51
|
Hwang SH, Somatilaka BN, White K, Mukhopadhyay S. Ciliary and extraciliary Gpr161 pools repress hedgehog signaling in a tissue-specific manner. eLife 2021; 10:67121. [PMID: 34346313 PMCID: PMC8378848 DOI: 10.7554/elife.67121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
The role of compartmentalized signaling in primary cilia during tissue morphogenesis is not well understood. The cilia localized G protein-coupled receptor, Gpr161, represses hedgehog pathway via cAMP signaling. We engineered a knock-in at the Gpr161 locus in mice to generate a variant (Gpr161mut1), which was ciliary localization defective but cAMP signaling competent. Tissue phenotypes from hedgehog signaling depend on downstream bifunctional Gli transcriptional factors functioning as activators or repressors. Compared to knockout (ko), Gpr161mut1/ko had delayed embryonic lethality, moderately increased hedgehog targets, and partially down-regulated Gli3 repressor. Unlike ko, the Gpr161mut1/ko neural tube did not show Gli2 activator-dependent expansion of ventral-most progenitors. Instead, the intermediate neural tube showed progenitor expansion that depends on loss of Gli3 repressor. Increased extraciliary receptor levels in Gpr161mut1/mut1 prevented ventralization. Morphogenesis in limb buds and midface requires Gli repressor; these tissues in Gpr161mut1/mut1 manifested hedgehog hyperactivation phenotypes—polydactyly and midfacial widening. Thus, ciliary and extraciliary Gpr161 pools likely establish tissue-specific Gli repressor thresholds in determining morpho-phenotypic outcomes.
Collapse
Affiliation(s)
- Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Bandarigoda N Somatilaka
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
52
|
Suciu SK, Long AB, Caspary T. Smoothened and ARL13B are critical in mouse for superior cerebellar peduncle targeting. Genetics 2021; 218:6300527. [PMID: 34132778 PMCID: PMC8864748 DOI: 10.1093/genetics/iyab084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/15/2021] [Indexed: 01/07/2023] Open
Abstract
Patients with the ciliopathy Joubert syndrome present with physical anomalies, intellectual disability, and a hindbrain malformation described as the "molar tooth sign" due to its appearance on an MRI. This radiological abnormality results from a combination of hypoplasia of the cerebellar vermis and inappropriate targeting of the white matter tracts of the superior cerebellar peduncles. ARL13B is a cilia-enriched regulatory GTPase established to regulate cell fate, cell proliferation, and axon guidance through vertebrate Hedgehog signaling. In patients, mutations in ARL13B cause Joubert syndrome. To understand the etiology of the molar tooth sign, we used mouse models to investigate the role of ARL13B during cerebellar development. We found that ARL13B regulates superior cerebellar peduncle targeting and these fiber tracts require Hedgehog signaling for proper guidance. However, in mouse, the Joubert-causing R79Q mutation in ARL13B does not disrupt Hedgehog signaling nor does it impact tract targeting. We found a small cerebellar vermis in mice lacking ARL13B function but no cerebellar vermis hypoplasia in mice expressing the Joubert-causing R79Q mutation. In addition, mice expressing a cilia-excluded variant of ARL13B that transduces Hedgehog normally showed normal tract targeting and vermis width. Taken together, our data indicate that ARL13B is critical for the control of cerebellar vermis width as well as superior cerebellar peduncle axon guidance, likely via Hedgehog signaling. Thus, our work highlights the complexity of ARL13B in molar tooth sign etiology.
Collapse
Affiliation(s)
- Sarah K Suciu
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA,Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Alyssa B Long
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA,Corresponding author: Department of Human Genetics, 615 Michael Street, Suite 301, Atlanta, GA 30322.
| |
Collapse
|
53
|
Yue H, Li S, Qin J, Gao T, Lyu J, Liu Y, Wang X, Guan Z, Zhu Z, Niu B, Zhong R, Guo J, Wang J. Down-Regulation of Inpp5e Associated With Abnormal Ciliogenesis During Embryonic Neurodevelopment Under Inositol Deficiency. Front Neurol 2021; 12:579998. [PMID: 34093381 PMCID: PMC8170399 DOI: 10.3389/fneur.2021.579998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The inositol polyphosphate-5-phosphatase E (Inpp5e) gene is located on chromosome 9q34.3. The enzyme it encodes mainly hydrolyzes the 5-phosphate groups of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns (3,4,5) P3) and phosphatidylinositol (4,5)-bisphosphate (PtdIns (4,5)P2), which are closely related to ciliogenesis and embryonic neurodevelopment, through mechanisms that are largely unknown. Here we studied the role of Inpp5e gene in ciliogenesis during embryonic neurodevelopment using inositol-deficiency neural tube defects (NTDs) mouse and cell models. Confocal microscopy and scanning electron microscope were used to examine the number and the length of primary cilia. The dynamic changes of Inpp5e expression in embryonic murine brain tissues were observed during Embryonic Day 10.5-13.5 (E 10.5-13.5). Immunohistochemistry, western blot, polymerase chain reaction (PCR) arrays were applied to detect the expression of Inpp5e and cilia-related genes of the embryonic brain tissues in inositol deficiency NTDs mouse. Real-time quantitative PCR (RT-qPCR) was used to validate the candidate genes in cell models. The levels of inositol and PtdIns(3,4) P2 were measured using gas chromatography-mass spectrometry (GC-MS) and enzyme linked immunosorbent assay (ELISA), respectively. Our results showed that the expression levels of Inpp5e gradually decreased in the forebrain tissues of the control embryos, but no stable trend was observed in the inositol deficiency NTDs embryos. Inpp5e expression in inositol deficiency NTDs embryos was significantly decreased compared with the control tissues. The expression levels of Inpp5e gene and the PtdIns (3,4) P2 levels were also significantly decreased in the inositol deficient cell model. A reduced number and length of primary cilia were observed in NIH3T3 cells when inositol deficient. Three important cilia-related genes (Ift80, Mkks, Smo) were down-regulated significantly in the inositol-deficient NTDs mouse and cell models, and Smo was highly involved in NTDs. In summary, these findings suggested that down-regulation of Inpp5e might be associated with abnormal ciliogenesis during embryonic neurodevelopment, under conditions of inositol deficiency.
Collapse
Affiliation(s)
- Huixuan Yue
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Shen Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Jiaxing Qin
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Tingting Gao
- Beijing Key Laboratory of Environment and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jianjun Lyu
- Department of Pathology, InnoStar Bio-Tech Nantong Co., Ltd., Nantong, China
| | - Yu Liu
- Beijing Key Laboratory of Environment and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Zhen Guan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Zhiqiang Zhu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environment and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
54
|
Ukhanov K, Uytingco C, Green W, Zhang L, Schurmans S, Martens JR. INPP5E controls ciliary localization of phospholipids and the odor response in olfactory sensory neurons. J Cell Sci 2021; 135:jcs.258364. [PMID: 33771931 PMCID: PMC8126451 DOI: 10.1242/jcs.258364] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
The lipid composition of the primary cilia membrane is emerging as a critical regulator of cilia formation, maintenance and function. Here, we show that conditional deletion of the phosphoinositide 5′-phosphatase gene Inpp5e, mutation of which is causative of Joubert syndrome, in terminally developed mouse olfactory sensory neurons (OSNs), leads to a dramatic remodeling of ciliary phospholipids that is accompanied by marked elongation of cilia. Phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2], which is normally restricted to the proximal segment redistributed to the entire length of cilia in Inpp5e knockout mice with a reduction in phosphatidylinositol (3,4)-bisphosphate [PI(3,4)P2] and elevation of phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] in the dendritic knob. The redistribution of phosphoinositides impaired odor adaptation, resulting in less efficient recovery and altered inactivation kinetics of the odor-evoked electrical response and the odor-induced elevation of cytoplasmic Ca2+. Gene replacement of Inpp5e through adenoviral expression restored the ciliary localization of PI(4,5)P2 and odor response kinetics in OSNs. Our findings support the role of phosphoinositides as a modulator of the odor response and in ciliary biology of native multi-ciliated OSNs. Summary: Cilia of olfactory sensory neurons have a unique lipid composition. Localization of phospholipids is controlled by the INPP5E phosphatase and is involved in modulation of the odor response.
Collapse
Affiliation(s)
- Kirill Ukhanov
- University of Florida, Department of Pharmacology and Therapeutics, Gainesville, FL 32603, USA.,University of Florida, Center for Smell and Taste, FL 32610-0267, USA
| | - Cedric Uytingco
- University of Florida, Department of Pharmacology and Therapeutics, Gainesville, FL 32603, USA
| | - Warren Green
- University of Florida, Department of Pharmacology and Therapeutics, Gainesville, FL 32603, USA
| | - Lian Zhang
- University of Florida, Department of Pharmacology and Therapeutics, Gainesville, FL 32603, USA.,University of Florida, Center for Smell and Taste, FL 32610-0267, USA
| | - Stephane Schurmans
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, University of Liège, Liège, Belgium
| | - Jeffrey R Martens
- University of Florida, Department of Pharmacology and Therapeutics, Gainesville, FL 32603, USA.,University of Florida, Center for Smell and Taste, FL 32610-0267, USA
| |
Collapse
|
55
|
Signal transduction in primary cilia - analyzing and manipulating GPCR and second messenger signaling. Pharmacol Ther 2021; 224:107836. [PMID: 33744260 DOI: 10.1016/j.pharmthera.2021.107836] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
The primary cilium projects from the surface of most vertebrate cells, where it senses extracellular signals to regulate diverse cellular processes during tissue development and homeostasis. Dysfunction of primary cilia underlies the pathogenesis of severe diseases, commonly referred to as ciliopathies. Primary cilia contain a unique protein repertoire that is distinct from the cell body and the plasma membrane, enabling the spatially controlled transduction of extracellular cues. G-protein coupled receptors (GPCRs) are key in sensing environmental stimuli that are transmitted via second messenger signaling into a cellular response. Here, we will give an overview of the role of GPCR signaling in primary cilia, and how ciliary GPCR signaling can be targeted by pharmacology, chemogenetics, and optogenetics.
Collapse
|
56
|
Tereshko L, Gao Y, Cary BA, Turrigiano GG, Sengupta P. Ciliary neuropeptidergic signaling dynamically regulates excitatory synapses in postnatal neocortical pyramidal neurons. eLife 2021; 10:e65427. [PMID: 33650969 PMCID: PMC7952091 DOI: 10.7554/elife.65427] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Primary cilia are compartmentalized sensory organelles present on the majority of neurons in the mammalian brain throughout adulthood. Recent evidence suggests that cilia regulate multiple aspects of neuronal development, including the maintenance of neuronal connectivity. However, whether ciliary signals can dynamically modulate postnatal circuit excitability is unknown. Here we show that acute cell-autonomous knockdown of ciliary signaling rapidly strengthens glutamatergic inputs onto cultured rat neocortical pyramidal neurons and increases spontaneous firing. This increased excitability occurs without changes to passive neuronal properties or intrinsic excitability. Further, the neuropeptide receptor somatostatin receptor 3 (SSTR3) is localized nearly exclusively to excitatory neuron cilia both in vivo and in culture, and pharmacological manipulation of SSTR3 signaling bidirectionally modulates excitatory synaptic inputs onto these neurons. Our results indicate that ciliary neuropeptidergic signaling dynamically modulates excitatory synapses and suggest that defects in this regulation may underlie a subset of behavioral and cognitive disorders associated with ciliopathies.
Collapse
Affiliation(s)
- Lauren Tereshko
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Ya Gao
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Brian A Cary
- Department of Biology, Brandeis UniversityWalthamUnited States
| | | | - Piali Sengupta
- Department of Biology, Brandeis UniversityWalthamUnited States
| |
Collapse
|
57
|
HTR6 and SSTR3 targeting to primary cilia. Biochem Soc Trans 2021; 49:79-91. [PMID: 33599752 DOI: 10.1042/bst20191005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/25/2020] [Accepted: 01/20/2021] [Indexed: 12/30/2022]
Abstract
Primary cilia are hair-like projections of the cell membrane supported by an inner microtubule scaffold, the axoneme, which polymerizes out of a membrane-docked centriole at the ciliary base. By working as specialized signaling compartments, primary cilia provide an optimal environment for many G protein-coupled receptors (GPCRs) and their effectors to efficiently transmit their signals to the rest of the cell. For this to occur, however, all necessary receptors and signal transducers must first accumulate at the ciliary membrane. Serotonin receptor 6 (HTR6) and Somatostatin receptor 3 (SSTR3) are two GPCRs whose signaling in brain neuronal cilia affects cognition and is implicated in psychiatric, neurodegenerative, and oncologic diseases. Over a decade ago, the third intracellular loops (IC3s) of HTR6 and SSTR3 were shown to contain ciliary localization sequences (CLSs) that, when grafted onto non-ciliary GPCRs, could drive their ciliary accumulation. Nevertheless, these CLSs were dispensable for ciliary targeting of HTR6 and SSTR3, suggesting the presence of additional CLSs, which we have recently identified in their C-terminal tails. Herein, we review the discovery and mapping of these CLSs, as well as the state of the art regarding how these CLSs may orchestrate ciliary accumulation of these GPCRs by controlling when and where they interact with the ciliary entry and exit machinery via adaptors such as TULP3, RABL2 and the BBSome.
Collapse
|
58
|
Hasenpusch-Theil K, Theil T. The Multifaceted Roles of Primary Cilia in the Development of the Cerebral Cortex. Front Cell Dev Biol 2021; 9:630161. [PMID: 33604340 PMCID: PMC7884624 DOI: 10.3389/fcell.2021.630161] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
The primary cilium, a microtubule based organelle protruding from the cell surface and acting as an antenna in multiple signaling pathways, takes center stage in the formation of the cerebral cortex, the part of the brain that performs highly complex neural tasks and confers humans with their unique cognitive capabilities. These activities require dozens of different types of neurons that are interconnected in complex ways. Due to this complexity, corticogenesis has been regarded as one of the most complex developmental processes and cortical malformations underlie a number of neurodevelopmental disorders such as intellectual disability, autism spectrum disorders, and epilepsy. Cortical development involves several steps controlled by cell–cell signaling. In fact, recent findings have implicated cilia in diverse processes such as neurogenesis, neuronal migration, axon pathfinding, and circuit formation in the developing cortex. Here, we will review recent advances on the multiple roles of cilia during cortex formation and will discuss the implications for a better understanding of the disease mechanisms underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kerstin Hasenpusch-Theil
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas Theil
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
59
|
Dorskind JM, Kolodkin AL. Revisiting and refining roles of neural guidance cues in circuit assembly. Curr Opin Neurobiol 2021; 66:10-21. [PMID: 32823181 PMCID: PMC10725571 DOI: 10.1016/j.conb.2020.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Neural guidance mechanisms ensure the precise targeting and synaptogenesis events essential for normal circuit function. Neuronal growth cones encounter numerous attractive and repulsive cues as they navigate toward their intermediate and final targets; temporal and spatial regulation of these responses are critical for circuit assembly. Recent work highlights the complexity of these events throughout neural development and the multifaceted functions of a wide range of guidance cues. Here, we discuss recent studies that leverage advances in genetics, single cell tracing, transcriptomics and proteomics to further our understanding of the molecular mechanisms underlying neural guidance and overall circuit organization.
Collapse
Affiliation(s)
- Joelle M Dorskind
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Alex L Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
60
|
Lysosomal Function and Axon Guidance: Is There a Meaningful Liaison? Biomolecules 2021; 11:biom11020191. [PMID: 33573025 PMCID: PMC7911486 DOI: 10.3390/biom11020191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/25/2023] Open
Abstract
Axonal trajectories and neural circuit activities strongly rely on a complex system of molecular cues that finely orchestrate the patterning of neural commissures. Several of these axon guidance molecules undergo continuous recycling during brain development, according to incompletely understood intracellular mechanisms, that in part rely on endocytic and autophagic cascades. Based on their pivotal role in both pathways, lysosomes are emerging as a key hub in the sophisticated regulation of axonal guidance cue delivery, localization, and function. In this review, we will attempt to collect some of the most relevant research on the tight connection between lysosomal function and axon guidance regulation, providing some proof of concepts that may be helpful to understanding the relation between lysosomal storage disorders and neurodegenerative diseases.
Collapse
|
61
|
Liu S, Trupiano MX, Simon J, Guo J, Anton ES. The essential role of primary cilia in cerebral cortical development and disorders. Curr Top Dev Biol 2021; 142:99-146. [PMID: 33706927 DOI: 10.1016/bs.ctdb.2020.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Primary cilium, first described in the 19th century in different cell types and organisms by Alexander Ecker, Albert Kolliker, Aleksandr Kowalevsky, Paul Langerhans, and Karl Zimmermann (Ecker, 1844; Kolliker, 1854; Kowalevsky, 1867; Langerhans, 1876; Zimmermann, 1898), play an essential modulatory role in diverse aspects of nervous system development and function. The primary cilium, sometimes referred to as the cell's 'antennae', can receive wide ranging inputs from cellular milieu, including morphogens, growth factors, neuromodulators, and neurotransmitters. Its unique structural and functional organization bequeaths it the capacity to hyper-concentrate signaling machinery in a restricted cellular domain approximately one-thousandth the volume of cell soma. Thus enabling it to act as a signaling hub that integrates diverse developmental and homestatic information from cellular milieu to regulate the development and function of neural cells. Dysfunction of primary cilia contributes to the pathophysiology of several brain malformations, intellectual disabilities, epilepsy, and psychiatric disorders. This review focuses on the most essential contributions of primary cilia to cerebral cortical development and function, in the context of neurodevelopmental disorders and malformations. It highlights the recent progress made in identifying the mechanisms underlying primary cilia's role in cortical progenitors, neurons and glia, in health and disease. A future challenge will be to translate these insights and advances into effective clinical treatments for ciliopathies.
Collapse
Affiliation(s)
- Siling Liu
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Mia X Trupiano
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Jeremy Simon
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Jiami Guo
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, and the Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - E S Anton
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States.
| |
Collapse
|
62
|
Andreu-Cervera A, Catala M, Schneider-Maunoury S. Cilia, ciliopathies and hedgehog-related forebrain developmental disorders. Neurobiol Dis 2020; 150:105236. [PMID: 33383187 DOI: 10.1016/j.nbd.2020.105236] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
Development of the forebrain critically depends on the Sonic Hedgehog (Shh) signaling pathway, as illustrated in humans by the frequent perturbation of this pathway in holoprosencephaly, a condition defined as a defect in the formation of midline structures of the forebrain and face. The Shh pathway requires functional primary cilia, microtubule-based organelles present on virtually every cell and acting as cellular antennae to receive and transduce diverse chemical, mechanical or light signals. The dysfunction of cilia in humans leads to inherited diseases called ciliopathies, which often affect many organs and show diverse manifestations including forebrain malformations for the most severe forms. The purpose of this review is to provide the reader with a framework to understand the developmental origin of the forebrain defects observed in severe ciliopathies with respect to perturbations of the Shh pathway. We propose that many of these defects can be interpreted as an imbalance in the ratio of activator to repressor forms of the Gli transcription factors, which are effectors of the Shh pathway. We also discuss the complexity of ciliopathies and their relationships with forebrain disorders such as holoprosencephaly or malformations of cortical development, and emphasize the need for a closer examination of forebrain defects in ciliopathies, not only through the lens of animal models but also taking advantage of the increasing potential of the research on human tissues and organoids.
Collapse
Affiliation(s)
- Abraham Andreu-Cervera
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France; Instituto de Neurociencias, Universidad Miguel Hernández - CSIC, Campus de San Juan; Avda. Ramón y Cajal s/n, 03550 Alicante, Spain
| | - Martin Catala
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France.
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France.
| |
Collapse
|
63
|
Ramos C, Roberts JB, Jasso KR, Ten Eyck TW, Everett T, Pozo P, Setlow B, McIntyre JC. Neuron-specific cilia loss differentially alters locomotor responses to amphetamine in mice. J Neurosci Res 2020; 99:827-842. [PMID: 33175436 DOI: 10.1002/jnr.24755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/07/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022]
Abstract
The neural mechanisms that underlie responses to drugs of abuse are complex, and impacted by a number of neuromodulatory peptides. Within the past 10 years it has been discovered that several of the receptors for neuromodulators are enriched in the primary cilia of neurons. Primary cilia are microtubule-based organelles that project from the surface of nearly all mammalian cells, including neurons. Despite what we know about cilia, our understanding of how cilia regulate neuronal function and behavior is still limited. The primary objective of this study was to investigate the contributions of primary cilia on specific neuronal populations to behavioral responses to amphetamine. To test the consequences of cilia loss on amphetamine-induced locomotor activity we selectively ablated cilia from dopaminergic or GAD2-GABAergic neurons in mice. Cilia loss had no effect on baseline locomotion in either mouse strain. In mice lacking cilia on dopaminergic neurons, locomotor activity compared to wild- type mice was reduced in both sexes in response to acute administration of 3.0 mg/kg amphetamine. In contrast, changes in the locomotor response to amphetamine in mice lacking cilia on GAD2-GABAergic neurons were primarily driven by reductions in locomotor activity in males. Following repeated amphetamine administration (1.0 mg kg-1 day-1 over 5 days), mice lacking cilia on GAD2-GABAergic neurons exhibited enhanced sensitization of the locomotor stimulant response to the drug, whereas mice lacking cilia on dopaminergic neurons did not differ from wild-type controls. These results indicate that cilia play neuron-specific roles in both acute and neuroplastic responses to psychostimulant drugs of abuse.
Collapse
Affiliation(s)
- Carlos Ramos
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Jonté B Roberts
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Kalene R Jasso
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Tyler W Ten Eyck
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Thomas Everett
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Patricia Pozo
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, USA.,Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Jeremy C McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.,Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| |
Collapse
|
64
|
Lauter G, Coschiera A, Yoshihara M, Sugiaman-Trapman D, Ezer S, Sethurathinam S, Katayama S, Kere J, Swoboda P. Differentiation of ciliated human midbrain-derived LUHMES neurons. J Cell Sci 2020; 133:jcs249789. [PMID: 33115758 DOI: 10.1242/jcs.249789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Many human cell types are ciliated, including neural progenitors and differentiated neurons. Ciliopathies are characterized by defective cilia and comprise various disease states, including brain phenotypes, where the underlying biological pathways are largely unknown. Our understanding of neuronal cilia is rudimentary, and an easy-to-maintain, ciliated human neuronal cell model is absent. The Lund human mesencephalic (LUHMES) cell line is a ciliated neuronal cell line derived from human fetal mesencephalon. LUHMES cells can easily be maintained and differentiated into mature, functional neurons within one week. They have a single primary cilium as proliferating progenitor cells and as postmitotic, differentiating neurons. These developmental stages are completely separable within one day of culture condition change. The sonic hedgehog (SHH) signaling pathway is active in differentiating LUHMES neurons. RNA-sequencing timecourse analyses reveal molecular pathways and gene-regulatory networks critical for ciliogenesis and axon outgrowth at the interface between progenitor cell proliferation, polarization and neuronal differentiation. Gene expression dynamics of cultured LUHMES neurons faithfully mimic the corresponding in vivo dynamics of human fetal midbrain. In LUHMES cells, neuronal cilia biology can be investigated from proliferation through differentiation to mature neurons.
Collapse
Affiliation(s)
- Gilbert Lauter
- Karolinska Institute, Department of Biosciences and Nutrition, SE-141 83 Huddinge, Sweden
| | - Andrea Coschiera
- Karolinska Institute, Department of Biosciences and Nutrition, SE-141 83 Huddinge, Sweden
| | - Masahito Yoshihara
- Karolinska Institute, Department of Biosciences and Nutrition, SE-141 83 Huddinge, Sweden
| | | | - Sini Ezer
- University of Helsinki, Research Program of Molecular Neurology and Folkhälsan Institute of Genetics, FI-00290 Helsinki, Finland
| | - Shalini Sethurathinam
- Karolinska Institute, Department of Biosciences and Nutrition, SE-141 83 Huddinge, Sweden
| | - Shintaro Katayama
- Karolinska Institute, Department of Biosciences and Nutrition, SE-141 83 Huddinge, Sweden
- University of Helsinki, Stem Cells and Metabolism Research Program and Folkhälsan Research Center, FI-00290 Helsinki, Finland
| | - Juha Kere
- Karolinska Institute, Department of Biosciences and Nutrition, SE-141 83 Huddinge, Sweden
- University of Helsinki, Research Program of Molecular Neurology and Folkhälsan Institute of Genetics, FI-00290 Helsinki, Finland
| | - Peter Swoboda
- Karolinska Institute, Department of Biosciences and Nutrition, SE-141 83 Huddinge, Sweden
| |
Collapse
|
65
|
Kobayashi Y, Hamamoto A, Saito Y. Analysis of ciliary status via G-protein-coupled receptors localized on primary cilia. Microscopy (Oxf) 2020; 69:277-285. [PMID: 32627821 DOI: 10.1093/jmicro/dfaa035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/20/2020] [Accepted: 07/02/2020] [Indexed: 11/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) comprise the largest and most diverse cell surface receptor family, with more than 800 known GPCRs identified in the human genome. Binding of an extracellular cue to a GPCR results in intracellular G protein activation, after which a sequence of events, can be amplified and optimized by selective binding partners and downstream effectors in spatially discrete cellular environments. Because GPCRs are widely expressed in the body, they help to regulate an incredible range of physiological processes from sensation to growth to hormone responses. Indeed, it is estimated that ∼ 30% of all clinically approved drugs act by binding to GPCRs. The primary cilium is a sensory organelle composed of a microtubule axoneme that extends from the basal body. The ciliary membrane is highly enriched in specific signaling components, allowing the primary cilium to efficiently convey signaling cascades in a highly ordered microenvironment. Recent data demonstrated that a limited number of non-olfactory GPCRs, including somatostatin receptor 3 and melanin-concentrating hormone receptor 1 (MCHR1), are selectively localized to cilia on several mammalian cell types including neuronal cells. Utilizing cilia-specific cell biological and molecular biological approaches, evidence has accumulated to support the biological importance of ciliary GPCR signaling followed by cilia structural changes. Thus, cilia are now considered a unique sensory platform for integration of GPCR signaling toward juxtaposed cytoplasmic structures. Herein, we review ciliary GPCRs and focus on a novel role of MCHR1 in ciliary length control that will impact ciliary signaling capacity and neuronal function.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akie Hamamoto
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, Gifu 502-0857, Japan
| | - Yumiko Saito
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
66
|
Suciu SK, Caspary T. Cilia, neural development and disease. Semin Cell Dev Biol 2020; 110:34-42. [PMID: 32732132 DOI: 10.1016/j.semcdb.2020.07.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/16/2022]
Abstract
Neural development requires a series of cellular events starting with cell specification, proliferation, and migration. Subsequently, axons and dendrites project from the cell surface to form connections to other neurons, interneurons and glia. Anomalies in any one of these steps can lead to malformation or malfunction of the nervous system. Here we review the critical role the primary cilium plays in the fundamental steps of neurodevelopment. By highlighting human diseases caused by mutations in cilia-associated proteins, it is clear that cilia are essential to multiple neural processes. Furthermore, we explore whether additional aspects of cilia regulation, most notably post-translational modification of the tubulin scaffold in cilia, play underappreciated roles in neural development. Finally, we discuss whether cilia-associated proteins function outside the cilium in some aspects of neurodevelopment. These data underscore both the importance of cilia in the nervous system and some outstanding questions in the field.
Collapse
Affiliation(s)
- Sarah K Suciu
- Genetics and Molecular Biology Graduate Program, USA; Department of Human Genetics, Emory University, Atlanta, GA 30322, Georgia
| | - Tamara Caspary
- Department of Human Genetics, Emory University, Atlanta, GA 30322, Georgia.
| |
Collapse
|
67
|
Hansen JN, Kaiser F, Klausen C, Stüven B, Chong R, Bönigk W, Mick DU, Möglich A, Jurisch-Yaksi N, Schmidt FI, Wachten D. Nanobody-directed targeting of optogenetic tools to study signaling in the primary cilium. eLife 2020; 9:e57907. [PMID: 32579112 PMCID: PMC7338050 DOI: 10.7554/elife.57907] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
Compartmentalization of cellular signaling forms the molecular basis of cellular behavior. The primary cilium constitutes a subcellular compartment that orchestrates signal transduction independent from the cell body. Ciliary dysfunction causes severe diseases, termed ciliopathies. Analyzing ciliary signaling has been challenging due to the lack of tools to investigate ciliary signaling. Here, we describe a nanobody-based targeting approach for optogenetic tools in mammalian cells and in vivo in zebrafish to specifically analyze ciliary signaling and function. Thereby, we overcome the loss of protein function observed after fusion to ciliary targeting sequences. We functionally localized modifiers of cAMP signaling, the photo-activated adenylyl cyclase bPAC and the light-activated phosphodiesterase LAPD, and the cAMP biosensor mlCNBD-FRET to the cilium. Using this approach, we studied the contribution of spatial cAMP signaling in controlling cilia length. Combining optogenetics with nanobody-based targeting will pave the way to the molecular understanding of ciliary function in health and disease.
Collapse
Affiliation(s)
- Jan N Hansen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of BonnBonnGermany
| | - Fabian Kaiser
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of BonnBonnGermany
| | - Christina Klausen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of BonnBonnGermany
| | - Birthe Stüven
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of BonnBonnGermany
| | - Raymond Chong
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of BonnBonnGermany
| | - Wolfgang Bönigk
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar)BonnGermany
| | - David U Mick
- Center for Molecular Signaling (PZMS), Center of Human and Molecular Biology (ZHMB), Saarland University, School of MedicineHomburgGermany
| | - Andreas Möglich
- Lehrstuhl für Biochemie, Universität BayreuthBayreuthGermany
- Research Center for Bio-Macromolecules, Universität BayreuthBayreuthGermany
- Bayreuth Center for Biochemistry & Molecular Biology, Universität BayreuthBayreuthGermany
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Neurology and Clinical Neurophysiology, St. Olavs University HospitalTrondheimNorway
| | - Florian I Schmidt
- Institute of Innate Immunity, Emmy Noether research group, Medical Faculty, University of BonnBonnGermany
- Core Facility Nanobodies, University of BonnBonnGermany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of BonnBonnGermany
- Research Group Molecular Physiology, Center of Advanced European Studies and Research (caesar)BonnGermany
| |
Collapse
|
68
|
Song Q, Gleeson JG. Primary Cilia and Brain Wiring, Connecting the Dots. Dev Cell 2020; 51:661-663. [PMID: 31951539 DOI: 10.1016/j.devcel.2019.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Primary cilia function as cellular signaling hubs, integrating multiple signaling pathways. Patients with the ciliopathy Joubert syndrome have been suggested to have axonal tract defects. In this issue of Developmental Cell, Guo et al. (2019) demonstrate a ciliary signaling requirement for axonal tract development and connectivity through dysregulated PI3K/AKT/ACIII signaling.
Collapse
Affiliation(s)
- Qiong Song
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph G Gleeson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
69
|
Clinical and Molecular Diagnosis of Joubert Syndrome and Related Disorders. Pediatr Neurol 2020; 106:43-49. [PMID: 32139166 DOI: 10.1016/j.pediatrneurol.2020.01.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/16/2020] [Accepted: 01/26/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Joubert syndrome and related disorders are a group of ciliopathies characterized by mid-hindbrain malformation, developmental delay, hypotonia, oculomotor apraxia, and breathing abnormalities. Molar tooth sign in brain imaging is the hallmark for diagnosis. Joubert syndrome is a clinically and genetically heterogeneous disorder involving mutations in 35 ciliopathy-related genes. We present a large cohort of 59 patients with Joubert syndrome from 55 families. Molecular analysis was performed in 35 families (trio). METHODS Clinical exome analysis was performed to identify causal mutations, and genotype-phenotype correlations were evaluated. RESULTS All of the cases were stratified into pure Joubert syndrome (62.7%), Joubert syndrome with retinal disease (22.0%), polydactyly (8.5%), and liver (1.7%) and kidney (1.7%) involvement. Joubert syndrome-related disorders include Meckel-Gruber syndrome in 5.1% cases and Leber congenital amaurosis (1.7%). Of the 35 Joubert syndrome-related genes, 11 were identified in these patients, i.e., CEP290, C5ORF, TCTN1, CC2D2A, RPGRP1L, TCTN3, AHI1, INPP5E, TCTN2, NPHP1, and TMEM237. For the first time, we identified a ciliopathy gene, CCDC28B, as a causal gene in Joubert syndrome in one family. CEP290 accounted for 37.8% cases of pure Joubert syndrome, Joubert syndrome with retinal and renal disease, and Meckel-Gruber syndrome. The p.G1890∗ allele in CEP290 is highly recurrent. Of the six families with Joubert syndrome who had a prenatal diagnosis, one fetus was normal, two were carriers, and three were affected. CONCLUSIONS This is the largest study of Joubert syndrome from India. Although a high degree of locus and allelic heterogeneity was observed, CEP290 variants were the most common among these patients.
Collapse
|
70
|
Govaert P, Triulzi F, Dudink J. The developing brain by trimester. HANDBOOK OF CLINICAL NEUROLOGY 2020; 171:245-289. [PMID: 32736754 DOI: 10.1016/b978-0-444-64239-4.00014-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transient anatomical entities play a role in the maturation of brain regions and early functional fetal networks. At the postmenstrual age of 7 weeks, major subdivisions of the brain are visible. At the end of the embryonic period, the cortical plate covers the neopallium. The choroid plexus develops in concert with it, and the dorsal thalamus covers about half the diencephalic third ventricle surface. In addition to the fourth ventricle neuroepithelium the rhombic lips are an active neuroepithelial production site. Early reciprocal connections between the thalamus and cortex are present. The corticospinal tract has reached the pyramidal decussation, and the arteries forming the mature circle of Willis are seen. Moreover, the superior sagittal sinus has formed, and at the rostral neuropore the massa commissuralis is growing. At the viable preterm age of around 24 weeks PMA, white matter tracts are in full development. Asymmetric progenitor division permits production of neurons, subventricular zone precursors, and glial cells. Myelin is present in the ventral spinal quadrant, cuneate fascicle, and spinal motor fibers. The neopallial mantle has been separated into transient layers (stratified transitional fields) between the neuroepithelium and the cortical plate. The subplate plays an important role in organizing the structuring of the cortical plate. Commissural tracts have shaped the corpus callosum, early primary gyri are present, and opercularization has started caudally, forming the lateral fissure. Thalamic and striatal nuclei have formed, although GABAergic neurons continue to migrate into the thalamus from the corpus gangliothalamicum. Near-term PMA cerebral sublobulation is active. Between 24 and 32 weeks, primary sulci develop. Myelin is present in the superior cerebellar peduncle, rubrospinal tract, and inferior olive. Germinal matrix disappears from the telencephalon, except for the GABAergic frontal cortical subventricular neuroepithelium.
Collapse
Affiliation(s)
- Paul Govaert
- Department of Neonatology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Neonatology, ZNA Middelheim, Antwerp, Belgium; Department of Rehabilitation and Physical Therapy, Gent University Hospital, Gent, Belgium.
| | - Fabio Triulzi
- Department of Pediatric Neuroradiology, Università Degli Studi di Milano, Milan, Italy
| | - Jeroen Dudink
- Department of Neonatology, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|