51
|
Hari A, Cruz SA, Qin Z, Couture P, Vilmundarson RO, Huang H, Stewart AFR, Chen HH. IRF2BP2-deficient microglia block the anxiolytic effect of enhanced postnatal care. Sci Rep 2017; 7:9836. [PMID: 28852125 PMCID: PMC5575313 DOI: 10.1038/s41598-017-10349-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022] Open
Abstract
Enhanced postnatal care (EPC) increases resilience to adversity in adulthood. Since microglia participate in shaping neural circuits, we asked how ablation of an inflammation-suppressing factor IRF2BP2 (Interferon Regulatory Factor 2 Binding Protein 2) in microglia would affect the responses to EPC. Mice lacking IRF2BP2 in microglia (KO) and littermate controls (WT) were subjected to EPC during the first 3 weeks after birth. EPC reduced anxiety in WT but not KO mice. This was associated with reduced inflammatory cytokine expression in the hypothalamus. Whole genome RNAseq profiling of the hypothalamus identified 101 genes whose expression was altered by EPC: 95 in WT, 11 in KO, with 5 in common that changed in opposite directions. Proteoglycan 4 (Prg4), prostaglandin D2 synthase (Ptgds) and extracellular matrix protease inhibitor Itih2 were suppressed by EPC in WT but elevated in KO mice. On the other hand, the glutamate transporter VGLUT1 (Slc17a7) was increased by EPC in WT but not KO mice. Prostaglandin D2 (PGD2) is known to enhance microglial inflammation and promote Gfap expression. ELISA confirmed reduced PGD2 in the hypothalamus of WT mice after EPC, associated with reduced Gfap expression. Our study suggests that the anxiety-reducing effect of EPC operates by suppressing microglial inflammation, likely by reducing neuronal prostaglandin D2 production.
Collapse
Affiliation(s)
- Aswin Hari
- Ottawa Hospital Research Institute, Ottawa, Canada.,University of Ottawa Heart Institute, Ottawa, Canada
| | | | - Zhaohong Qin
- Ottawa Hospital Research Institute, Ottawa, Canada
| | | | | | - Hua Huang
- Ottawa Hospital Research Institute, Ottawa, Canada.,University of Ottawa Heart Institute, Ottawa, Canada
| | - Alexandre F R Stewart
- University of Ottawa Heart Institute, Ottawa, Canada.,Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada.,Medicine, University of Ottawa, Ottawa, Canada.,University of Ottawa, Center for Infection, Immunity and Inflammation (CI3), Ottawa, Canada
| | - Hsiao-Huei Chen
- Ottawa Hospital Research Institute, Ottawa, Canada. .,University of Ottawa, Brain and Mind Institute, Ottawa, Canada. .,Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada. .,Medicine, University of Ottawa, Ottawa, Canada. .,Canadian Partnership for Stroke Recovery, Ottawa, Canada. .,University of Ottawa, Center for Infection, Immunity and Inflammation (CI3), Ottawa, Canada.
| |
Collapse
|
52
|
TBX2 subfamily suppression in lung cancer pathogenesis: a high-potential marker for early detection. Oncotarget 2017; 8:68230-68241. [PMID: 28978111 PMCID: PMC5620251 DOI: 10.18632/oncotarget.19938] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
The TBX2 subfamily (TBXs 2, 3, 4 and 5) transactivates or represses genes involved in lung organogenesis. Yet TBX2 subfamily expression in pathogenesis of non-small cell lung cancer (NSCLC), the most common lung malignancy, remains elusive. We sought to probe the expression profile of the TBX2 subfamily in early phases of NSCLC. Expression of TBX2 subfamily was analyzed in datasets of pan-normal specimens as well as NSCLCs and normal lung tissues. TBX2 subfamily expression in matched normal lungs, premalignant hyperplasias and NSCLCs was profiled by transcriptome sequencing. TBX2 subfamily expression was evaluated in the cancerization field consisting of matched NSCLCs and adjacent cytologically-normal airways relative to distant normal lungs and in a dataset of normal bronchial samples from smokers with indeterminate nodules suspicious for malignancy. Statistical analysis was performed using R. TBX2 subfamily expression was markedly elevated in normal lungs relative to other organ-specific normal tissues. Expression of the TBXs was significantly suppressed in NSCLCs relative to normal lungs (P < 10−9). TBX2 subfamily was significantly progressively decreased across premalignant lesions and NSCLCs relative to normal lungs (P < 10−4). The subfamily was significantly suppressed in NSCLCs and adjacent normal-appearing airways relative to distant normal lung tissues (P < 10−15). Further, suppressed TBX2 subfamily expression in normal bronchi was associated with lung cancer status (P < 10−5) in smokers. Our findings suggest that the TBX2 subfamily is notably suppressed in human NSCLC pathogenesis and may serve as a high-potential biomarker for early lung cancer detection in high-risk smokers.
Collapse
|
53
|
Canonical Sonic Hedgehog Signaling in Early Lung Development. J Dev Biol 2017; 5:jdb5010003. [PMID: 29615561 PMCID: PMC5831770 DOI: 10.3390/jdb5010003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/28/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022] Open
Abstract
The canonical hedgehog (HH) signaling pathway is of major importance during embryonic development. HH is a key regulatory morphogen of numerous cellular processes, namely, cell growth and survival, differentiation, migration, and tissue polarity. Overall, it is able to trigger tissue-specific responses that, ultimately, contribute to the formation of a fully functional organism. Of all three HH proteins, Sonic Hedgehog (SHH) plays an essential role during lung development. In fact, abnormal levels of this secreted protein lead to severe foregut defects and lung hypoplasia. Canonical SHH signal transduction relies on the presence of transmembrane receptors, such as Patched1 and Smoothened, accessory proteins, as Hedgehog-interacting protein 1, and intracellular effector proteins, like GLI transcription factors. Altogether, this complex signaling machinery contributes to conveying SHH response. Pulmonary morphogenesis is deeply dependent on SHH and on its molecular interactions with other signaling pathways. In this review, the role of SHH in early stages of lung development, specifically in lung specification, primary bud formation, and branching morphogenesis is thoroughly reviewed.
Collapse
|