51
|
Zhang F, Boerwinkle E, Xiong M. Epistasis analysis for quantitative traits by functional regression model. Genome Res 2014; 24:989-98. [PMID: 24803592 PMCID: PMC4032862 DOI: 10.1101/gr.161760.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The critical barrier in interaction analysis for rare variants is that most traditional statistical methods for testing interactions were originally designed for testing the interaction between common variants and are difficult to apply to rare variants because of their prohibitive computational time and poor ability. The great challenges for successful detection of interactions with next-generation sequencing (NGS) data are (1) lack of methods for interaction analysis with rare variants, (2) severe multiple testing, and (3) time-consuming computations. To meet these challenges, we shift the paradigm of interaction analysis between two loci to interaction analysis between two sets of loci or genomic regions and collectively test interactions between all possible pairs of SNPs within two genomic regions. In other words, we take a genome region as a basic unit of interaction analysis and use high-dimensional data reduction and functional data analysis techniques to develop a novel functional regression model to collectively test interactions between all possible pairs of single nucleotide polymorphisms (SNPs) within two genome regions. By intensive simulations, we demonstrate that the functional regression models for interaction analysis of the quantitative trait have the correct type 1 error rates and a much better ability to detect interactions than the current pairwise interaction analysis. The proposed method was applied to exome sequence data from the NHLBI’s Exome Sequencing Project (ESP) and CHARGE-S study. We discovered 27 pairs of genes showing significant interactions after applying the Bonferroni correction (P-values < 4.58 × 10−10) in the ESP, and 11 were replicated in the CHARGE-S study.
Collapse
Affiliation(s)
- Futao Zhang
- Institute of Bioinformatics, Zhejiang University, Hangzhou, Zhejiang 310058, China; Human Genetics Center, Division of Biostatistics, The University of Texas School of Public Health, Houston, Texas 77030, USA
| | - Eric Boerwinkle
- Human Genetics Center, Division of Biostatistics, The University of Texas School of Public Health, Houston, Texas 77030, USA
| | - Momiao Xiong
- Human Genetics Center, Division of Biostatistics, The University of Texas School of Public Health, Houston, Texas 77030, USA
| |
Collapse
|
52
|
Zannino DA, Downes GB, Sagerström CG. prdm12b specifies the p1 progenitor domain and reveals a role for V1 interneurons in swim movements. Dev Biol 2014; 390:247-60. [PMID: 24631215 DOI: 10.1016/j.ydbio.2014.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/12/2014] [Accepted: 02/28/2014] [Indexed: 01/23/2023]
Abstract
Proper functioning of the vertebrate central nervous system requires the precise positioning of many neuronal cell types. This positioning is established during early embryogenesis when gene regulatory networks pattern the neural tube along its anteroposterior and dorsoventral axes. Dorsoventral patterning of the embryonic neural tube gives rise to multiple progenitor cell domains that go on to differentiate unique classes of neurons and glia. While the genetic program is reasonably well understood for some lineages, such as ventrally derived motor neurons and glia, other lineages are much less characterized. Here we show that prdm12b, a member of the PR domain containing-family of transcriptional regulators, is expressed in the p1 progenitor domain of the zebrafish neural tube in response to Sonic Hedgehog signaling. We find that disruption of prdm12b function leads to dorsal expansion of nkx6.1 expression and loss of p1-derived eng1b-expressing V1 interneurons, while the adjacent p0 and p2 domains are unaffected. We also demonstrate that prdm12b-deficient fish exhibit an abnormal touch-evoked escape response with excessive body contractions and a prolonged response time, as well as an inability to coordinate swimming movements, thereby revealing a functional role for V1 interneurons in locomotor circuits. We conclude that prdm12b is required for V1 interneuron specification and that these neurons control swimming movements in zebrafish.
Collapse
Affiliation(s)
- Denise A Zannino
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St./LRB815, Worcester, MA 01605-2324, USA
| | - Gerald B Downes
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Charles G Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St./LRB815, Worcester, MA 01605-2324, USA.
| |
Collapse
|
53
|
Hanotel J, Bessodes N, Thélie A, Hedderich M, Parain K, Van Driessche B, Brandão KDO, Kricha S, Jorgensen MC, Grapin-Botton A, Serup P, Van Lint C, Perron M, Pieler T, Henningfeld KA, Bellefroid EJ. The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. Dev Biol 2013; 386:340-57. [PMID: 24370451 DOI: 10.1016/j.ydbio.2013.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 11/19/2013] [Accepted: 12/17/2013] [Indexed: 12/01/2022]
Abstract
The basic helix-loop-helix (bHLH) transcriptional activator Ptf1a determines inhibitory GABAergic over excitatory glutamatergic neuronal cell fate in progenitors of the vertebrate dorsal spinal cord, cerebellum and retina. In an in situ hybridization expression survey of PR domain containing genes encoding putative chromatin-remodeling zinc finger transcription factors in Xenopus embryos, we identified Prdm13 as a histone methyltransferase belonging to the Ptf1a synexpression group. Gain and loss of Ptf1a function analyses in both frog and mice indicates that Prdm13 is positively regulated by Ptf1a and likely constitutes a direct transcriptional target. We also showed that this regulation requires the formation of the Ptf1a-Rbp-j complex. Prdm13 knockdown in Xenopus embryos and in Ptf1a overexpressing ectodermal explants lead to an upregulation of Tlx3/Hox11L2, which specifies a glutamatergic lineage and a reduction of the GABAergic neuronal marker Pax2. It also leads to an upregulation of Prdm13 transcription, suggesting an autonegative regulation. Conversely, in animal caps, Prdm13 blocks the ability of the bHLH factor Neurog2 to activate Tlx3. Additional gain of function experiments in the chick neural tube confirm that Prdm13 suppresses Tlx3(+)/glutamatergic and induces Pax2(+)/GABAergic neuronal fate. Thus, Prdm13 is a novel crucial component of the Ptf1a regulatory pathway that, by modulating the transcriptional activity of bHLH factors such as Neurog2, controls the balance between GABAergic and glutamatergic neuronal fate in the dorsal and caudal part of the vertebrate neural tube.
Collapse
Affiliation(s)
- Julie Hanotel
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medicine, and ULB Neuroscience Institute, B-6041 Gosselies, Belgium
| | - Nathalie Bessodes
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medicine, and ULB Neuroscience Institute, B-6041 Gosselies, Belgium
| | - Aurore Thélie
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medicine, and ULB Neuroscience Institute, B-6041 Gosselies, Belgium
| | - Marie Hedderich
- Department of Developmental Biochemistry, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Goettingen, 37077 Goettingen, Germany
| | - Karine Parain
- UPR CNRS 3294 Neurobiology and Development, Université Paris Sud, 91405 Orsay Cedex, France
| | - Benoit Van Driessche
- Laboratory of Molecular Virology, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medicine, B-6041 Gosselies, Belgium
| | - Karina De Oliveira Brandão
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medicine, and ULB Neuroscience Institute, B-6041 Gosselies, Belgium
| | - Sadia Kricha
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medicine, and ULB Neuroscience Institute, B-6041 Gosselies, Belgium
| | - Mette C Jorgensen
- DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Palle Serup
- DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Carine Van Lint
- Laboratory of Molecular Virology, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medicine, B-6041 Gosselies, Belgium
| | - Muriel Perron
- UPR CNRS 3294 Neurobiology and Development, Université Paris Sud, 91405 Orsay Cedex, France
| | - Tomas Pieler
- Department of Developmental Biochemistry, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Goettingen, 37077 Goettingen, Germany
| | - Kristine A Henningfeld
- Department of Developmental Biochemistry, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Goettingen, 37077 Goettingen, Germany
| | - Eric J Bellefroid
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medicine, and ULB Neuroscience Institute, B-6041 Gosselies, Belgium.
| |
Collapse
|