51
|
The Use of Phosphate Washing Sludge to Recover by Composting the Leachate from the Controlled Landfill. Processes (Basel) 2021. [DOI: 10.3390/pr9101735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The percolation of rainwater and runoff water through household waste in the dumpsite generally leads to an overabundance of leachate in Moroccan landfills, which is a source of soil, surface water and groundwater contamination. In order to ecologically solve the problem posed by the leachate in the dump site, to safeguard the environment and to contribute to sustainable development, we have carried out this study which aims to study the possibility of composting leachate with green waste and phosphate washing sludge. Various combinations with five substrates (leachate, green waste, sugar lime sludge, phosphate washing sludge and olive mill wastewater) in different proportions were used to build five windrows. A 24 h contact between the phosphate sludge or sugar lime sludge and the leachate took place prior to the addition of the green waste for the construction of the different windrows. This contact time ensured the absorption of a significant portion of the leachate and the disappearance of bad odor. A significant reduction was obtained with streptococci and mesophilic flora after 24 h of contact. The monitoring of the physicochemical parameters throughout the composting process showed that the temperature of the different windrows followed a good pace presenting all composting phases. Moisture, pH, C/N ratio and the percentage of degradation of the organic matter conformed to the quality standards of the compost. The combinations of the alkaline treatment and the composting process allowed a significant hygienization of the leachate. The results of the humification parameters and the E4/E6 ratio suggest that the composts obtained with phosphate sludge were the most stable and mature and can be used in the agricultural field or green space.
Collapse
|
52
|
Gong Y, Ding P, Xu MJ, Zhang CM, Xing K, Qin S. Biodegradation of phenol by a halotolerant versatile yeast Candida tropicalis SDP-1 in wastewater and soil under high salinity conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112525. [PMID: 33836438 DOI: 10.1016/j.jenvman.2021.112525] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/09/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
In this study, a novel halotolerant phenol-degrading yeast strain, SDP-1, was isolated from a coastal soil in Jiangsu, China, and identified as Candida tropicalis by morphology and rRNA internal transcribed space region sequence analysis. Strain SDP-1 can efficiently remove phenol at wide ranges of pH (3.0-9.0), temperature (20-40 °C), and NaCl (0-5%, w/v), as well as the tolerance of Mn2+, Zn2+ and Cr3+ in aquatic phase. It also utilized multiple phenol derivatives and aromatic hydrocarbons as sole carbon source and energy for growth. Free cells of SDP-1 were able to degrade the maximum phenol concentration of 1800 mg/L within 56 h under the optimum culture conditions of 10% inoculum volume, pH 8.0, 35 °C and 200 rpm agitation speed. Meanwhile, SDP-1 was immobilized on sodium alginate, and the capability of efficiently phenol degradation of free cells and immobilized SDP-1 were evaluated. Shortened degradation time and long-term utilization and recycling for immobilized SDP-1 was achieved compared to free cells. The 1200 mg/L of phenol under 5% NaCl stress could be completely degraded within 40 h by immobilized cells. In actual industrial coking wastewater, immobilized cells were able to completely remove 383 mg/L phenol within 20 h, and the corresponding chemical oxygen demand (COD) value was decreased by 50.38%. Besides, in phenol-contained salinity soil (3% NaCl), 100% of phenol (500 and 1000 mg/kg) removal efficiency was achieved by immobilized SDP-1 within 12 and 26 days, respectively. Our study suggested that versatile yeast Candida tropicalis SDP-1 could be potentially used for enhanced treatment of phenol-contaminated wastewater and soil under hypersaline or no-salt environmental conditions.
Collapse
Affiliation(s)
- Yuan Gong
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Peng Ding
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Ming-Jie Xu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Chun-Mei Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Ke Xing
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China
| | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, PR China.
| |
Collapse
|
53
|
Mostafazadeh F, Kilanehei F, Hassanlourad M. Experimental evaluation of self-remediation mechanism by groundwater flow in unconfined aquifers. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1005-1018. [PMID: 33259679 DOI: 10.1002/wer.1489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/01/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
The main goal of this study is to investigate the effect of soil properties such as permeability on the dispersion and movement of a water dissolved contaminant in three types of soil in saturated and 2D conditions. The experimental modeling was conducted using a constructed sand box. In order to evaluate the effect of soils particle size on the distribution and self-remediation of the contaminant, three types of soil, as coarse, medium, and fine-grained sand were used. Results of experiments showed that, at the first 25% of the test time, the contaminated area reduction rate in all three specimens varies significantly, so that for the medium and coarse sand, it is 2.2 and 3 times that of fine sand, respectively. The contaminant width reduction at the first 25% of the test time was 5%, 6%, and 35% for the fine, medium, and coarse sand, respectively, while the contaminant length reduction was 13%, 18%, and 37% for the fine, medium, and coarse sand, respectively. In addition, by comparing the contaminant movement in the saturated and semi-saturated areas, it was observed that the longitudinal and transverse movement of the contaminant under the water level are almost 2.5 times of the semi-saturated area. PRACTITIONER POINTS: Reduction rate of solution area in fine, medium and coarse-grained sample are nearly convex, linear and concave-shaped, respectively. The remediation process in saturated zones is implemented in both directions with higher intensity in a shorter time than unsaturated zones. In the strip formed plumes, the volume of the self-remediation is proportional to the time intervals during the test. In the elliptic masses the self-purification amount is lower at the beginning, due to the small cross-section ending of the contamination mass.
Collapse
Affiliation(s)
- Farzad Mostafazadeh
- Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
| | - Fouad Kilanehei
- Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
| | - Mahmoud Hassanlourad
- Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
54
|
Mainka T, Weirathmüller D, Herwig C, Pflügl S. Potential applications of halophilic microorganisms for biological treatment of industrial process brines contaminated with aromatics. J Ind Microbiol Biotechnol 2021; 48:kuab015. [PMID: 33928348 PMCID: PMC9113102 DOI: 10.1093/jimb/kuab015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022]
Abstract
Saline wastewater contaminated with aromatic compounds can be frequently found in various industrial sectors. Those compounds need to be degraded before reuse of wastewater in other process steps or release to the environment. Halophiles have been reported to efficiently degrade aromatics, but their application to treat industrial wastewater is rare. Halophilic processes for industrial wastewater treatment need to satisfy certain requirements: a continuous process mode, low operational expenditures, suitable reactor systems and a monitoring and control strategy. The aim of this review is to provide an overview of halophilic microorganisms, principles of aromatic biodegradation, and sources of saline wastewater containing aromatics and other contaminants. Finally, process examples for halophilic wastewater treatment and potential process monitoring strategies are discussed. To further illustrate the significant potential of halophiles for saline wastewater treatment and to facilitate development of ready-to-implement processes, future research should focus on scale-up and innovative process monitoring and control strategies.
Collapse
Affiliation(s)
- Thomas Mainka
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
- Competence Center CHASE GmbH,
Altenbergerstraße 69, 4040 Linz, Austria
| | - David Weirathmüller
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
| | - Christoph Herwig
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
- Competence Center CHASE GmbH,
Altenbergerstraße 69, 4040 Linz, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
| |
Collapse
|
55
|
Tomei MC, Mosca Angelucci D, Clagnan E, Brusetti L. Anaerobic biodegradation of phenol in wastewater treatment: achievements and limits. Appl Microbiol Biotechnol 2021; 105:2195-2224. [PMID: 33630152 DOI: 10.1007/s00253-021-11182-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 11/30/2022]
Abstract
Anaerobic biodegradation of toxic compounds found in industrial wastewater is an attractive solution allowing the recovery of energy and resources but it is still challenging due to the low kinetics making the anaerobic process not competitive against the aerobic one. In this review, we summarise the present state of knowledge on the anaerobic biodegradation process for phenol, a typical target compound employed in toxicity studies on industrial wastewater treatment. The objective of this article is to provide an overview on the microbiological and technological aspects of anaerobic phenol degradation and on the research needs to fill the gaps still hindering the diffusion of the anaerobic process. The first part is focused on the microbiology and extensively presents and characterises phenol-degrading bacteria and biodegradation pathways. In the second part, dedicated to process feasibility, anaerobic and aerobic biodegradation kinetics are analysed and compared, and strategies to enhance process performance, i.e. advanced technologies, bioaugmentation, and biostimulation, are critically analysed and discussed. The final section provides a summary of the research needs. Literature data analysis shows the feasibility of anaerobic phenol biodegradation at laboratory and pilot scale, but there is still a consistent gap between achieved aerobic and anaerobic performance. This is why current research demand is mainly related to the development and optimisation of powerful technologies and effective operation strategies able to enhance the competitiveness of the anaerobic process. Research efforts are strongly justified because the anaerobic process is a step forward to a more sustainable approach in wastewater treatment.Key points• Review of phenol-degraders bacteria and biodegradation pathways.• Anaerobic phenol biodegradation kinetics for metabolic and co-metabolic processes.• Microbial and technological strategies to enhance process performance.
Collapse
Affiliation(s)
- M Concetta Tomei
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015, Monterotondo Stazione Rome, Italy.
| | - Domenica Mosca Angelucci
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015, Monterotondo Stazione Rome, Italy
| | - Elisa Clagnan
- Ricicla Group - DiSAA, University of Milan, Via Celoria 2, 20133, Milano, Italy
| | - Lorenzo Brusetti
- Faculty of Science and Technology, Free University of Bozen - Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| |
Collapse
|
56
|
Argenta TS, Barros ARM, de Carvalho CDA, Dos Santos AB, Firmino PIM. Parabens in aerobic granular sludge systems: Impacts on granulation and insights into removal mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142105. [PMID: 33207471 DOI: 10.1016/j.scitotenv.2020.142105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/07/2020] [Accepted: 08/29/2020] [Indexed: 05/06/2023]
Abstract
This work assessed the impact of methylparaben, ethylparaben, propylparaben, and butylparaben (200 μg L-1 each) on the granulation process as well as on the organic matter and nutrient removal of an aerobic granular sludge (AGS) system (6-h cycle). Additionally, some insights into the main paraben removal mechanisms were provided. In the presence of parabens, aerobic granules with good settleability, but with fragile and irregular structure, were grown. No significant effect of parabens on organic matter (>90%) and nitrogen (~70%) removal was evidenced. On the other hand, phosphorus removal was slightly impaired, although high removal efficiencies (~70%) were reached. High paraben removal efficiencies were achieved (>85%) in the AGS system, with methylparaben being the most recalcitrant compound. Concerning the removal mechanisms, biotransformation was the main mechanism in the removal of all parabens (85.5% for methylparaben and 100% for the others), whereas, apparently, adsorption played a role only in the removal of methylparaben. In addition, this compound was also suggested as a probable intermediate of the degradation of the larger alkyl-chain parabens. Lastly, regarding the microbial community, with the exception of Mycobacterium, the reactors shared the same genera, which may explain their comparable operational performances. Additionally, some genera that developed more in the presence of parabens may be related to their degradation. Therefore, although antimicrobial agents such as parabens compromised the granule structure, AGS system maintained a good operational performance and showed to be very efficient in paraben removal.
Collapse
Affiliation(s)
- Thaís Salvador Argenta
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Clara de Amorim de Carvalho
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Paulo Igor Milen Firmino
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
57
|
Haouas A, El Modafar C, Douira A, Ibnsouda-Koraichi S, Filali-Maltouf A, Moukhli A, Amir S. Alcaligenes aquatilis GTE53: Phosphate solubilising and bioremediation bacterium isolated from new biotope "phosphate sludge enriched-compost". Saudi J Biol Sci 2021; 28:371-379. [PMID: 33424319 PMCID: PMC7785438 DOI: 10.1016/j.sjbs.2020.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
The isolation and identification of beneficial bacteria from the active phase of composting is considered to be a key bio-quality parameter for the assessment of the process. The aim of this work was the selection and identification of beneficial bacteria from a co-composting experiment of vegetable waste (VW), olive oil mill waste (O2MW), and phosphate sludge (PS). Phosphate-solubilizing strains were isolated from the thermophilic phase using Pikovskaya (PVK) solid medium supplemented with tricalcium phosphate Ca3(PO4) (TCP) as the sole source of phosphorus (P). Therefore, the selected isolate Alcaligenes aquatilis GTE53 was tested to tolerate abiotic stresses (different levels of temperature, variable pH, high salinity and water stress). The isolate was also assessed for indole acetic acid (IAA) and siderophores synthesis, nitrogen fixation, phenol degradation and pathogens inactivation. The quality of the co-composting process was also investigated by monitoring the physico-chemical parameters. The obtained results showed that A. aquatilis GTE53 displayed a higher solubilization index of 2.4 and was efficiently dissolved, up to 162.8 and 247.4 mg·mL-1 of inorganic phosphate from PS and phosphate rock (PR), respectively. A. aquatilis GTE53 exhibited siderophores and IAA release, along with atmospheric nitrogen fixation. In addition to that, A. aquatilis GTE53 showed a high resistance to heat and tolerance to acidic and alkaline pH, high salinity and water stress. Moreover, A. aquatilis GTE53 could degrade 99.2% of phenol from a high-concentrated medium (1100 mg·L-1 of phenol) and can inactivate the most abundant pathogens in industrial wastes: Escherichia coli, Streptococcus sp., Salmonella sp., and Fusarium oxysporum albedinis. Analysis of temperature, pH, electrical conductivity, carbon/nitrogen (C/N) ratio, indicated successful co-composting. An efficient transformation of P to the available form and a great abatement of polyphenols, were also recorded during the process. The findings of this study will help to advance the understanding of A. aquatilis GTE53 functions and will facilitate its application to promote beneficial microbial organisms during composting, thus obtaining a high-quality product.
Collapse
Affiliation(s)
- Ayoub Haouas
- Laboratoire Polyvalent en Recherche et Développement, Faculté Polydisciplinaire, Université Sultan Moulay Slimane, Beni Mellal, Morocco
| | - Cherkaoui El Modafar
- Laboratoire d'Agrobiotechnologie et Bioingénierie, Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco
| | - Allal Douira
- Laboratoire de Botanique Biotechnologie et de Protection des Plantes, Faculté des Sciences, Université Ibn Tofail, Kenitra, Morocco
| | - Saâd Ibnsouda-Koraichi
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, Fès, Morocco
| | - Abdelkarim Filali-Maltouf
- Laboratoire de Microbiologie et Biologie Moléculaire, Faculté des Sciences, Université Mohammed V, Rabat, Morocco
| | - Abdelmajid Moukhli
- Unité de Recherche d'Amélioration génétique des plantes, Institut national de la Recherche Agronomique, Marrakech, Morocco
| | - Soumia Amir
- Laboratoire Polyvalent en Recherche et Développement, Faculté Polydisciplinaire, Université Sultan Moulay Slimane, Beni Mellal, Morocco
| |
Collapse
|
58
|
Laccase immobilized on chitosan-coated Fe3O4 nanoparticles as reusable biocatalyst for degradation of chlorophenol. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128769] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
59
|
Carbonell-Alcaina C, Soler-Cabezas JL, Bes-Piá A, Vincent-Vela MC, Mendoza-Roca JA, Pastor-Alcañiz L, Álvarez-Blanco S. Integrated Membrane Process for the Treatment and Reuse of Residual Table Olive Fermentation Brine and Anaerobically Digested Sludge Centrate. MEMBRANES 2020; 10:membranes10100253. [PMID: 32987759 PMCID: PMC7598636 DOI: 10.3390/membranes10100253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022]
Abstract
Management of wastewater is a major challenge nowadays, due to increasing water demand, growing population and more stringent regulations on water quality. Wastewaters from food conservation are especially difficult to treat, since they have high salinity and high organic matter concentration. The aim of this work is the treatment of the effluent from a table olive fermentation process (FTOP) with the aim of reusing it once the organic matter is separated. The process proposed in this work consists of the following membrane-based technologies: Ultrafiltration (UF) (UP005, Microdyn Nadir), Forward Osmosis (FO) (Osmen2521, Hydration Technology Innovation) and Nanofiltration (NF) (NF245, Dow). The FO process was implemented to reduce the salinity entering the NF process, using the FTOP as draw solution and, at the same time, to concentrate the centrate produced in the sludge treatment of a municipal wastewater treatment plant with the aim of obtaining a stream enriched in nutrients. The UF step achieved the elimination of 50% of the chemical oxygen demand of the FTOP. The UF permeate was pumped to the FO system reducing the volume of the anaerobically digested sludge centrate (ADSC) by a factor of 3 in 6.5 h. Finally, the ultrafiltrated FTOP diluted by FO was subjected to NF. The transmembrane pressure needed in the NF stage was 40% lower than that required if the ultrafiltration permeate was directly nanofiltered. By means of the integrated process, the concentration of organic matter and phenolic compounds in the FTOP decreased by 97%. Therefore, the proposed process was able to obtain a treated brine that could be reused in other processes and simultaneously to concentrate a stream, such as the ADSC.
Collapse
Affiliation(s)
- Carlos Carbonell-Alcaina
- Instituto de Seguridad Industrial, Radiofísica y Medio Ambiental, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.C.-A.); (J.L.S.-C.); (A.B.-P.); (M.C.V.-V.); (J.A.M.-R.)
| | - Jose Luis Soler-Cabezas
- Instituto de Seguridad Industrial, Radiofísica y Medio Ambiental, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.C.-A.); (J.L.S.-C.); (A.B.-P.); (M.C.V.-V.); (J.A.M.-R.)
| | - Amparo Bes-Piá
- Instituto de Seguridad Industrial, Radiofísica y Medio Ambiental, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.C.-A.); (J.L.S.-C.); (A.B.-P.); (M.C.V.-V.); (J.A.M.-R.)
| | - María Cinta Vincent-Vela
- Instituto de Seguridad Industrial, Radiofísica y Medio Ambiental, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.C.-A.); (J.L.S.-C.); (A.B.-P.); (M.C.V.-V.); (J.A.M.-R.)
| | - Jose Antonio Mendoza-Roca
- Instituto de Seguridad Industrial, Radiofísica y Medio Ambiental, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.C.-A.); (J.L.S.-C.); (A.B.-P.); (M.C.V.-V.); (J.A.M.-R.)
| | - Laura Pastor-Alcañiz
- Depuración de Aguas del Mediterráneo (DAM), Avenida Benjamín Franklin 21, Parque Tecnológico, 46980 Paterna, Spain;
| | - Silvia Álvarez-Blanco
- Instituto de Seguridad Industrial, Radiofísica y Medio Ambiental, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (C.C.-A.); (J.L.S.-C.); (A.B.-P.); (M.C.V.-V.); (J.A.M.-R.)
- Correspondence: ; Tel.: +34-96-387-96-30; Fax: +34-96-387-76-39
| |
Collapse
|
60
|
Rongsayamanont C, Khongkhaem P, Luepromchai E, Khan E. Inhibitory effect of phenol on wastewater ammonification. BIORESOURCE TECHNOLOGY 2020; 309:123312. [PMID: 32283486 DOI: 10.1016/j.biortech.2020.123312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to elucidate inhibitory effect of phenol on ammonification of dissolved organic nitrogen (DON) in wastewater. Laboratory incubation experiments were conducted using primary and secondary effluent samples spiked with phenol (100-1000 mg/L) and inoculated with mixed cultures, pure strains of phenol-degrading bacteria (Acinetobacter sp. and Pseudomonas putida F1), and/or an ammonia oxidizing bacterium (Nitrosomonas europaea). DON concentration was monitored with incubation time. Phenol suppressed the ammonification rate of DON up to 62.9%. No or minimal ammonification inhibition was observed at 100 mg/L of phenol while the inhibition increased with increasing phenol concentration from 250 to 1000 mg/L. The inhibition was curtailed by the presence of the phenol-degrading bacteria. DON was ammonified in the samples inoculated with only N. europaea and the ammonification was also inhibited by phenol. The findings suggest that high phenol in wastewater could result in low ammonification and high DON in the effluent.
Collapse
Affiliation(s)
- Chaiwat Rongsayamanont
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok 10330, Thailand
| | - Piyamart Khongkhaem
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ekawan Luepromchai
- Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok 10330, Thailand; Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA.
| |
Collapse
|
61
|
|
62
|
In vitro Edwardsiella piscicida CK108 Transcriptome Profiles with Subinhibitory Concentrations of Phenol and Formalin Reveal New Insights into Bacterial Pathogenesis Mechanisms. Microorganisms 2020; 8:microorganisms8071068. [PMID: 32709101 PMCID: PMC7409036 DOI: 10.3390/microorganisms8071068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Phenol and formalin are major water pollutants that are frequently discharged into the aquatic milieu. These chemicals can affect broad domains of life, including microorganisms. Aquatic pollutants, unlike terrestrial pollutants, are easily diluted in water environments and exist at a sub-inhibitory concentration (sub-IC), thus not directly inhibiting bacterial growth. However, they can modulate gene expression profiles. The sub-IC values of phenol and formalin were measured by minimal inhibitory concentration (MIC) assay to be 0.146% (1.3 mM) and 0.0039% (0.38 mM), respectively, in Edwardsiella piscicida CK108, a Gram-negative fish pathogen. We investigated the differentially expressed genes (DEG) by RNA-seq when the cells were exposed to the sub-ICs of phenol and formalin. DEG analyses revealed that genes involved in major virulence factors (type I fimbriae, flagella, type III and type VI secretion system) and various cellular pathways (energy production, amino acid synthesis, carbohydrate metabolism and two-component regulatory systems) were up- or downregulated by both chemicals. The genome-wide gene expression data corresponded to the results of a quantitative reverse complementary-PCR and motility assay. This study not only provides insight into how a representative fish pathogen, E. piscicida CK108, responds to the sub-ICs of phenol and formalin but also shows the importance of controlling chemical pollutants in aquatic environments.
Collapse
|
63
|
Polivtseva VN, Anokhina TO, Iminova LR, Borzova OV, Esikova TZ, Solyanikova IP. Evaluation of the Biotechnological Potential of New Bacterial Strains Capable of Phenol Degradation. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820030096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
64
|
Ma Y, Li L, Awasthi MK, Tian H, Lu M, Megharaj M, Pan Y, He W. Time-course transcriptome analysis reveals the mechanisms of Burkholderia sp. adaptation to high phenol concentrations. Appl Microbiol Biotechnol 2020; 104:5873-5887. [PMID: 32415321 DOI: 10.1007/s00253-020-10672-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023]
Abstract
Microbial tolerance to phenolic pollutants is the key to their efficient biodegradation. However, the metabolic mechanisms that allow some microorganisms to adapt to high phenol concentrations remain unclear. In this study, to reveal the underlying mechanisms of how Burkholderia sp. adapt to high phenol concentrations, the strain's tolerance ability and time-course transcriptome in combination with cell phenotype were evaluated. Surprisingly, Burkholderia sp. still grew normally after a long adaptation to a relatively high phenol concentration (1500 mg/L) and exhibited some time-dependent changes compared to unstressed cells prior to the phenol addition. Time-course transcriptome analysis results revealed that the mechanism of adaptations to phenol was an evolutionary process that transitioned from tolerance to positive degradation through precise gene regulation at appropriate times. Specifically, basal stress gene expression was upregulated and contributed to phenol tolerance, which involved stress, DNA repair, membrane, efflux pump and antioxidant protein-coding genes, while a phenol degradation gene cluster was specifically induced. Interestingly, both the catechol and protocatechuate branches of the β-ketoadipate pathway contributed to the early stage of phenol degradation, but only the catechol branch was used in the late stage. In addition, pathways involving flagella, chemotaxis, ATP-binding cassette transporters and two-component systems were positively associated with strain survival under phenolic stress. This study provides the first insights into the specific response of Burkholderia sp. to high phenol stress and shows potential for application in remediation of polluted environments. KEY POINTS: • Shock, DNA repair and antioxidant-related genes contributed to phenol tolerance. • β-Ketoadipate pathway branches differed at different stages of phenol degradation. • Adaptation mechanisms transitioned from negative tolerance to positive degradation.
Collapse
Affiliation(s)
- Yinghui Ma
- Microbiology Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, 710043, Shaanxi, PR China.,College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Lijun Li
- Microbiology Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, 710043, Shaanxi, PR China.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Haixia Tian
- College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Meihuan Lu
- Microbiology Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, 710043, Shaanxi, PR China
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Yalei Pan
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China
| | - Wenxiang He
- College of Natural Resources and Environment, Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
65
|
Dehmani Y, Abouarnadasse S. Study of the adsorbent properties of nickel oxide for phenol depollution. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
66
|
Younis SA, El-Gendy NS, Nassar HN. Biokinetic aspects for biocatalytic remediation of xenobiotics polluted seawater. J Appl Microbiol 2020; 129:319-334. [PMID: 32118335 DOI: 10.1111/jam.14626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 02/03/2023]
Abstract
AIMS This research was conducted to investigate the biocatalytic remediation of xenobiotics polluted seawater using two biocatalysts; whole bacterial cells of facultative aerobic halotolerant Corynebacterium variabilis Sh42 and its extracted crude enzymes. METHODS AND RESULTS One-Factor-at-A-Time technique and statistical analysis were applied to study the effect of initial substrate concentrations, pH, temperature, and initial biocatalyst concentrations on the batch biocatalytic degradation of three xenobiotic pollutants (2-hydroxybiphenyl (2-HBP), catechol and benzoic acid) in artificial seawater (salinity 3·1%). HPLC and gas-chromatography mass spectroscopy analyses were utilized to illustrate the quantitative removal of the studied aromatic xenobiotic pollutants and their catabolic pathway. The results revealed that the microbial and enzymatic cultures followed substrate inhibition kinetics. Yano and Koga's equation showed the best fit for the biokinetic degradation rates of 2-HBP and benzoic acid, whereas Haldane biokinetic model adequately expressed the specific biodegradation rate of catechol. The biokinetic results indicated the good efficiency and tolerance of crude enzyme for biocatalytic degradation of extremely high concentrations of aromatic pollutants than whole C. variabilis Sh42 cells. The monitored by-products indicated that the catabolic degradation pathway followed an oxidation mechanism via a site-specific monooxygenase enzyme. Benzoic acid and catechol were identified as major intermediates in the biodegradation pathway of 2-HBP, which were then biodegraded through meta-cleavage to 2-hydroxymuconic semialdehyde. With time elapsed, the semialdehyde product was further biodegraded to acetaldehyde and pyruvic acid, which would be further metabolized via the bacterial TCA cycle. CONCLUSION The batch enzymatic bioreactors performed superior-specific biocatalytic degradation rates for all the studied xenobiotic pollutants. SIGNIFICANCE AND IMPACT OF THE STUDY The enzymatic system of C. variabilis Sh42 is tolerable for toxic xenobiotics and different physicochemical environmental parameters. Thus, it can be recommended as an effective biocatalyst for biocatalytic remediation of xenobiotics polluted seawater.
Collapse
Affiliation(s)
- S A Younis
- Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt.,Department of Civil and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - N Sh El-Gendy
- Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt.,Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - H N Nassar
- Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt.,Department of Microbiology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| |
Collapse
|