Guo J, Jin D, Wu Y, Yang L, Du J, Gong K, Chen W, Dai J, Miao S, Xi S. The miR 495-UBE2C-ABCG2/ERCC1 axis reverses cisplatin resistance by downregulating drug resistance genes in cisplatin-resistant non-small cell lung cancer cells.
EBioMedicine 2018;
35:204-221. [PMID:
30146342 PMCID:
PMC6419862 DOI:
10.1016/j.ebiom.2018.08.001]
[Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
Cisplatin (DDP) resistance has become the leading cause
of mortality in non-small cell lung cancer (NSCLC). miRNA dysregulation
significantly contributes to tumor progression. In this study, we found that
miR-495 was significantly downregulated in lung cancer tissue specimens. This
study aimed to elucidate the functions, direct target genes, and molecular
mechanisms of miR-495 in lung cancer. miR-495 downregulated its substrate UBE2C
through direct interaction with UBE2C 3′- untranslated region. UBE2C is a
proto-oncogene activated in lung cancer; however, its role in chemotherapeutic
resistance is unclear. Herein, UBE2C expression levels were higher in
DDP-resistant NSCLC cells; this was associated with the proliferation, invasion,
and DDP resistance in induced cisplatin-resistant NSCLC cells. Furthermore,
epithelial–mesenchymal transitions (EMT) contributed to DDP resistance.
Moreover, UBE2C knockdown downregulated vimentin. In contrast, E-cadherin was
upregulated. Importantly, miR-495 and UBE2C were associated with cisplatin
resistance. We attempted to evaluate their effects on cell proliferation and
cisplatin resistance. We also performed EMT, cell migration, and invasion assays
in DDP-resistant NSCLC cells overexpressing miR-495 and under-expressing UBE2C.
Furthermore, in silico assays coupled with western blotting and luciferase
assays revealed that UBE2C directly binds to the 5′-UTR of the drug-resistance
genes ABCG2 and ERCC1.
Furthermore, miR-495 downregulated ABCG2 and
ERCC1 via regulation of UBE2C. Together, the present
results indicate that the miR495-UBE2C-ABCG2/ERCC1 axis reverses DDP resistance
via downregulation of anti-drug genes and reducing EMT in DDP-resistant NSCLC
cells.
Collapse