51
|
AminiTabrizi R, Hassan D, Davis R, Tucker KR. Analysis of beta-blocker bioconcentration in brown planaria (Girardia dorotocephala) and its effects on regeneration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27435-27443. [PMID: 31327142 DOI: 10.1007/s11356-019-05960-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Production, distribution, and disposal of pharmaceutical products, including beta-blockers, have become a global issue. Beta-blockers are known to persist in the environment months after their release and may result in the disruption of the homeostatic system in non-target organisms. Here, we study the bioconcentration of three of the most commonly used beta-blockers and their effect on the regeneration of Girardia dorotocephala, a freshwater brown planarian. Acute toxicity tests determined LC50s for acebutolol, metoprolol, and propranolol to be 778 mg/L, 711 mg/L, and 111 mg/L, respectively. The quantification and analysis of beta-blocker bioconcentration during acute exposure were performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). After 4 days of exposure to beta-blockers, the bioconcentration drastically decreased for all three beta-blockers at all exposure levels, suggesting that an effective mechanism to reduce uptake or excrete beta-blockers could be present. Additionally, Girardia dorotocephala were cut proximal to the head and the quality of regeneration was documented from each fragment daily. No significant difference was visually observed after 2 weeks of regeneration between the brown planarians placed in beta-blocker solution and those placed in control solution.
Collapse
Affiliation(s)
- Roya AminiTabrizi
- Bio5 Institute, The University of Arizona, 1657 East Helen Street, PO Box 210240, Tucson, AZ, 85721, USA
| | - Dalia Hassan
- Department of Chemistry, College of Arts and Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Science Building West, Box - 1652, Edwardsville, IL, 62026-1652, USA
| | - Rachel Davis
- Department of Chemistry, College of Arts and Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Science Building West, Box - 1652, Edwardsville, IL, 62026-1652, USA
| | - Kevin R Tucker
- Department of Chemistry, College of Arts and Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Science Building West, Box - 1652, Edwardsville, IL, 62026-1652, USA.
| |
Collapse
|
52
|
Córdova López AM, Sarmento RA, de Souza Saraiva A, Pereira RR, Soares AMVM, Pestana JLT. Exposure to Roundup® affects behaviour, head regeneration and reproduction of the freshwater planarian Girardia tigrina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:453-461. [PMID: 31030151 DOI: 10.1016/j.scitotenv.2019.04.234] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
The demand of glyphosate-based herbicides including Roundup® is rising in the tropics due to increase occurence of glyphosate-resistant weeds that require higher herbicide application rates but also because of their use associated with genetically engineered, glyphosate-tolerant crops. Consequently, there is now an excessive use of glyphosate in agricultural areas with potential adverse effects also for the surrounding aquatic environments. This study aimed to determine the sensitivity of the freshwater planarian Girardia tigrina to acute and chronic exposures of Roundup®. Planarians were exposed to a range of lethal and sub-lethal concentrations of Roundup® to determine the median lethal concentration (LC50) concerning its active ingredient glyphosate and also effects on locomotor velocity (pLMV), feeding rate, regeneration, reproductive parameters and morphological abnormalities. Regeneration endpoints included length of blastema and time for photoreceptors and auricles regeneration after decapitation, while effects on reproduction were assessed measuring fecundity (number of deposited cocoons) and fertility (number of hatchlings) over five weeks of exposure to glyphosate. The estimated 48 h LC50 of was 35.94 mg glyphosate/L. Dose dependent effects were observed for feeding, locomotion and regeneration endpoints with Lowest observed effect concentration (LOEC) values as low as 3.75 mg glyphosate/L. Chronic exposures to environmentally relevant concentrations of glyphosate significantly impaired fecundity and fertility rates of exposed planarians (median effective concentration, EC50 = 1.6 mg glyphosate/L for fecundity and fertility rates). Our results show deleterious effects of Roundup® on regeneration, behavior and reproduction of freshwater planarians and add important ecotoxicological data towards the environmental risk assessment of glyphosate-based herbicide in freshwater ecosystems.
Collapse
Affiliation(s)
- Ana M Córdova López
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970 Gurupi, TO, Brazil; ICEMR Amazonia Laboratory and Emerging Diseases - Iquitos Headquarters, Universidad Peruana Cayetano Heredia, Iquitos, Perú
| | - Renato Almeida Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970 Gurupi, TO, Brazil
| | - Althiéris de Souza Saraiva
- Departamento de Agropecuária (Conservação de Agroecossistemas e Ecotoxicologia), Instituto Federal de Educação, Ciência e Tecnologia Goiano, campus Campos Belos, 73840-000 Campos Belos, GO, Brazil
| | - Renata Ramos Pereira
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
53
|
Poirier L, Ghigo É, Daudé D, Chabrière É. [Planarian, an emerging animal model for toxicology studies]. Med Sci (Paris) 2019; 35:544-548. [PMID: 31274084 DOI: 10.1051/medsci/2019110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Since a few decades, a new invertebrate animal model has emerged in toxicology studies: the planarian. This non-parasitic flatworm, from phylum Platyhelminthes, has an amazing regenerative capacity and has been described as "immortal under the edge of the knife" in 1814 by Dalyell. This formidable capacity is due to the abundance of stem cells called neoblasts, allowing for a tiny fragment equivalent to 1/279th of the size of the planarian to generate a whole animal. The planarian has also a human-like nervous system with several neurotransmitters and has been used to evaluate developmental perturbations and neurotoxicity. This review summarizes the main planarian toxicology studies and highlights the potential of this original animal model for research.
Collapse
Affiliation(s)
- Laetitia Poirier
- Aix-Marseille Université, IRD, APHM, MEPHI (Microbes, Évolution, Phylogénie et Infection), IHU-Méditerranée Infection, Marseille, France
| | - Éric Ghigo
- IHU-Méditerranée Infection, Marseille, France
| | - David Daudé
- Gene&GreenTK, 19-21, boulevard Jean Moulin, 13005 Marseille, France
| | - Éric Chabrière
- Aix-Marseille Université, IRD, APHM, MEPHI (Microbes, Évolution, Phylogénie et Infection), IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
54
|
Poirier L, Pinault L, Armstrong N, Ghigo E, Daudé D, Chabrière E. Evaluation of a robust engineered enzyme towards organophosphorus insecticide bioremediation using planarians as biosensors. Chem Biol Interact 2019; 306:96-103. [PMID: 30986386 DOI: 10.1016/j.cbi.2019.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 11/16/2022]
Abstract
Organophosphorus compounds (OPs) are neurotoxic molecules developed as insecticides and chemical warfare nerve agents (CWNAs). They are covalent inhibitors of acetylcholinesterase (AChE), a key enzyme in central and peripheral nervous systems and are responsible for numerous poisonings worldwide. Many animal models have been studied over the years but finding a suitable in vivo model to account for both acute toxicity and long-term exposure remains a topical issue. Recently, an emerging aquatic animal model harboring a mammalian-like cholinergic nervous system, the freshwater planarian from Platyhelminthes, has been used to investigate neurotoxicity and developmental disruption. Given the tremendous toxicity of OPs, various bioremediation strategies have been considered over the years to counter their poisonous effects. Among these, enzymes have been particularly highlighted as they can degrade OPs in a fast, non toxic and environmentally friendly manner. In this article we investigated the biotechnological potential for decontaminating OPs of the previously reported variant SsoPox-αsD6 from the hyperstable enzyme SsoPox, isolated from the archaea Sulfolobus solfataricus. The capacity to hydrolyze 4 new substrates (methyl-pirimiphos, quinalphos, triazophos and dibrom) was demonstrated and the degradation products generated by enzymatic hydrolysis were characterized. We further evaluated the capacity of SsoPox-αsD6 for in vivo protection of freshwater planarians Schmidtea mediterranea (Smed). The use of SsoPox-αsD6 drastically decreased mortality and enhanced mobility of planarians. Then, an enzyme-based filtration device was developed by immobilizing intact Escherichia coli cells expressing SsoPox-αsD6 into alginate beads. The efficacy of the device was demonstrated using planarians as biosensors.
Collapse
Affiliation(s)
- Laetitia Poirier
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Lucile Pinault
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Nicholas Armstrong
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Eric Ghigo
- IHU-Méditerranée Infection, Marseille, France
| | - David Daudé
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.
| | - Eric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
55
|
Ofoegbu PU, Campos D, Soares AMVM, Pestana JLT. Combined effects of NaCl and fluoxetine on the freshwater planarian, Schmidtea mediterranea (Platyhelminthes: Dugesiidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11326-11335. [PMID: 30798496 DOI: 10.1007/s11356-019-04532-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Increasing salinity levels in freshwaters due to natural and anthropogenic sources pose risk to exposed aquatic organisms. However, there is a paucity of information on how salinity may influence the effects of other chemical stressors especially psychiatric pharmaceuticals. Freshwater planarians which have been suggested as bioindicator species in aquatic habitats were used in this study to evaluate toxic effects of sodium chloride (NaCl) used here as a surrogate for increasing salinity, and its influence on the effects of the antidepressant, fluoxetine. Effects of NaCl on Schmidtea mediterranea were evaluated using survival, regeneration, locomotion, feeding, and reproduction as endpoints. Subsequently, combined effects of NaCl and fluoxetine on planarians' locomotion and reproduction were also evaluated. Result showed that exposure to increased NaCl concentrations is toxic to planarians with 48 and 96 h LC50 of 9.15 and 7.55 g NaCl L-1 respectively and exposure to sub-lethal concentrations led to reductions in feeding (LOEC of 0.75 g NaCl L-1 or 1906 μS cm-1 at 20 °C) and reproduction (LOEC 3.0 g NaCl L-1 or 5530 μS cm-1 at 20 °C), delayed head regeneration (LOEC of 1.5 g NaCl L-1 or 3210 μS cm-1 at 20 °C), and also slight decreases in locomotor activity. Moreover, some developmental malformations were observed in regenerating planarians, as well as delayed or inhibition of wound healing and degeneration after fissioning and during head regeneration. A significant interaction between fluoxetine and NaCl was observed for locomotor activity and unlike planarians exposed to fluoxetine alone, fissioned planarians and their pieces from the combined exposure treatments were also unable to regenerate missing portions. Results show that S. mediterranea can be highly sensitive to low NaCl concentrations and that this stressor can alter the effects of fluoxetine. The implication of these effects for planarian populations in the natural habitat is discussed as well as the need for more research on the effects of neuroactive pharmaceuticals under relevant exposure scenarios.
Collapse
Affiliation(s)
- Pearl U Ofoegbu
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Department of Biology, Federal University of Technology, Owerri, Nigeria.
| | - Diana Campos
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Joāo L T Pestana
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|