51
|
Conith AJ, Hope SA, Chhouk BH, Albertson RC. Weak genetic signal for phenotypic integration implicates developmental processes as major regulators of trait covariation. Mol Ecol 2021; 30:464-480. [PMID: 33231336 PMCID: PMC8811731 DOI: 10.1111/mec.15748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022]
Abstract
Phenotypic integration is an important metric that describes the degree of covariation among traits in a population, and is hypothesized to arise due to selection for shared functional processes. Our ability to identify the genetic and/or developmental underpinnings of integration is marred by temporally overlapping cell-, tissue- and structure-level processes that serve to continually 'overwrite' the structure of covariation among traits through ontogeny. Here, we examine whether traits that are integrated at the phenotypic level also exhibit a shared genetic basis (e.g. pleiotropy). We micro-CT scanned two hard tissue traits, and two soft tissue traits (mandible, pectoral girdle, atrium and ventricle, respectively) from an F5 hybrid population of Lake Malawi cichlids, and used geometric morphometrics to extract 3D shape information from each trait. Given the large degree of asymmetric variation that may reflect developmental instability, we separated symmetric from asymmetric components of shape variation. We then performed quantitative trait loci (QTL) analysis to determine the degree of genetic overlap between shapes. While we found ubiquitous associations among traits at the phenotypic level, except for a handful of notable exceptions, our QTL analysis revealed few overlapping genetic regions. Taken together, this indicates developmental interactions can play a large role in determining the degree of phenotypic integration among traits, and likely obfuscate the genotype to phenotype map, limiting our ability to gain a comprehensive picture of the genetic contributors responsible for phenotypic divergence.
Collapse
Affiliation(s)
- Andrew J. Conith
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01002
| | - Sylvie A. Hope
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01002
| | - Brian H Chhouk
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01002
| | - R. Craig Albertson
- Biology Department, University of Massachusetts Amherst, Amherst, MA, 01002
| |
Collapse
|
52
|
Lebedeva L, Zhumabayeva B, Gebauer T, Kisselev I, Aitasheva Z. Zebrafish ( Danio rerio) as a Model for Understanding the Process of Caudal Fin Regeneration. Zebrafish 2020; 17:359-372. [PMID: 33259770 DOI: 10.1089/zeb.2020.1926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
After its introduction for scientific investigation in the 1950s, the cypriniform zebrafish, Danio rerio, has become a valuable model for the study of regenerative processes and mechanisms. Zebrafish exhibit epimorphic regeneration, in which a nondifferentiated cell mass formed after amputation is able to fully regenerate lost tissue such as limbs, heart muscle, brain, retina, and spinal cord. The process of limb regeneration in zebrafish comprises several stages characterized by the activation of specific signaling pathways and gene expression. We review current research on key factors in limb regeneration using zebrafish as a model.
Collapse
Affiliation(s)
- Lina Lebedeva
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, The Republic of Kazakhstan
| | - Beibitgul Zhumabayeva
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, The Republic of Kazakhstan
| | - Tatyana Gebauer
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, České Budějovice, Czech Republic
| | - Ilya Kisselev
- Institute of General Genetics and Cytology, Almaty, The Republic of Kazakhstan
| | - Zaure Aitasheva
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, The Republic of Kazakhstan
| |
Collapse
|
53
|
Wang D, Cai J, Zeng Z, Gao X, Shao X, Ding Y, Feng X, Jing D. The interactions between mTOR and NF-κB: A novel mechanism mediating mechanical stretch-stimulated osteoblast differentiation. J Cell Physiol 2020; 236:4592-4603. [PMID: 33289098 DOI: 10.1002/jcp.30184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
Mechanical stretch is known to promote osteoblast differentiation in vitro and accelerate bone regeneration in vivo, whereas the relevant mechanism remains unclear. Recent studies have shown the importance of reciprocal interactions between mammalian target of rapamycin (mTOR) and nuclear factor kappa B (NF-κB; two downstream molecules of Akt) in the regulation of tumor cells. Thus, we hypothesize that mTOR and NF-κB as well as their interconnection play a critical role in mediating stretch-induced osteogenic differentiation in osteoblasts. We herein found that mechanical stretch (10% elongation at six cycles/min) significantly promoted the expression of osteoblast differentiation-related markers (including ALP, BMP2, Col1α, OCN, and Runx2) in osteoblast-like MG-63 cells, accompanied by increased mTOR phosphorylation and NF-κB p65 phosphorylation and nuclear translocation. Blockade of mTOR by antagonist or small interfering RNA suppressed osteogenesis-related gene expression in response to mechanical stretch, whereas inhibition of NF-κB further increased stretch-induced osteoblast differentiation. Moreover, inhibition of mTOR decreased the phosphorylation of NF-κB, and blockade of NF-κB reduced the mTOR activation in MG63 cells under mechanical stretch. Coinhibition of mTOR and NF-κB abolishes the alteration of osteogenic differentiation induced by single mTOR or NF-κB inhibition under mechanical stretch, which is equivalent to the noninhibition level for osteoblasts under mechanical stretch. The expression levels of osteogenic differentiation in osteoblasts after inhibition of Akt were similar to those after co-inhibition of mTOR and NF-κB under mechanical stretch. This study for the first time reveals the reciprocal interconnection between mTOR and NF-κB in osteoblasts under mechanical stretch and indicates that mTOR and NF-κB as well as their interactions play a key role in the regulation of cellular homeostasis of osteoblasts in response to mechanical stretch. These findings are helpful for enriching our basic knowledge of the molecular mechanisms of osteoblast mechanotransduction, and also providing insight into the clinical therapeutic modality associated with mechanical stretch (e.g., distraction osteogenesis).
Collapse
Affiliation(s)
- Dan Wang
- Laboratory of Tissue Engineering, Faculty of Life Sciences, Northwest University, Xi'an, China
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Jing Cai
- Department of Diagnostics, College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhaobin Zeng
- Department of Stomatology, General Hospital of Northern Theater Command (Formerly General Hospital of Shenyang Military Area), Shenyang, China
| | - Xue Gao
- Laboratory of Tissue Engineering, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Xi Shao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Yuanjun Ding
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xue Feng
- Department of Cell Biology, School of Medicine, Northwest University, Xi'an, China
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
54
|
Valenti MT, Marchetto G, Mottes M, Dalle Carbonare L. Zebrafish: A Suitable Tool for the Study of Cell Signaling in Bone. Cells 2020; 9:E1911. [PMID: 32824602 PMCID: PMC7465296 DOI: 10.3390/cells9081911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/23/2022] Open
Abstract
In recent decades, many studies using the zebrafish model organism have been performed. Zebrafish, providing genetic mutants and reporter transgenic lines, enable a great number of studies aiming at the investigation of signaling pathways involved in the osteoarticular system and at the identification of therapeutic tools for bone diseases. In this review, we will discuss studies which demonstrate that many signaling pathways are highly conserved between mammals and teleost and that genes involved in mammalian bone differentiation have orthologs in zebrafish. We will also discuss as human diseases, such as osteogenesis imperfecta, osteoarthritis, osteoporosis and Gaucher disease can be investigated in the zebrafish model.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Department of Medicine, University of Verona, Ple Scuro 10, 37100 Verona, Italy; (G.M.); (L.D.C.)
| | - Giulia Marchetto
- Department of Medicine, University of Verona, Ple Scuro 10, 37100 Verona, Italy; (G.M.); (L.D.C.)
| | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy;
| | - Luca Dalle Carbonare
- Department of Medicine, University of Verona, Ple Scuro 10, 37100 Verona, Italy; (G.M.); (L.D.C.)
| |
Collapse
|
55
|
Tonelli F, Bek JW, Besio R, De Clercq A, Leoni L, Salmon P, Coucke PJ, Willaert A, Forlino A. Zebrafish: A Resourceful Vertebrate Model to Investigate Skeletal Disorders. Front Endocrinol (Lausanne) 2020; 11:489. [PMID: 32849280 PMCID: PMC7416647 DOI: 10.3389/fendo.2020.00489] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Animal models are essential tools for addressing fundamental scientific questions about skeletal diseases and for the development of new therapeutic approaches. Traditionally, mice have been the most common model organism in biomedical research, but their use is hampered by several limitations including complex generation, demanding investigation of early developmental stages, regulatory restrictions on breeding, and high maintenance cost. The zebrafish has been used as an efficient alternative vertebrate model for the study of human skeletal diseases, thanks to its easy genetic manipulation, high fecundity, external fertilization, transparency of rapidly developing embryos, and low maintenance cost. Furthermore, zebrafish share similar skeletal cells and ossification types with mammals. In the last decades, the use of both forward and new reverse genetics techniques has resulted in the generation of many mutant lines carrying skeletal phenotypes associated with human diseases. In addition, transgenic lines expressing fluorescent proteins under bone cell- or pathway- specific promoters enable in vivo imaging of differentiation and signaling at the cellular level. Despite the small size of the zebrafish, many traditional techniques for skeletal phenotyping, such as x-ray and microCT imaging and histological approaches, can be applied using the appropriate equipment and custom protocols. The ability of adult zebrafish to remodel skeletal tissues can be exploited as a unique tool to investigate bone formation and repair. Finally, the permeability of embryos to chemicals dissolved in water, together with the availability of large numbers of small-sized animals makes zebrafish a perfect model for high-throughput bone anabolic drug screening. This review aims to discuss the techniques that make zebrafish a powerful model to investigate the molecular and physiological basis of skeletal disorders.
Collapse
Affiliation(s)
- Francesca Tonelli
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Roberta Besio
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Laura Leoni
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Paul J. Coucke
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Andy Willaert
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Antonella Forlino
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Antonella Forlino
| |
Collapse
|