide models to explain underlying molecular mechanisms at the centromere.
Collapse
Affiliation(s)
- Nikolina Sekulic
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|