51
|
Kaur G, Sharma P, Rathee S, Singh HP, Batish DR, Kohli RK. Salicylic acid pre-treatment modulates Pb 2+-induced DNA damage vis-à-vis oxidative stress in Allium cepa roots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51989-52000. [PMID: 33999323 DOI: 10.1007/s11356-021-14151-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The current study investigated the putative role of salicylic acid (SA) in modulating Pb2+-induced DNA and oxidative damage in Allium cepa roots. Pb2+ exposure enhanced free radical generation and reduced DNA integrity and antioxidant machinery after 24 h; however, SA pre-treatment (for 24 h) ameliorated Pb2+ toxicity. Pb2+ exposure led to an increase in malondialdehyde (MDA) and hydrogen peroxide (H2O2) accumulation and enhanced superoxide radical and hydroxyl radical levels. SA improved the efficiency of enzymatic antioxidants (ascorbate and guaiacol peroxidases [APX, GPX], superoxide dismutases [SOD], and catalases [CAT]) at 50-μM Pb2+ concentration. However, SA pre-treatment could not improve the efficiency of CAT and APX at 500 μM of Pb2+ treatment. Elevated levels of ascorbate and glutathione were observed in A. cepa roots pre-treated with SA and exposed to 50 μM Pb2+ treatment, except for oxidized glutathione. Nuclear membrane integrity test demonstrated the ameliorating effect of SA by reducing the number of dark blue-stained nuclei as compared to Pb2+ alone treatments. SA was successful in reducing DNA damage in cell exposed to higher concentration of Pb2+ (500 μM) as observed through comet assay. The study concludes that SA played a major role in enhancing defense mechanism and protecting against DNA damage by acclimatizing the plant to Pb2+-induced toxicity.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
- Agriculture Victoria, AgriBio, The Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Padma Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Sonia Rathee
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India.
| | - Daizy Rani Batish
- Department of Botany, Panjab University, Chandigarh, 160 014, India.
| | | |
Collapse
|
52
|
Garai S, Bhowal B, Kaur C, Singla-Pareek SL, Sopory SK. What signals the glyoxalase pathway in plants? PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2407-2420. [PMID: 34744374 PMCID: PMC8526643 DOI: 10.1007/s12298-021-00991-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 05/06/2023]
Abstract
Glyoxalase (GLY) system, comprising of GLYI and GLYII enzymes, has emerged as one of the primary methylglyoxal (MG) detoxification pathways with an indispensable role during abiotic and biotic stresses. MG homeostasis is indeed very closely guarded by the cell as its higher levels are cytotoxic for the organism. The dynamic responsiveness of MG-metabolizing GLY pathway to both endogenous cues such as, phytohormones, nutrient status, etc., as well as external environmental fluctuations (abiotic and biotic stresses) indicates that a tight regulation occurs in the cell to maintain physiological levels of MG in the system. Interestingly, GLY pathway is also manipulated by its substrates and reaction products. Hence, an investigation of signalling and regulatory aspects of GLY pathway would be worthwhile. Herein, we have attempted to converge all known factors acting as signals or directly regulating GLYI/II enzymes in plants. Further, we also discuss how crosstalk between these different signal molecules might facilitate the regulation of glyoxalase pathway. We believe that MG detoxification is controlled by intricate mechanisms involving a plethora of signal molecules.
Collapse
Affiliation(s)
- Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Charanpreet Kaur
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sneh Lata Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Sudhir K. Sopory
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
53
|
Pishchik V, Mirskaya G, Chizhevskaya E, Chebotar V, Chakrabarty D. Nickel stress-tolerance in plant-bacterial associations. PeerJ 2021; 9:e12230. [PMID: 34703670 PMCID: PMC8487243 DOI: 10.7717/peerj.12230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Nickel (Ni) is an essential element for plant growth and is a constituent of several metalloenzymes, such as urease, Ni-Fe hydrogenase, Ni-superoxide dismutase. However, in high concentrations, Ni is toxic and hazardous to plants, humans and animals. High levels of Ni inhibit plant germination, reduce chlorophyll content, and cause osmotic imbalance and oxidative stress. Sustainable plant-bacterial native associations are formed under Ni-stress, such as Ni hyperaccumulator plants and rhizobacteria showed tolerance to high levels of Ni. Both partners (plants and bacteria) are capable to reduce the Ni toxicity and developed different mechanisms and strategies which they manifest in plant-bacterial associations. In addition to physical barriers, such as plants cell walls, thick cuticles and trichomes, which reduce the elevated levels of Ni entrance, plants are mitigating the Ni toxicity using their own antioxidant defense mechanisms including enzymes and other antioxidants. Bacteria in its turn effectively protect plants from Ni stress and can be used in phytoremediation. PGPR (plant growth promotion rhizobacteria) possess various mechanisms of biological protection of plants at both whole population and single cell levels. In this review, we highlighted the current understanding of the bacterial induced protective mechanisms in plant-bacterial associations under Ni stress.
Collapse
Affiliation(s)
- Veronika Pishchik
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Pushkin, Russian Federation
- Agrophysical Scientific Research Institute, Saint-Petersburg, Russian Federation
| | - Galina Mirskaya
- Agrophysical Scientific Research Institute, Saint-Petersburg, Russian Federation
| | - Elena Chizhevskaya
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Pushkin, Russian Federation
| | - Vladimir Chebotar
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Pushkin, Russian Federation
| | | |
Collapse
|
54
|
Yang S, Ulhassan Z, Shah AM, Khan AR, Azhar W, Hamid Y, Hussain S, Sheteiwy MS, Salam A, Zhou W. Salicylic acid underpins silicon in ameliorating chromium toxicity in rice by modulating antioxidant defense, ion homeostasis and cellular ultrastructure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:1001-1013. [PMID: 34271533 DOI: 10.1016/j.plaphy.2021.07.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/21/2021] [Accepted: 07/11/2021] [Indexed: 05/04/2023]
Abstract
Chromium (Cr) phytotoxicity affirmed the need of mitigation strategies to remediate polluted soils and restricts its accumulation in the food chains. Salicylic acid (SA) and silicon (Si) play pivotal roles in stimulating the plant performance and stress resilience. So far, their interactive effects against Cr-phytotoxicities are less known. Thus, we evaluated the beneficial roles of alone or/and combine applications of SA and Si in mitigating the toxic effects of Cr in the leaves and roots of rice (Oryza sativa) seedlings. Results indicated that SA (10 μM) and/or Si (5 μM) markedly retrieved the Cr (100 μM) induced toxicities by minimizing the Cr-accretion in both leaves and roots, enhancing the performance of light harvesting pigments (total chlorophylls and carotenoids), water retention and accumulation of osmolytes (water-soluble protein and total soluble sugars) and ultimately improved the growth and biomass. Additionally, SA and/or Si maintained the ionic balance by enhancing the nutrients transport, upregulated the ascorbate-glutathione (AsA-GSH) cycle enzymes, minimized the extra accumulation of reactive oxygen species (ROS) (H2O2 and O2•‒), malondialdehyde (MDA), recovered the membrane stability and damages in cellular ultrastructure in Cr-stressed rice plants. Overall findings suggested that SA underpins Si in mitigating the Cr-induced phytotoxicities on the above-reported parameters and combined applications of SA and Si were more effective than alone treatments. The uptake or cellular accumulation of Cr, osmoprotectants level and antioxidant defense system against oxidative stress can be considered as key toxicity biomarkers for the safe cultivation of rice in Cr-contaminated soils.
Collapse
Affiliation(s)
- Su Yang
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| | - Aamir Mehmood Shah
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Ali Raza Khan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Wardah Azhar
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Yasir Hamid
- Ministry of Education (MOE) Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, China
| | - Sajad Hussain
- Institute of Ecological Agriculture, Sichuan Agricultural University/Sichuan Engineering Research Centre for Crop Strip Intercropping System, Chengdu, 611130, PR China
| | - Mohamed Salah Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Abdul Salam
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
55
|
Kaya C. Salicylic acid-induced hydrogen sulphide improves lead stress tolerance in pepper plants by upraising the ascorbate-glutathione cycle. PHYSIOLOGIA PLANTARUM 2021; 173:8-19. [PMID: 32613611 DOI: 10.1111/ppl.13159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 05/24/2023]
Abstract
The contribution of hydrogen sulphide (H2 S) to salicylic acid (SA) induced lead (Pb) stress tolerance modulated by the ascorbate-glutathione (AsA-GSH) cycle was examined in pepper (Capsicum annuum L.) plants. One week after germination, pepper seedlings were sprayed with 0.5 mM SA once a day for a week. Thereafter, seedlings were grown under control (no Pb) or Pb stress (Pb-S treatment consisting of 0.1 mM PbCl2 ) for a further 2 weeks. Lead stress reduced plant growth and leaf water status as well as the activities of dehydroascorbate reductase and monodehydroascorbate reductase. However, lead stress elevated leaf Pb, the proline contents, oxidative stress, activities of glutathione reductase and ascorbate peroxidase, as well as the endogenous H2 S content. Supplements of SA resulted in improvements in growth parameters, biomass, leaf water status and AsA-GSH cycle-related enzyme activities, as well as increasing the H2 S content. The positive effect of SA was further enhanced when sodium hydrosulphide was added. However, 0.1 mM hypotaurine (HT) treatment reversed the beneficial effect of SA by reducing the plant H2 S content. Application of NaHS in combination with SA + HT suppressed the adverse effect of HT mainly by restoring the plant H2 S content, suggesting that higher H2 S content, induced by exogenous SA supply, resulted in elevated regulation of the AsA-GSH cycle.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| |
Collapse
|
56
|
Różyło K, Biszczak W, Jośko I, Kusiak M, Świeca M. The possibilities of using elicitors in the increase of functional value of winter wheat grain under field conditions. Cereal Chem 2021. [DOI: 10.1002/cche.10443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Krzysztof Różyło
- Department of Herbology and Plant Cultivation Techniques University of Life Sciences in Lublin Lublin Poland
| | - Wojciech Biszczak
- Department of Herbology and Plant Cultivation Techniques University of Life Sciences in Lublin Lublin Poland
| | - Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology University of Life Sciences in Lublin Lublin Poland
| | - Magdalena Kusiak
- Institute of Plant Genetics, Breeding and Biotechnology University of Life Sciences in Lublin Lublin Poland
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry University of Life Sciences in Lublin Lublin Poland
| |
Collapse
|
57
|
Amjadi Z, Namdjoyan S, Abolhasani Soorki A. Exogenous melatonin and salicylic acid alleviates cadmium toxicity in safflower (Carthamus tinctorius L.) seedlings. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:387-401. [PMID: 33624206 DOI: 10.1007/s10646-021-02364-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The co-application of exogenous 100 µM melatonin (MT) and 100 µM salicylic acid (SA) on 21-day-old safflower seedlings grown in the presence of cadmium (Cd, 100 µM) toxicity was investigated. The application of MT, SA, or MT + SA efficiently improved toxicity symptoms and declined Cd toxicity as shown by a considerable rise in plant biomass production and chlorophyll content accompanied by decreased level of oxidative stress markers. In Cd stressed plants, the simultaneous application of MT and SA led to sharp decreases in MDA and H2O2 amounts (61.04 and 49.11%, respectively), related to plants treated with Cd alone. With respect to the control, a 41 and 48% increment in reduced glutathione (GSH) and ascorbate (ASC) content was recorded in Cd-treated seedlings. Though, with the addition of MT, SA, or MT + SA, the content of GSH and ASC increased more. The application of MT, SA, or MT + SA caused a sharp induction in phytochelatin content of the leaves of Cd-treated seedlings, while in roots, the highest PC content was recorded only in the presence of MT, which was about 1.8-fold greater than in plant treated with Cd alone. The activity of enzymes responsible for the ascorbate-glutathione cycle and glyoxalase system considerably improved by using MT, SA, or the combination of MT and SA. Our findings suggest a possible synergic interaction between MT and SA in tolerating Cd toxicity by reducing Cd uptake, improving chlorophyll biosynthesis and accelerating ascorbate-glutathione cycle as well as the modulation of glyoxalase system.
Collapse
Affiliation(s)
- Zahra Amjadi
- Department of Biology and Biochemistry, Science Faculty, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Shahram Namdjoyan
- Department of Biology and Biochemistry, Science Faculty, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Ali Abolhasani Soorki
- ACECR-Research Institute of Applied Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
58
|
Kamran M, Wang D, Alhaithloul HAS, Alghanem SM, Aftab T, Xie K, Lu Y, Shi C, Sun J, Gu W, Xu P, Soliman MH. Jasmonic acid-mediated enhanced regulation of oxidative, glyoxalase defense system and reduced chromium uptake contributes to alleviation of chromium (VI) toxicity in choysum (Brassica parachinensis L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111758. [PMID: 33396081 DOI: 10.1016/j.ecoenv.2020.111758] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 05/03/2023]
Abstract
The cultivation of leafy vegetables on metal contaminated soil embodies a serious threat to yield and quality. In the present study, the potential role of exogenous jasmonic acid (JA; 0, 5, 10, and 20 µM) on mitigating chromium toxicity (Cr; 0, 150, and 300 µM) was investigated in choysum (Brassica parachinensis L.). With exposure to increasing Cr stress levels, a dose-dependent decline in growth, photosynthesis, and physio-biochemical attributes of choysum plants was observed. An increase in Cr levels also resulted in oxidative stress closely associated with higher lipoxygenase activity (LOX), hydrogen peroxide (H2O2) generation, lipid peroxidation (MDA), and methylglyoxal (MG) levels. Exogenous application of JA alleviated the Cr-induced phytotoxic effects on photosynthetic pigments, gas exchange parameters, and restored growth of choysum plants. While exposed to Cr stress, JA supplementation induced plant defense system via enhanced regulation of antioxidant enzymes, ascorbate and glutathione pool, and the glyoxalase system enzymes. The coordinated regulation of antioxidant and glyoxalase systems expressively suppressed the oxidative and carbonyl stress at both Cr stress levels. More importantly, JA restored the mineral nutrient contents, restricted Cr uptake, and accumulation in roots and shoots of choysum plants when compared to the only Cr-stressed plants. Overall, the application of JA2 treatment (10 µM JA) was more effective and counteracted the detrimental effects of 150 µM Cr stress by restoring the growth and physio-biochemical attributes to the level of control plants, while partially mitigated the detrimental effects of 300 µM Cr stress. Hence, JA application might be considered as an effective approach for minimizing Cr uptake and its detrimental effects in choysum plants grown on contaminated soils.
Collapse
Affiliation(s)
- Muhammad Kamran
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China.
| | - Dan Wang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | | | | | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Kaizhi Xie
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Yusheng Lu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Chaohong Shi
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Jie Sun
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Wenjie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China.
| | - Peizhi Xu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China.
| | - Mona Hassan Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu 46429, Kingdom of Saudi Arabia
| |
Collapse
|
59
|
Kaya C, Ashraf M, Alyemeni MN, Corpas FJ, Ahmad P. Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123020. [PMID: 32526442 DOI: 10.1016/j.jhazmat.2020.123020] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/22/2020] [Accepted: 05/21/2020] [Indexed: 05/04/2023]
Abstract
The role of nitric oxide (NO) in salicylic acid (SA)-induced tolerance to arsenic (As) stress in maize plants is not reported in the literature. Before starting As stress (AsS) treatments, SA (0.5 mM) was sprayed to the foliage of maize plants. Thereafter, AsV (0.1 mM as sodium hydrogen arsenate heptahydrate) stress (AsS) was initiated and during the stress period, sodium nitroprusside (SNP 0.1 mM), a NO donor, was sprayed individually or in combination with SA. Furthermore, cPTIO (0.1 mM) was also applied as a NO scavenger during the stress period. Arsenic stress led to significant reductions in plant growth, photosynthesis, water relation parameters and endogenous NO content, but it increased hydrogen peroxide, malondialdehyde, electrolyte leakage, methylglyoxal, proline, the activities of major antioxidant enzymes, and leaf and root As content. The combined treatment of SA+SNP was more effective to reverse oxidative stress related parameters and reduce the As content in both leaves and roots, with a concomitant increase in antioxidant defense system, the ascorbate-glutathione (AsA-GSH) cycle-related enzymes, glyoxalase system enzymes, plant growth, and photosynthetic traits. The beneficial effects of SA were completely abolished with cPTIO supply by blocking the NO synthesis in AsS-maize plants, indicating that NO effectively participated in SA-improved tolerance to AsS in maize plants.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | | | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/ Profesor Albareda, 1, 18008 Granada, Spain
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
60
|
Jahan MS, Guo S, Baloch AR, Sun J, Shu S, Wang Y, Ahammed GJ, Kabir K, Roy R. Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110593. [PMID: 32294596 DOI: 10.1016/j.ecoenv.2020.110593] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 05/20/2023]
Abstract
Arable land contamination with nickel (Ni) has become a major threat to worldwide crop production. Recently, melatonin has appeared as a promising stress-relief substance that can alleviate heavy metal-induced phytotoxicity in plants. However, the plausible underlying mechanism of melatonin function under Ni stress has not been fully substantiated in plants. Herein, we conducted an experiment that unveiled critical mechanisms in favor of melatonin-mediated Ni-stress tolerance in tomato. Ni stress markedly inhibited growth and biomass by impairing the photosynthesis, photosystem function, mineral homeostasis, root activity, and osmotic balance. In contrast, melatonin application notably reinforced the plant growth traits, increased photosynthesis efficiency in terms of chlorophyll content, upregulation of chlorophyll synthesis genes, i.e. POR, CAO, CHL G, gas exchange parameters, and PSII maximum efficiency (Fv/Fm), decreased Ni accumulation and increased mineral nutrient homeostasis. Moreover, melatonin efficiently restricted the hydrogen peroxide (H2O2) and superoxide radical production and increased RBOH expression and restored cellular integrity (less malondialdehyde and electrolyte leakage) through triggering the antioxidant enzyme activities and modulating AsA-GSH pools. Notably, oxidative stress was effectively mitigated by upregulation of several defense genes (SOD, CAT, APX, GR, GST, MDHAR, DHAR) and melatonin biosynthesis-related genes (TDC, T5S, SNAT, ASMT). Besides, melatonin treatment enhanced secondary metabolites (phenols, flavonoids, and anthocyanin) contents along with their encoding genes (PAL, CHS) expression, and these metabolites potentially restricted excess H2O2 accumulation. In conclusion, our findings deciphered the potential functions of melatonin in alleviating Ni-induced phytotoxicity in tomato through boosting the biomass production, photosynthesis, nutrient uptake, redox balance, and secondary metabolism.
Collapse
Affiliation(s)
- Mohammad Shah Jahan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China; Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Abdul Raziq Baloch
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jin Sun
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Sheng Shu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yu Wang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Khairul Kabir
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Rana Roy
- College of Resource and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| |
Collapse
|
61
|
Shirani Bidabadi S. The role of Fe-nano particles in scarlet sage responses to heavy metals stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1259-1268. [PMID: 32393119 DOI: 10.1080/15226514.2020.1759507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the stabilized ornamental markets for scarlet sage (Salvia splendens), little is known about the stress resistance of heavy metals (HMs). Therefore, a hydroponic study was conducted to determine whether the addition of Fe nanoparticles (Fe NPs) at 0, 5, 10, 20 and 30 µM in Hoagland's nutrient solution reduce the toxicity caused by 100 μM of HMs (Cd, Cu, Ni, Cr and Pb). Exposure to HMs significantly reduced relative growth rate (RGR), chlorophyll content, chlorophyll fluorescence (Fv/Fm), total antioxidant activity (TAA), total phenol content (TPC) and antioxidant power assay (FRAP), while the malondialdehyde (MDA) accumulation, H2O2 generation and electrolyte leakage (EL) significantly increased. Fe NPs improved HMs toxicity by significant reduction in MDA content, H2O2 generation and EL while increase in the PGR, chlorophyll content, Fv/Fm, the TAA, TPC and FRAP. Exposure to HMs caused Fe deficiency-induced chlorosis while Fe NPs reduced the negative effects of HM by preventing further reduction of leaf Fe. The results highlighted that although using Fe NPs significantly improved plant growth and motivated the plant defense mechanisms in response to HMs toxicity, it had a negative effect on the phytoremediation properties of salvia splendens by reducing the accumulation of HMs in plant organs.
Collapse
|
62
|
Shah AA, Ahmed S, Abbas M, Ahmad Yasin N. Seed priming with 3-epibrassinolide alleviates cadmium stress in Cucumis sativus through modulation of antioxidative system and gene expression. SCIENTIA HORTICULTURAE 2020; 265:109203. [DOI: 10.1016/j.scienta.2020.109203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
63
|
Bhuyan MB, Parvin K, Mohsin SM, Mahmud JA, Hasanuzzaman M, Fujita M. Modulation of Cadmium Tolerance in Rice: Insight into Vanillic Acid-Induced Upregulation of Antioxidant Defense and Glyoxalase Systems. PLANTS 2020; 9:plants9020188. [PMID: 32033011 PMCID: PMC7076431 DOI: 10.3390/plants9020188] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 01/19/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that enters the human food chain from the soil via plants. Increased Cd uptake and translocation in plants alters metabolism andreduces crop production. Maintaining crop yield therefore requires both soil remediation andenhanced plant tolerance to Cd. In this study, we investigated the effects of vanillic acid (VA) on Cd accumulation and Cd stress tolerance in rice (Oryza sativa L. cv. BRRI dhan54). Thirteen-day-old rice seedlings treated with CdCl2 (1.0 and 2.0 mM) for 72 h showed reduced growth, biomass accumulation, and water and photosynthetic pigment contents, as well as increased signs of oxidative stress (elevated levels of malondialdehyde, hydrogen peroxide, methylglyoxal, and lipoxygenase) and downregulated antioxidant and glyoxalase systems. Cadmium-induced changes in leaf relative turgidity, photosynthetic pigment content, ascorbate pool size, and glutathione content were suppressed by VA under both mild and severe Cd toxicity stress. The supplementation of VA under Cd stress conditions also increased antioxidant and glyoxylase enzyme activity. Vanillic acid also increased phytochelatin content and the biological accumulation factor, biological accumulation co-efficient, and Cd translocation factor. Vanillic acid, therefore appears to enhance Cd stress tolerance by increasing metal chelation and sequestration, by upregulating antioxidant defense and glyoxalase systems, and by facilitating nutrient homeostasis.
Collapse
Affiliation(s)
- M.H.M. Borhannuddin Bhuyan
- Laboratory of Plant Stress Response, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-gun, Kagawa 761-0795, Japan (K.P.); (S.M.M.)
- Citrus Research Station, Bangladesh Agricultural Research Institute, Jaintapur, Sylhet 3156, Bangladesh
| | - Khursheda Parvin
- Laboratory of Plant Stress Response, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-gun, Kagawa 761-0795, Japan (K.P.); (S.M.M.)
- Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Sayed Mohammad Mohsin
- Laboratory of Plant Stress Response, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-gun, Kagawa 761-0795, Japan (K.P.); (S.M.M.)
- Department of Plant Pathology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Jubayer Al Mahmud
- Department of Agroforestry and Environmental Science, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
- Correspondence: (M.H.); (M.F.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Response, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kita-gun, Kagawa 761-0795, Japan (K.P.); (S.M.M.)
- Correspondence: (M.H.); (M.F.)
| |
Collapse
|
64
|
Kaya C, Ashraf M, Alyemeni MN, Ahmad P. The role of endogenous nitric oxide in salicylic acid-induced up-regulation of ascorbate-glutathione cycle involved in salinity tolerance of pepper (Capsicum annuum L.) plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:10-20. [PMID: 31837556 DOI: 10.1016/j.plaphy.2019.11.040] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/11/2019] [Accepted: 11/27/2019] [Indexed: 05/24/2023]
Abstract
An experimentation was carried out to appraise whether or not nitric oxide (NO) contributes to salicylic acid (SA)-induced salinity tolerance particularly by regulating ascorbate-glutathione (AsA-GSH) cycle. Before starting salinity stress (SS), SA (0.5 mM) was sprayed to the foliage of plants once every other day for a week and then seedlings were grown under control or SS (100 mM NaCl), for five weeks. Salinity stress enhanced the AsA-GSH cycle-related enzymes, glutathione reductase (GR), ascorbate peroxidase (APX), and dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR). Furthermore, SS caused substantial decreases in plant physiological-related traits such as leaf potassium (K) contents, K+/Na+ ratio, the ratios of reduced ascorbate/dehydroascorbic acid (AsA/DHA) and reduced glutathione/oxidized glutathione (GSH/GSSG), but in contrast, significant increases occurred in leaf hydrogen peroxide, malondialdehyde, electron leakage, proline, the premier antioxidant enzymes' activities, Na+ and NO. SA reduced leaf Na+ content and oxidative stress-related traits, but improved all earlier-mentioned traits compared with those in plants treated with SS alone. All positive effects of SA were eliminated by NO scavenger, 0.1 mM 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide (c-PTIO) by reducing NO, suggesting that NO produced by SA up-regulated the activities of AsA-GSH cycle and antioxidant enzymes, so it could play a central function as a signal molecule in salt tolerance of pepper plants.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | | | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
65
|
Kamran M, Xie K, Sun J, Wang D, Shi C, Lu Y, Gu W, Xu P. Modulation of growth performance and coordinated induction of ascorbate-glutathione and methylglyoxal detoxification systems by salicylic acid mitigates salt toxicity in choysum (Brassica parachinensis L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109877. [PMID: 31704320 DOI: 10.1016/j.ecoenv.2019.109877] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 05/07/2023]
Abstract
Salinity represents a serious environmental threat to crop production and by extension, to world food supply, social and economic prosperity of the developing world. Salicylic acid (SA) is an endogenous plant signal molecule involved in regulating various plant responses to stress. In the present study, we characterized the regulatory role of exogenous SA for their ability to ameliorate deleterious effects of salt stress (0, 100, 150, 200 mM NaCl) in choysum plants through coordinated induction of antioxidants, ascorbate glutathione (AsA-GSH) cycle, and the glyoxalase enzymes. An increase in salt stress dramatically declined root and shoot growth, leaf chlorophyll and relative water content (RWC), subsequently increased electrolyte leakage (EL) and osmolytes accumulation in choysum plants. Salt stress disrupted the antioxidant and glyoxalase defense systems which persuaded oxidative damages and carbonyl toxicity, indicated by increased H2O2 generation, lipid peroxidation, and methylglyoxal (MG) content. However, application of SA had an additive effect on the growth of salt-affected choysum plants, which enhanced root length, plant biomass, chlorophyll contents, leaf area, and RWC. Moreover, SA application effectively eliminated the oxidative and carbonyl stress by improving AsA and GSH pool, upregulating the activities of antioxidant enzymes and the enzymes associated with AsA-GSH cycle and glyoxalase system. Overall, SA application completely counteracted the salinity-induced deleterious effects of 100 and 150 mM NaCl and partially mediated that of 200 mM NaCl stress. Therefore, we concluded that SA application induced tolerance to salinity stress in choysum plants due to the synchronized increase in activities of enzymatic and non-enzymatic antioxidants, enhanced efficiency of AsA-GSH cycle and the MG detoxification systems.
Collapse
Affiliation(s)
- Muhammad Kamran
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Kaizhi Xie
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Jie Sun
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Dan Wang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Chaohong Shi
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Yusheng Lu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Wenjie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China.
| | - Peizhi Xu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China.
| |
Collapse
|
66
|
Sharma A, Sidhu GPS, Araniti F, Bali AS, Shahzad B, Tripathi DK, Brestic M, Skalicky M, Landi M. The Role of Salicylic Acid in Plants Exposed to Heavy Metals. Molecules 2020; 25:540. [PMID: 31991931 PMCID: PMC7037467 DOI: 10.3390/molecules25030540,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Salicylic acid (SA) is a very simple phenolic compound (a C7H6O3 compound composed of an aromatic ring, one carboxylic and a hydroxyl group) and this simplicity contrasts with its high versatility and the involvement of SA in several plant processes either in optimal conditions or in plants facing environmental cues, including heavy metal (HM) stress. Nowadays, a huge body of evidence has unveiled that SA plays a pivotal role as plant growth regulator and influences intra- and inter-plant communication attributable to its methyl ester form, methyl salicylate, which is highly volatile. Under stress, including HM stress, SA interacts with other plant hormones (e.g., auxins, abscisic acid, gibberellin) and promotes the stimulation of antioxidant compounds and enzymes thereby alerting HM-treated plants and helping in counteracting HM stress. The present literature survey reviews recent literature concerning the roles of SA in plants suffering from HM stress with the aim of providing a comprehensive picture about SA and HM, in order to orientate the direction of future research on this topic.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: (A.S.); (F.A.); (M.L.)
| | - Gagan Preet Singh Sidhu
- Department of Environment Education, Government College of Commerce and Business Administration, Chandigarh 160047, India;
| | - Fabrizio Araniti
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, RC, Italy
- Correspondence: (A.S.); (F.A.); (M.L.)
| | | | - Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida 201313, India;
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic;
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy
- CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, I-56124 Pisa, Italy
- Correspondence: (A.S.); (F.A.); (M.L.)
| |
Collapse
|
67
|
Sharma A, Sidhu GPS, Araniti F, Bali AS, Shahzad B, Tripathi DK, Brestic M, Skalicky M, Landi M. The Role of Salicylic Acid in Plants Exposed to Heavy Metals. Molecules 2020; 25:E540. [PMID: 31991931 PMCID: PMC7037467 DOI: 10.3390/molecules25030540] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/18/2022] Open
Abstract
Salicylic acid (SA) is a very simple phenolic compound (a C7H6O3 compound composed of an aromatic ring, one carboxylic and a hydroxyl group) and this simplicity contrasts with its high versatility and the involvement of SA in several plant processes either in optimal conditions or in plants facing environmental cues, including heavy metal (HM) stress. Nowadays, a huge body of evidence has unveiled that SA plays a pivotal role as plant growth regulator and influences intra- and inter-plant communication attributable to its methyl ester form, methyl salicylate, which is highly volatile. Under stress, including HM stress, SA interacts with other plant hormones (e.g., auxins, abscisic acid, gibberellin) and promotes the stimulation of antioxidant compounds and enzymes thereby alerting HM-treated plants and helping in counteracting HM stress. The present literature survey reviews recent literature concerning the roles of SA in plants suffering from HM stress with the aim of providing a comprehensive picture about SA and HM, in order to orientate the direction of future research on this topic.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Gagan Preet Singh Sidhu
- Department of Environment Education, Government College of Commerce and Business Administration, Chandigarh 160047, India;
| | - Fabrizio Araniti
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, RC, Italy
| | | | - Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida 201313, India;
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic;
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy
- CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, I-56124 Pisa, Italy
| |
Collapse
|
68
|
Zaid A, Mohammad F, Fariduddin Q. Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint ( Mentha arvensis L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:25-39. [PMID: 32158118 PMCID: PMC7036404 DOI: 10.1007/s12298-019-00715-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/01/2019] [Accepted: 09/16/2019] [Indexed: 05/02/2023]
Abstract
Menthol mint (Mentha arvensis L.) cultivation is significantly affected by the heavy metals like cadmium (Cd) which also imposes severe health hazards. Two menthol mint cultivars namely Kosi and Kushal were evaluated under Cd stress conditions. Impact of plant growth regulators (PGRs) like salicylic acid (SA), gibberellic acid (GA3) and triacontanol (Tria) on Cd stress tolerance was assessed. Reduced growth, photosynthetic parameters, mineral nutrient concentration, and increased oxidative stress biomarkers like electrolyte leakage, malondialdehyde, and hydrogen peroxide contents were observed under Cd stress. Differential upregulation of proline content and antioxidant activities under Cd stress was observed in both the cultivars. Interestingly, low electrolyte leakage, lipid peroxidation, hydrogen peroxide and Cd concentration in leaves were observed in Kushal compared to Kosi. Among all the PGRs tested, SA proved to be the best in improving Cd-stress tolerance in both the cultivars but Kushal responded better than Kosi.
Collapse
Affiliation(s)
- Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Firoz Mohammad
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| |
Collapse
|
69
|
Shahid M, Saleem M, Anwar H, Khalid S, Tariq TZ, Murtaza B, Amjad M, Naeem MA. A multivariate analysis of comparative effects of heavy metals on cellular biomarkers of phytoremediation using Brassica oleracea. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:617-627. [PMID: 31856592 DOI: 10.1080/15226514.2019.1701980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The biochemical/physiological variations in plant responses to heavy metals stress govern plant's ability to phytoremediate/tolerate metals. So, the comparative effects of different types of heavy metals on various plant responses can better elucidate the mechanisms of metal toxicity and detoxification. This study compared the physiological modifications, photosynthetic performance and detoxification potential of Brassica oleracea under different levels of chromium (Cr), nickel (Ni) and selenium (Se). All the heavy metals induced a severe phytotoxicity to B. oleracea in terms of chlorophyll contents, Ni being the most toxic (76% decrease). Brassica oleracea showed high lipid oxidation: 87% and 273%, respectively in leaves and roots. Furthermore, all the metals increased the activities of catalase and peroxidase, while decreased superoxide dismutase and ascorbate peroxidase. Interestingly, heavy metals decreased hydrogen peroxide contents perhaps due to their possible transformation to another form of reactive oxygen species such as hydroxyl radical. Among the three metals, Ni was more phytotoxic than Cr and Se. Moreover, the phytoremediation/tolerance potential of B. oleracea to Ni, Cr and Se stress varied with the type of metal, their applied levels, response variables and plant organ type (root/shoot). The multivariate analysis separated different plant response variables and heavy metal treatments into different groups based on their correlations.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Mazhar Saleem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Hasnain Anwar
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | | | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| |
Collapse
|