51
|
Gascón E, Otal I, Maisanaba S, Llana-Ruiz-Cabello M, Valero E, Repetto G, Jones PG, Oriol L, Jiménez J. Gold(I) metallocyclophosphazenes with antibacterial potency and antitumor efficacy. Synergistic antibacterial action of a heterometallic gold and silver-cyclophosphazene. Dalton Trans 2022; 51:13657-13674. [PMID: 36040292 DOI: 10.1039/d2dt01963a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the most important uses of phosphazenes today involves its biomedical applications. They can also be employed as scaffolds for the design and construction of a variety of ligands in order to coordinate them to metallic drugs. The coordination chemistry of the (amino)cyclotriphosphazene ligand, [N3P3(NHCy)6], towards gold(I) complexes has been studied. Neutral complexes, [N3P3(NHCy)6{AuX}n] (X = Cl or C6F5; n = 1 or 2) (1-4), cationic complexes, [N3P3(NHCy)6{Au(PR3)}n](NO3)n (PR3 = PPh3, PPh2Me, TPA; n = 1, 2 or 3) (6-12) [TPA = 1,3,5-triaza-7-phosphaadamantane] and a heterometallic compound [N3P3(NHCy)6{Au(PPh3)}2{Ag(PPh3)}](NO3)3 (13) have been obtained and characterized by various methods including single-crystal X-ray diffraction for 7, which confirms the coordination of gold atoms to the nitrogens of the phosphazene ring. Compounds 1, 4, 6-13 were screened for in vitro cytotoxic activity against two tumor human cell lines, MCF7 (breast adenocarcinoma) and HepG2 (hepatocellular carcinoma), and for antimicrobial activity against five bacterial species including Gram-positive, Gram-negative, and Mycobacteria. Both the median inhibitory concentration (IC50) and minimum inhibitory concentration (MIC) values are among the lowest found for any gold or silver derivatives against the cell lines and particularly against the Gram-positive (S. aureus) strain and the mycobacteria used in this work. Structure-activity relationships are discussed in order to determine the influence of ancillary ligands and the number and type of metal atoms (silver or gold). Compounds 4 and 8 showed not only maximal potency on human cells but also some tumour selectivity. Remarkably, compound 13, with both gold and silver atoms, showed outstanding activity against both Gram-positive and Gram-negative strains (nanomolar range), thus having a cooperative effect between gold and silver, with MIC values which are similar or lower than those of gentamicine, ciprofloxacin and rifampicine. The broad spectrum antimicrobial efficacy of all these metallophosphazenes and particularly of heterometallic compound 13 could be very useful to obtain materials for surfaces with antimicrobial properties that are increasingly in demand.
Collapse
Affiliation(s)
- Elena Gascón
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Isabel Otal
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Sara Maisanaba
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área de Toxicología, Universidad Pablo de Olavide, Ctra. Utrera, Km 1, 41013 Sevilla, Spain
| | - María Llana-Ruiz-Cabello
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área de Toxicología, Universidad Pablo de Olavide, Ctra. Utrera, Km 1, 41013 Sevilla, Spain
| | - Eva Valero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área Nutrición y Bromatología, Universidad Pablo de Olavide, Ctra. Utrera, Km 1, 41013 Sevilla, Spain
| | - Guillermo Repetto
- Departamento de Biología Molecular e Ingeniería Bioquímica, Área de Toxicología, Universidad Pablo de Olavide, Ctra. Utrera, Km 1, 41013 Sevilla, Spain
| | - Peter G Jones
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106, Braunschweig, Germany
| | - Luis Oriol
- Departamento de Química Orgánica, Instituto de Nanociencia y Materiales de Aragón-Facultad de Ciencias, Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Josefina Jiménez
- Departamento de Química Inorgánica, Facultad de Ciencias, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| |
Collapse
|
52
|
Kljun J, Pavlič R, Hafner E, Lipec T, Moreno-Da Silva S, Tič P, Turel I, Büdefeld T, Stojan J, Rižner TL. Ruthenium complexes show potent inhibition of AKR1C1, AKR1C2, and AKR1C3 enzymes and anti-proliferative action against chemoresistant ovarian cancer cell line. Front Pharmacol 2022; 13:920379. [PMID: 36034868 PMCID: PMC9403717 DOI: 10.3389/fphar.2022.920379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, we present the synthesis, kinetic studies of inhibitory activity toward aldo-keto reductase 1C (AKR1C) enzymes, and anticancer potential toward chemoresistant ovarian cancer of 10 organoruthenium compounds bearing diketonate (1–6) and hydroxyquinolinate (7–10) chelating ligands with the general formula [(η6-p-cymene)Ru(chel)(X)]n+ where chel represents the chelating ligand and X the chlorido or pta ligand. Our studies show that these compounds are potent inhibitors of the AKR enzymes with an uncommon inhibitory mechanism, where two inhibitor molecules bind to the enzyme in a first fast and reversible step and a second slower and irreversible step. The binding potency of each step is dependent on the chemical structure of the monodentate ligands in the metalloinhibitors with the chlorido complexes generally acting as reversible inhibitors and pta complexes as irreversible inhibitors. Our study also shows that compounds 1–9 have a moderate yet better anti-proliferative and anti-migration action on the chemoresistant ovarian cancer cell line COV362 compared to carboplatin and similar effects to cisplatin.
Collapse
Affiliation(s)
- Jakob Kljun
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Renata Pavlič
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Hafner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Lipec
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Moreno-Da Silva
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Chemical Sciences, Universidad Complutense de Madrid, Madrid, Spain
| | - Primož Tič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Iztok Turel
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Iztok Turel, ; Tea Lanišnik Rižner,
| | - Tomaž Büdefeld
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jure Stojan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Iztok Turel, ; Tea Lanišnik Rižner,
| |
Collapse
|
53
|
Falcone E, Ritacca AG, Hager S, Schueffl H, Vileno B, El Khoury Y, Hellwig P, Kowol CR, Heffeter P, Sicilia E, Faller P. Copper-Catalyzed Glutathione Oxidation is Accelerated by the Anticancer Thiosemicarbazone Dp44mT and Further Boosted at Lower pH. J Am Chem Soc 2022; 144:14758-14768. [PMID: 35929814 PMCID: PMC9389589 DOI: 10.1021/jacs.2c05355] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
Glutathione (GSH) is the most abundant thiol in mammalian
cells
and plays a crucial role in maintaining redox cellular homeostasis.
The thiols of two GSH molecules can be oxidized to the disulfide GSSG.
The cytosolic GSH/GSSG ratio is very high (>100), and its reduction
can lead to apoptosis or necrosis, which are of interest in cancer
research. CuII ions are very efficient oxidants of thiols,
but with an excess of GSH, CuIn(GS)m clusters are formed, in which CuI is very slowly reoxidized by O2 at pH 7.4 and
even more slowly at lower pH. Here, the aerobic oxidation of GSH by
CuII was investigated at different pH values in the presence
of the anticancer thiosemicarbazone Dp44mT, which accumulates in lysosomes
and induces lysosomal membrane permeabilization in a Cu-dependent
manner. The results showed that CuII-Dp44mT catalyzes GSH
oxidation faster than CuII alone at pH 7.4 and hence accelerates
the production of very reactive hydroxyl radicals. Moreover, GSH oxidation
and hydroxyl radical production by CuII-Dp44mT were accelerated
at the acidic pH found in lysosomes. To decipher this unusually faster
thiol oxidation at lower pH, density functional theory (DFT) calculations,
electrochemical and spectroscopic studies were performed. The results
suggest that the acceleration is due to the protonation of CuII-Dp44mT on the hydrazinic nitrogen, which favors the rate-limiting
reduction step without subsequent dissociation of the CuI intermediate. Furthermore, preliminary biological studies in cell
culture using the proton pump inhibitor bafilomycin A1 indicated that
the lysosomal pH plays a role in the activity of CuII-Dp44mT.
Collapse
Affiliation(s)
- Enrico Falcone
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Alessandra G Ritacca
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende, (CS), Italy
| | - Sonja Hager
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Hemma Schueffl
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Bertrand Vileno
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Youssef El Khoury
- Laboratoire de bioélectrochimie et spectroscopie, UMR 7140, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Petra Hellwig
- Laboratoire de bioélectrochimie et spectroscopie, UMR 7140, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci, 87036 Arcavacata di Rende, (CS), Italy
| | - Peter Faller
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France.,Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
54
|
Study of the anticancer potential of Cd complexes of selenazoyl-hydrazones and their sulfur isosters. Eur J Med Chem 2022; 238:114449. [DOI: 10.1016/j.ejmech.2022.114449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022]
|
55
|
Selenium and tellurium in the development of novel small molecules and nanoparticles as cancer multidrug resistance reversal agents. Drug Resist Updat 2022; 63:100844. [DOI: 10.1016/j.drup.2022.100844] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
56
|
The Synthesis, Characterization, Molecular Docking and In Vitro Antitumor Activity of Benzothiazole Aniline (BTA) Conjugated Metal-Salen Complexes as Non-Platinum Chemotherapeutic Agents. Pharmaceuticals (Basel) 2022; 15:ph15060751. [PMID: 35745670 PMCID: PMC9228978 DOI: 10.3390/ph15060751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/23/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
Here, we describe the synthesis, characterization, and in vitro biological evaluation of a series of transition metal complexes containing benzothiazole aniline (BTA). We employed BTA, which is known for its selective anticancer activity, and a salen-type Schiff-based ligand to coordinate several transition metals to achieve selective and synergistic cytotoxicity. The compounds obtained were characterized by NMR spectroscopy, mass spectrometry, Fourier transform infrared spectroscopy, and elemental analysis. The compounds L, MnL, FeL, CoL, and ZnL showed promising in vitro cytotoxicity against cancer cells, and they had a lower IC50 than that of the clinically used cisplatin. In particular, MnL had synergistic cytotoxicity against liver, breast, and colon cancer cells. Moreover, MnL, CoL, and CuL promoted the production of reactive oxygen species in HepG2 tumor cell lines. The lead compound of this series, MnL, remained stable in physiological settings, and docking results showed that it interacted rationally with the minor groove of DNA. Therefore, MnL may serve as a viable alternative to platinum-based chemotherapy.
Collapse
|
57
|
Lu Y, Ma X, Chang X, Liang Z, Lv L, Shan M, Lu Q, Wen Z, Gust R, Liu W. Recent development of gold(I) and gold(III) complexes as therapeutic agents for cancer diseases. Chem Soc Rev 2022; 51:5518-5556. [PMID: 35699475 DOI: 10.1039/d1cs00933h] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metal complexes have demonstrated significant antitumor activities and platinum complexes are well established in the clinical application of cancer chemotherapy. However, the platinum-based treatment of different types of cancers is massively hampered by severe side effects and resistance development. Consequently, the development of novel metal-based drugs with different mechanism of action and pharmaceutical profile attracts modern medicinal chemists to design and synthesize novel metal-based agents. Among non-platinum anticancer drugs, gold complexes have gained considerable attention due to their significant antiproliferative potency and efficacy. In most situations, the gold complexes exhibit anticancer activities by targeting thioredoxin reductase (TrxR) or other thiol-rich proteins and enzymes and trigger cell death via reactive oxygen species (ROS). Interestingly, gold complexes were recently reported to elicit biochemical hallmarks of immunogenic cell death (ICD) as an ICD inducer. In this review, the recent progress of gold(I) and gold(III) complexes is comprehensively summarized, and their activities and mechanism of action are documented.
Collapse
Affiliation(s)
- Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenlin Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiuyue Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ronald Gust
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, Innsbruck, Austria.
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
58
|
Jovanović M, Podolski-Renić A, Krasavin M, Pešić M. The Role of the Thioredoxin Detoxification System in Cancer Progression and Resistance. Front Mol Biosci 2022; 9:883297. [PMID: 35664671 PMCID: PMC9161637 DOI: 10.3389/fmolb.2022.883297] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022] Open
Abstract
The intracellular redox homeostasis is a dynamic balancing system between the levels of free radical species and antioxidant enzymes and small molecules at the core of cellular defense mechanisms. The thioredoxin (Trx) system is an important detoxification system regulating the redox milieu. This system is one of the key regulators of cells’ proliferative potential as well, through the reduction of key proteins. Increased oxidative stress characterizes highly proliferative, metabolically hyperactive cancer cells, which are forced to mobilize antioxidant enzymes to balance the increase in free radical concentration and prevent irreversible damage and cell death. Components of the Trx system are involved in high-rate proliferation and activation of pro-survival mechanisms in cancer cells, particularly those facing increased oxidative stress. This review addresses the importance of the targetable redox-regulating Trx system in tumor progression, as well as in detoxification and protection of cancer cells from oxidative stress and drug-induced cytotoxicity. It also discusses the cancer cells’ counteracting mechanisms to the Trx system inhibition and presents several inhibitors of the Trx system as prospective candidates for cytostatics’ adjuvants. This manuscript further emphasizes the importance of developing novel multitarget therapies encompassing the Trx system inhibition to overcome cancer treatment limitations.
Collapse
Affiliation(s)
- Mirna Jovanović
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mikhail Krasavin
- Organic Chemistry Division, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- *Correspondence: Milica Pešić, , orcid.org/0000-0002-9045-8239
| |
Collapse
|
59
|
Md S, Alhakamy NA, Sharma P, Ansari MS, Gorain B. Nanocarrier-based co-delivery approaches of chemotherapeutics with natural P-glycoprotein inhibitors in the improvement of multidrug resistance cancer therapy. J Drug Target 2022; 30:801-818. [DOI: 10.1080/1061186x.2022.2069782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Priyanka Sharma
- Center for Innovation in Personalized Medicine, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | | | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| |
Collapse
|
60
|
Fronik P, Gutmann M, Vician P, Stojanovic M, Kastner A, Heffeter P, Pirker C, Keppler BK, Berger W, Kowol CR. A platinum(IV) prodrug strategy to overcome glutathione-based oxaliplatin resistance. Commun Chem 2022; 5:46. [PMID: 36697790 PMCID: PMC9814792 DOI: 10.1038/s42004-022-00661-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Clinical efficacy of oxaliplatin is frequently limited by severe adverse effects and therapy resistance. Acquired insensitivity to oxaliplatin is, at least in part, associated with elevated levels of glutathione (GSH). In this study we report on an oxaliplatin-based platinum(IV) prodrug, which releases L-buthionine-S,R-sulfoximine (BSO), an inhibitor of glutamate-cysteine ligase, the rate-limiting enzyme in GSH biosynthesis. Two complexes bearing either acetate (BSO-OxOAc) or an albumin-binding maleimide (BSO-OxMal) as second axial ligand were synthesized and characterized. The in vitro anticancer activity of BSO-OxOAc was massively reduced in comparison to oxaliplatin, proving its prodrug nature. Nevertheless, the markedly lower intracellular oxaliplatin uptake in resistant HCT116/OxR cells was widely overcome by BSO-OxOAc resulting in distinctly reduced resistance levels. Platinum accumulation in organs of a colorectal cancer mouse model revealed higher tumor selectivity of BSO-OxMal as compared to oxaliplatin. This corresponded with increased antitumor activity, resulting in significantly enhanced overall survival. BSO-OxMal-treated tumors exhibited reduced GSH levels, proliferative activity and enhanced DNA damage (pH2AX) compared to oxaliplatin. Conversely, pH2AX staining especially in kidney cells was distinctly increased by oxaliplatin but not by BSO-OxMal. Taken together, our data provide compelling evidence for enhanced tumor specificity of the oxaliplatin(IV)/BSO prodrug.
Collapse
Affiliation(s)
- Philipp Fronik
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Michael Gutmann
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", 1090, Vienna, Austria
| | - Petra Vician
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Mirjana Stojanovic
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Alexander Kastner
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Petra Heffeter
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", 1090, Vienna, Austria
| | - Christine Pirker
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", 1090, Vienna, Austria
| | - Bernhard K Keppler
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", 1090, Vienna, Austria
| | - Walter Berger
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", 1090, Vienna, Austria.
| | - Christian R Kowol
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", 1090, Vienna, Austria.
| |
Collapse
|
61
|
Sabahi Z, Rashedinia M, Nasrollahi A, Shafaghat M, Momeni S, Iranpak F, Saberzadeh J, Arabsolghar R. Syringic acid induces cancer cell death in the presence of Cu (II) ions via pro-oxidant activity. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.345519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
62
|
Huang S, Ma Z, Sun C, Zhou Q, Li Z, Wang S, Yan Q, Liu C, Hou B, Zhang C. An injectable thermosensitive hydrogel loading with theranostic nanoprobe for synergetic chemo-photothermal therapy of multidrug-resistant hepatocellular carcinoma. J Mater Chem B 2022; 10:2828-2843. [PMID: 35316319 DOI: 10.1039/d2tb00044j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-drug resistance (MDR) is a complicated cellular defense mechanism for tumor cells to resist chemotherapy drugs, which is also the main cause of chemotherapy failure. In this study, we used...
Collapse
Affiliation(s)
- Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- South China University of Technology School of Medicine, Guangzhou 51000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zuyi Ma
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- Shantou University of Medical College, Shantou 515000, China
| | - Chengjun Sun
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Qi Zhou
- Department of General Surgery, Hui Ya Hospital of the First Affiliated Hospital, Sun Yat-Sen University, Huizhou, Guangdong 516081, China
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhenchong Li
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- South China University of Technology School of Medicine, Guangzhou 51000, China
| | - Shujie Wang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qian Yan
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunsheng Liu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- Shantou University of Medical College, Shantou 515000, China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- South China University of Technology School of Medicine, Guangzhou 51000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
- South China University of Technology School of Medicine, Guangzhou 51000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
63
|
Bondžić AM, Žakula JJ, Korićanac LB, Keta OD, Janjić GV, Đorđević IS, Rajković SU. Cytotoxic activity and influence on acetylcholinesterase of series dinuclear platinum(II) complexes with aromatic nitrogen-containing heterocyclic bridging ligands: Insights in the mechanisms of action. Chem Biol Interact 2021; 351:109708. [PMID: 34666020 DOI: 10.1016/j.cbi.2021.109708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022]
Abstract
Herein, the stability, lipophilicity, in vitro cytotoxicity, and influence on acetylcholinesterase of five dinuclear platinum(II) complexes with the general formula [{Pt(en)Cl}2(μ-L)]2+ (L is a different aromatic nitrogen-containing heterocyclic bridging ligands pyrazine (pz, Pt1), pyridazine (pydz, Pt2), quinoxaline (qx, Pt3), phthalazine (phtz, Pt4) and quinazoline (qz, Pt5), while en is bidentate coordinated ethylenediamine) were evaluated. The most active analyzed platinum complexes induced time-dependent growth inhibition of A375, HeLa, PANC-1, and MRC-5 cells. The best efficiency was achieved on HeLa and PANC-1 cells for Pt1, Pt2, and Pt3 at the highest concentration, while Pt1 was significantly more potent than cisplatin at a lower concentration. Additionally, a lower effect on normal cells was observed compared to cisplatin, which may indicate potentially fewer side effects of these complexes. Selected complexes induce reactive oxygen species and apoptosis on tumor cell lines. The most potent reversible acetylcholinesterase (AChE) inhibitors were Pt2, Pt4, and Pt5. Pt1 showed similar inhibitory potential toward AChE as cisplatin, but a different type of inhibition, which could contribute to lower neurotoxicity. Docking studies revealed that Pt2 and Pt4 were bound to the active gorge above the catalytic triad. In contrast, the other complexes were bound to the edge of the active gorge without impeding the approach to the catalytic triad. According to this, Pt1 represents a promising compound with potent anticancer properties, high selectivity, and low neurotoxicity.
Collapse
Affiliation(s)
- Aleksandra M Bondžić
- Vinča Institute of Nuclear Sciences, National Institute of thе Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia.
| | - Jelena J Žakula
- Vinča Institute of Nuclear Sciences, National Institute of thе Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Lela B Korićanac
- Vinča Institute of Nuclear Sciences, National Institute of thе Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Otilija D Keta
- Vinča Institute of Nuclear Sciences, National Institute of thе Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Goran V Janjić
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Ivana S Đorđević
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Snežana U Rajković
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
| |
Collapse
|