51
|
Variable Cell Growth Yields Reproducible OrganDevelopment through Spatiotemporal Averaging. Dev Cell 2017; 38:15-32. [PMID: 27404356 DOI: 10.1016/j.devcel.2016.06.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 05/04/2016] [Accepted: 06/09/2016] [Indexed: 11/22/2022]
Abstract
Organ sizes and shapes are strikingly reproducible, despite the variable growth and division of individual cells within them. To reveal which mechanisms enable this precision, we designed a screen for disrupted sepal size and shape uniformity in Arabidopsis and identified mutations in the mitochondrial i-AAA protease FtsH4. Counterintuitively, through live imaging we observed that variability of neighboring cell growth was reduced in ftsh4 sepals. We found that regular organ shape results from spatiotemporal averaging of the cellular variability in wild-type sepals, which is disrupted in the less-variable cells of ftsh4 mutants. We also found that abnormal, increased accumulation of reactive oxygen species (ROS) in ftsh4 mutants disrupts organ size consistency. In wild-type sepals, ROS accumulate in maturing cells and limit organ growth, suggesting that ROS are endogenous signals promoting termination of growth. Our results demonstrate that spatiotemporal averaging of cellular variability is required for precision in organ size.
Collapse
|
52
|
Goldenbogen B, Giese W, Hemmen M, Uhlendorf J, Herrmann A, Klipp E. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis. Open Biol 2016; 6:160136. [PMID: 27605377 PMCID: PMC5043577 DOI: 10.1098/rsob.160136] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022] Open
Abstract
The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells.
Collapse
Affiliation(s)
- Björn Goldenbogen
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Wolfgang Giese
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Marie Hemmen
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Jannis Uhlendorf
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Andreas Herrmann
- Molecular Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Edda Klipp
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| |
Collapse
|
53
|
Makushok T, Alves P, Huisman SM, Kijowski AR, Brunner D. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity. Cell 2016; 165:1182-1196. [PMID: 27180904 DOI: 10.1016/j.cell.2016.04.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 11/20/2015] [Accepted: 04/13/2016] [Indexed: 12/26/2022]
Abstract
Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization.
Collapse
Affiliation(s)
- Tatyana Makushok
- University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94143, USA
| | - Paulo Alves
- IGBMC, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Stephen Michiel Huisman
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Adam Rafal Kijowski
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Damian Brunner
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
54
|
Hervieux N, Dumond M, Sapala A, Routier-Kierzkowska AL, Kierzkowski D, Roeder AHK, Smith RS, Boudaoud A, Hamant O. A Mechanical Feedback Restricts Sepal Growth and Shape in Arabidopsis. Curr Biol 2016; 26:S0960-9822(16)30180-4. [PMID: 27151660 DOI: 10.1016/j.cub.2016.03.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/09/2016] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
Abstract
How organs reach their final shape is a central yet unresolved question in developmental biology. Here we investigate whether mechanical cues contribute to this process. We analyze the epidermal cells of the Arabidopsis sepal, focusing on cortical microtubule arrays, which align along maximal tensile stresses and restrict growth in that direction through their indirect impact on the mechanical anisotropy of cell walls. We find a good match between growth and microtubule orientation throughout most of the development of the sepal. However, at the sepal tip, where organ maturation initiates and growth slows down in later stages, microtubules remain in a configuration consistent with fast anisotropic growth, i.e., transverse, and the anisotropy of their arrays even increases. To understand this apparent paradox, we built a continuous mechanical model of a growing sepal. The model demonstrates that differential growth in the sepal can generate transverse tensile stress at the tip. Consistently, microtubules respond to mechanical perturbations and align along maximal tension at the sepal tip. Including this mechanical feedback in our growth model of the sepal, we predict an impact on sepal shape that is validated experimentally using mutants with either increased or decreased microtubule response to stress. Altogether, this suggests that a mechanical feedback loop, via microtubules acting both as stress sensor and growth regulator, channels the growth and shape of the sepal tip. We propose that this proprioception mechanism is a key step leading to growth arrest in the whole sepal in response to its own growth.
Collapse
Affiliation(s)
- Nathan Hervieux
- Plant Reproduction and Development Laboratory, Université de Lyon, ENS Lyon, UCB Lyon 1, INRA, CNRS, 46 Allée d'Italie, 69007 Lyon, France
| | - Mathilde Dumond
- Plant Reproduction and Development Laboratory, Université de Lyon, ENS Lyon, UCB Lyon 1, INRA, CNRS, 46 Allée d'Italie, 69007 Lyon, France
| | - Aleksandra Sapala
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Anne-Lise Routier-Kierzkowska
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Daniel Kierzkowski
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Arezki Boudaoud
- Plant Reproduction and Development Laboratory, Université de Lyon, ENS Lyon, UCB Lyon 1, INRA, CNRS, 46 Allée d'Italie, 69007 Lyon, France.
| | - Olivier Hamant
- Plant Reproduction and Development Laboratory, Université de Lyon, ENS Lyon, UCB Lyon 1, INRA, CNRS, 46 Allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
55
|
Mercker M, Köthe A, Marciniak-Czochra A. Mechanochemical symmetry breaking in Hydra aggregates. Biophys J 2016; 108:2396-407. [PMID: 25954896 PMCID: PMC4423050 DOI: 10.1016/j.bpj.2015.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/01/2015] [Accepted: 03/20/2015] [Indexed: 11/25/2022] Open
Abstract
Tissue morphogenesis comprises the self-organized creation of various patterns and shapes. Although detailed underlying mechanisms are still elusive in many cases, an increasing amount of experimental data suggests that chemical morphogen and mechanical processes are strongly coupled. Here, we develop and test a minimal model of the axis-defining step (i.e., symmetry breaking) in aggregates of the Hydra polyp. Based on previous findings, we combine osmotically driven shape oscillations with tissue mechanics and morphogen dynamics. We show that the model incorporating a simple feedback loop between morphogen patterning and tissue stretch reproduces a wide range of experimental data. Finally, we compare different hypothetical morphogen patterning mechanisms (Turing, tissue-curvature, and self-organized criticality). Our results suggest the experimental investigation of bigger (i.e., multiple head) aggregates as a key step for a deeper understanding of mechanochemical symmetry breaking in Hydra.
Collapse
Affiliation(s)
- Moritz Mercker
- Institute of Applied Mathematics, University of Heidelberg, Heidelberg, Germany; BioQuant, University of Heidelberg, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany.
| | - Alexandra Köthe
- Institute of Applied Mathematics, University of Heidelberg, Heidelberg, Germany
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, University of Heidelberg, Heidelberg, Germany; BioQuant, University of Heidelberg, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
56
|
Abenza JF, Couturier E, Dodgson J, Dickmann J, Chessel A, Dumais J, Salas REC. Wall mechanics and exocytosis define the shape of growth domains in fission yeast. Nat Commun 2015; 6:8400. [PMID: 26455310 PMCID: PMC4618311 DOI: 10.1038/ncomms9400] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/19/2015] [Indexed: 11/14/2022] Open
Abstract
The amazing structural variety of cells is matched only by their functional diversity, and reflects the complex interplay between biochemical and mechanical regulation. How both regulatory layers generate specifically shaped cellular domains is not fully understood. Here, we report how cell growth domains are shaped in fission yeast. Based on quantitative analysis of cell wall expansion and elasticity, we develop a model for how mechanics and cell wall assembly interact and use it to look for factors underpinning growth domain morphogenesis. Surprisingly, we find that neither the global cell shape regulators Cdc42-Scd1-Scd2 nor the major cell wall synthesis regulators Bgs1-Bgs4-Rgf1 are reliable predictors of growth domain geometry. Instead, their geometry can be defined by cell wall mechanics and the cortical localization pattern of the exocytic factors Sec6-Syb1-Exo70. Forceful re-directioning of exocytic vesicle fusion to broader cortical areas induces proportional shape changes to growth domains, demonstrating that both features are causally linked. Cell shape is determined by a combination of biochemical regulation and mechanical forces. By imaging the dynamic behaviour of growth regulatory proteins in fission yeast and integrating these data within a mechanical model, Abenza et al. find that exocytosis plays a dominant role in shaping growth domains.
Collapse
Affiliation(s)
- Juan F Abenza
- Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Etienne Couturier
- Departamento de Física, Universidad de Santiago de Chile, Santiago, Chile
| | - James Dodgson
- Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Johanna Dickmann
- Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Anatole Chessel
- Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Jacques Dumais
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar 2562307, Chile.,Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | - Rafael E Carazo Salas
- Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| |
Collapse
|
57
|
Bonazzi D, Haupt A, Tanimoto H, Delacour D, Salort D, Minc N. Actin-Based Transport Adapts Polarity Domain Size to Local Cellular Curvature. Curr Biol 2015; 25:2677-83. [DOI: 10.1016/j.cub.2015.08.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/31/2015] [Accepted: 08/20/2015] [Indexed: 11/30/2022]
|
58
|
Martin SG. Spontaneous cell polarization: Feedback control of Cdc42 GTPase breaks cellular symmetry. Bioessays 2015; 37:1193-201. [PMID: 26338468 DOI: 10.1002/bies.201500077] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spontaneous polarization without spatial cues, or symmetry breaking, is a fundamental problem of spatial organization in biological systems. This question has been extensively studied using yeast models, which revealed the central role of the small GTPase switch Cdc42. Active Cdc42-GTP forms a coherent patch at the cell cortex, thought to result from amplification of a small initial stochastic inhomogeneity through positive feedback mechanisms, which induces cell polarization. Here, I review and discuss the mechanisms of Cdc42 activity self-amplification and dynamic turnover. A robust Cdc42 patch is formed through the combined effects of Cdc42 activity promoting its own activation and active Cdc42-GTP displaying reduced membrane detachment and lateral diffusion compared to inactive Cdc42-GDP. I argue the role of the actin cytoskeleton in symmetry breaking is not primarily to transport Cdc42 to the active site. Finally, negative feedback and competition mechanisms serve to control the number of polarization sites.
Collapse
Affiliation(s)
- Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
59
|
Mechanics and morphogenesis of fission yeast cells. Curr Opin Microbiol 2015; 28:36-45. [PMID: 26291501 DOI: 10.1016/j.mib.2015.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 12/11/2022]
Abstract
The integration of biochemical and biomechanical elements is at the heart of morphogenesis. While animal cells are relatively soft objects which shape and mechanics is mostly regulated by cytoskeletal networks, walled cells including those of plants, fungi and bacteria are encased in a rigid cell wall which resist high internal turgor pressure. How these particular mechanical properties may influence basic cellular processes, such as growth, shape and division remains poorly understood. Recent work using the model fungal cell fission yeast, Schizosaccharomyces pombe, highlights important contribution of cell mechanics to various morphogenesis processes. We envision this genetically tractable system to serve as a novel standard for the mechanobiology of walled cell.
Collapse
|
60
|
Bendezú FO, Vincenzetti V, Vavylonis D, Wyss R, Vogel H, Martin SG. Spontaneous Cdc42 polarization independent of GDI-mediated extraction and actin-based trafficking. PLoS Biol 2015; 13:e1002097. [PMID: 25837586 PMCID: PMC4383620 DOI: 10.1371/journal.pbio.1002097] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 02/06/2015] [Indexed: 11/26/2022] Open
Abstract
The small Rho-family GTPase Cdc42 is critical for cell polarization and polarizes spontaneously in absence of upstream spatial cues. Spontaneous polarization is thought to require dynamic Cdc42 recycling through Guanine nucleotide Dissociation Inhibitor (GDI)-mediated membrane extraction and vesicle trafficking. Here, we describe a functional fluorescent Cdc42 allele in fission yeast, which demonstrates Cdc42 dynamics and polarization independent of these pathways. Furthermore, an engineered Cdc42 allele targeted to the membrane independently of these recycling pathways by an amphipathic helix is viable and polarizes spontaneously to multiple sites in fission and budding yeasts. We show that Cdc42 is highly mobile at the membrane and accumulates at sites of activity, where it displays slower mobility. By contrast, a near-immobile transmembrane domain-containing Cdc42 allele supports viability and polarized activity, but does not accumulate at sites of activity. We propose that Cdc42 activation, enhanced by positive feedback, leads to its local accumulation by capture of fast-diffusing inactive molecules. This study of fission yeast reveals that the active and inactive forms of the small GTPase Cdc42 have different rates of lateral diffusion in the membrane, providing insights into how it becomes spontaneously polarized, thereby determining the polarity of the cell. Cell polarization is a critical feature of most cells that underlies their functional organization. A central polarity factor called Cdc42, a small GTPase targeted to the plasma membrane by prenylation, promotes cell polarization in its active GTP-bound form. Cdc42 is a key polarity factor because it accumulates at presumptive sites of polarity, which previous work suggested involves Cdc42 recycling on and off the plasma membrane. In addition, its activity can spontaneously polarize cells in a single location by self-enhancing positive feedback mechanisms, even in the absence of any pre-localized landmarks. In this study, we constructed the first functional fluorescently tagged allele of Cdc42 that replaces the endogenous genomic copy in Schizosaccharomyces pombe. This allowed measurements of Cdc42 dynamics at the plasma membrane by live microscopy. Unexpectedly, this approach revealed that Cdc42 primarily moves through lateral diffusion, rather than on and off the plasma membrane. Engineered Cdc42 alleles with alternative membrane-targeting mechanisms demonstrated that Cdc42 activity, indeed, polarizes in the absence of known pathways that recycle Cdc42 on and off the membrane. We further show that the active form, Cdc42-GTP, is less mobile than Cdc42-GDP. We thus propose that Cdc42 polarization occurs as a consequence of its local activation—either through self-enhanced feedback or in response to upstream cues—by a reduction in the active Cdc42 diffusion rate.
Collapse
Affiliation(s)
- Felipe O. Bendezú
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Vincent Vincenzetti
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Romain Wyss
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Horst Vogel
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
61
|
Zegman Y, Bonazzi D, Minc N. Measurement and manipulation of cell size parameters in fission yeast. Methods Cell Biol 2015; 125:423-36. [DOI: 10.1016/bs.mcb.2014.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
62
|
Abstract
Cell polarity establishment has been studied in great detail, but much less is known about mechanisms that prevent polarization. Reporting recently in Cell, Meitinger et al. (2014) identify an elaborate mechanism in yeast cells that efficiently inhibits Cdc42 activation in cytokinesis remnants. Failure of this "anti-polarization" memory increases replicative aging.
Collapse
Affiliation(s)
- Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging and Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Von Esmarchstrasse 56, 48149 Muenster, Germany.
| |
Collapse
|
63
|
Abstract
The rod is a ubiquitous shape adopted by walled cells from diverse organisms ranging from bacteria to fungi to plants. Although rod-like shapes are found in cells of vastly different sizes and are constructed by diverse mechanisms, the geometric similarities among these shapes across kingdoms suggest that there are common evolutionary advantages, which may result from simple physical principles in combination with chemical and physiological constraints. Here, we review mechanisms of constructing rod-shaped cells and the bases of different biophysical models of morphogenesis, comparing and contrasting model organisms in different kingdoms. We then speculate on possible advantages of the rod shape, and suggest strategies for elucidating the relative importance of each of these advantages.
Collapse
|