51
|
Folini M, Bandiera R, Millo E, Gandellini P, Sozzi G, Gasparini P, Longoni N, Binda M, Daidone MG, Berg K, Zaffaroni N. Photochemically enhanced delivery of a cell-penetrating peptide nucleic acid conjugate targeting human telomerase reverse transcriptase: effects on telomere status and proliferative potential of human prostate cancer cells. Cell Prolif 2007; 40:905-20. [PMID: 18021178 DOI: 10.1111/j.1365-2184.2007.00470.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Peptide nucleic acids (PNAs) are DNA mimics that have been demonstrated to be efficient antisense/antigene tools in cell-free systems. However, their potential as in vivo regulators of gene expression has been hampered by their poor uptake by living cells, and strategies need to be developed for their intracellular delivery. This study has aimed to demonstrate the possibility (i) of efficiently delivering a PNA, which targets mRNA of the catalytic component of human telomerase reverse transcriptase (hTERT), into DU145 prostate cancer cells through a combined approach based on conjugation of the PNA to Tat internalizing peptide (hTERT-PNA-Tat) and subsequent photochemical internalization, and (ii) to interfere with telomerase function. MATERIALS AND METHODS Treated cells were analysed for telomerase activity, hTERT expression, growth rate, ability to undergo apoptosis and telomere status. RESULTS After exposure to light, DU145 cells treated with hTERT-PNA-Tat and the photosensitiser TPPS2a showed dose-dependent inhibition of telomerase activity, which was accompanied by marked reduction of hTERT protein expression. A dose-dependent decline in DU145 cell population growth and induction of caspase-dependent apoptosis were also observed from 48 h after treatment. Such an antiproliferative effect was associated with the presence of telomeric dysfunction, as revealed by cytogenetic analysis, in the absence of telomere shrinkage, and with induction of DNA damage response as suggested by the increased expression of gamma-H2AX. CONCLUSIONS Our results (i) indicate photochemical internalization as an efficient approach for intracellular delivery of chimaeric PNAs, and (ii) corroborate earlier evidence suggesting pro-survival and anti-apoptotic roles of hTERT, which are independent of its ability to maintain telomere length.
Collapse
Affiliation(s)
- M Folini
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Falchetti ML, Mongiardi MP, Fiorenzo P, Petrucci G, Pierconti F, D'Agnano I, D'Alessandris G, Alessandri G, Gelati M, Ricci-Vitiani L, Maira G, Larocca LM, Levi A, Pallini R. Inhibition of telomerase in the endothelial cells disrupts tumor angiogenesis in glioblastoma xenografts. Int J Cancer 2007; 122:1236-42. [DOI: 10.1002/ijc.23193] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
53
|
Zimmermann S, Martens UM. Telomeres, senescence, and hematopoietic stem cells. Cell Tissue Res 2007; 331:79-90. [PMID: 17960423 DOI: 10.1007/s00441-007-0469-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 07/10/2007] [Indexed: 01/01/2023]
Abstract
The replicative lifespan of normal somatic cells is restricted by the erosion of telomeres, which are protective caps at the ends of linear chromosomes. The loss of telomeres induces antiproliferative signals that eventually lead to cellular senescence. The enzyme complex telomerase can maintain telomeres, but its expression is confined to highly proliferative cells such as stem cells and tumor cells. The immense regenerative capacity of the hematopoietic system is provided by a distinct type of adult stem cell: hematopoietic stem cells (HSCs). Although blood cells have to be produced continuously throughout life, the HSC pool seems not to be spared by aging processes. Indeed, limited expression of telomerase is not sufficient to prevent telomere shortening in these cells, which is thought ultimately to limit their proliferative capacity. In this review, we discuss the relevance of telomere maintenance for the hematopoietic stem cell compartment and consider potential functions of telomerase in this context. We also present possible clinical applications of telomere manipulation in HSCs and new insights affecting the aging of the hematopoietic stem cell pool and replicative exhaustion.
Collapse
Affiliation(s)
- Stefan Zimmermann
- Department of Hematology/Oncology, Freiburg University Medical Center, Hugstetterstrasse 55, 79106, Freiburg, Germany.
| | | |
Collapse
|
54
|
Tárkányi I, Aradi J. Pharmacological intervention strategies for affecting telomerase activity: future prospects to treat cancer and degenerative disease. Biochimie 2007; 90:156-72. [PMID: 17945408 DOI: 10.1016/j.biochi.2007.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 09/04/2007] [Indexed: 12/20/2022]
Abstract
Telomerase enzyme is a ribonucleoprotein maintaining the length of the telomeres by adding G-rich repeats to the end of the eukaryotic chromosomes. Normal human somatic cells, cultured in vitro, have a strictly limited proliferative potential undergoing senescence after about 50-70 population doublings. In contrast, most of the tumor cells have unlimited replicative potential. Although the mechanisms of immortalization are not understood completely at a genetic level, the key role of the telomere/telomerase system in the process is clear. The DNA replication machinery is not able to replicate fully the DNA at the very end of the chromosomes; therefore, about 50-200 nucleotides are lost during each of the replication cycles resulting in a gradual decrease of telomere length. Critically short telomere induces senescence, subsequent crisis and cell death. In tumor cells, however, the telomerase enzyme prevents the formation of critically short telomeres, adding GGTTAG repeats to the 3' end of the chromosomes immortalizing the cells. Immortality is one of the hallmarks of cancer. Besides the catalytic activity dependent telomere maintenance, catalytic activity-independent effects of telomerase may also be involved in the regulation of cell cycle. The telomere/telomerase system offers two possibilities to intervene the proliferative activity of the cell: (1) inhibition the telomere maintenance by inhibiting the telomerase activity; (2) activating the residual telomerase enzyme or inducing telomerase expression. Whilst the former approach could abolish the limitless replicative potential of malignant cells, the activation of telomerase might be utilized for treating degenerative diseases. Here, we review the current status of telomerase therapeutics, summarizing the activities of those pharmacological agents which either inhibit or activate the enzyme. We also discuss the future opportunities and challenges of research on pharmacological intervention of telomerase activity.
Collapse
Affiliation(s)
- I Tárkányi
- 3rd Department of Internal Medicine, University of Debrecen, 22 Moricz Zsigmond Krt., Debrecen 4004, Hungary
| | | |
Collapse
|
55
|
Kelland L. Targeting the Limitless Replicative Potential of Cancer: The Telomerase/Telomere Pathway: Fig. 1. Clin Cancer Res 2007; 13:4960-3. [PMID: 17785545 DOI: 10.1158/1078-0432.ccr-07-0422] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The maintenance of telomeric DNA underlies the ability of tumors to possess unlimited replicative potential, one of the hallmarks of cancer. Telomere length and structure are maintained by the reverse transcriptase telomerase and a multiprotein telomere complex termed shelterin. Telomerase activity is elevated in the vast majority of tumors, and telomeres are critically shortened in tumors versus normal tissues, thus providing a compelling rationale to target the telomerase/telomere pathway for broad-spectrum cancer therapy. This strategy is supported by a variety of genetic-based target validation studies. Both telomerase inhibitors and telomere interactive molecules have shown stand-alone antitumor activity at nontoxic doses against a variety of human tumor xenografts in mice. These translational advances have resulted in the first antitelomerase agent, the oligonucleotide-based GRN163L targeting the telomerase RNA template, entering clinical evaluation. Additional translational approaches, such as targeting telomeres using G-quadruplex ligands, should result in antitelomere agents, such as RHPS4, entering the clinic in the near future. These prototype trials will be extremely informative in determining the role of the telomerase/telomere pathway in clinical oncology and, moreover, whether drugs targeting the unlimited replicative potential of cancer will find a place in cancer chemotherapy.
Collapse
Affiliation(s)
- Lloyd Kelland
- Cancer Research Technology Development Laboratory, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom.
| |
Collapse
|
56
|
Zhou XH, Chen SM, Liu D, Wang Y, Xiao BK, Tao ZZ. Short hairpin ribonucleic acid targeting the telomerase catalytic unit of messenger ribonucleic acid significantly limits the growth of laryngeal squamous cell carcinoma in nude mice. The Journal of Laryngology & Otology 2007; 122:513-21. [PMID: 17592663 DOI: 10.1017/s0022215107008882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractObjective:Telomerase is an attractive molecular target because it is active in most malignant cells but undetectable in most normal somatic cells. Small, interfering ribonucleic acid segments have been shown to be effective tools for inhibiting the expression of a given gene within human cells. In the present study, we examined the effects of short hairpin ribonucleic acid expression vectors on the growth of laryngeal squamous cell carcinoma in nude mice, and we assessed potential side effects in these animals.Methods:Short hairpin ribonucleic acid expression vectors targeting the messenger ribonucleic acid of the telomerase catalytic unit were constructed and transfected into Hep-2 human laryngeal squamous cells carcinoma in nude mice. Apoptosis and telomerase catalytic unit expression within tumour cells were evaluated after treating with short hairpin ribonucleic acid. Peripheral blood was collected for haematological and biochemical analysis.Results:The findings demonstrated that short hairpin ribonucleic acid plasmids could inhibit tumour cell growth by 76.5 per cent, and that many tumour cells underwent necrotic or apoptotic cell death. There were no significant side effects of short hairpin ribonucleic acid on the heart, liver, kidney, spleen or blood system in this experimental model.Conclusion:These results indicated that the short hairpin ribonucleic acid expression vector targeted at the telomerase catalytic unit of messenger ribonucleic acid significantly inhibited the growth of laryngeal carcinoma in nude mice, with no significant side effects on the experimental animals.
Collapse
Affiliation(s)
- Xu-Hong Zhou
- Department of Otolaryngology, Zhongnan Hospital, Wuhan University, Wuhan, PR China
| | | | | | | | | | | |
Collapse
|
57
|
Terrin L, Trentin L, Degan M, Corradini I, Bertorelle R, Carli P, Maschio N, Bo MD, Noventa F, Gattei V, Semenzato G, De Rossi A. Telomerase expression in B-cell chronic lymphocytic leukemia predicts survival and delineates subgroups of patients with the same igVH mutation status and different outcome. Leukemia 2007; 21:965-72. [PMID: 17344921 DOI: 10.1038/sj.leu.2404607] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activation of telomerase reverse transcriptase (hTERT) is essential for unlimited cell growth and plays a critical role in tumorigenesis. We investigated hTERT gene expression in 134 B-cell chronic lymphocytic leukemia (B-CLL) cases and evaluated its prognostic value with other prognostic markers (IgVH mutation status, CD38 and ZAP-70 expression). Real-time PCR assays to quantify either all hTERT transcripts (AT) or only the full length (FL) transcript encoding the functional protein were developed. hTERT-AT levels strongly correlated with hTERT-FT levels (r=0.743, P<0.0001); both inversely correlated with the percentage of IgVH mutation (P<0.005) and were significantly higher in unmutated than in mutated cases (P=0.004 and P=0.001, respectively). The hTERT values which best discriminated between the unmutated and mutated IgVH cases were 150 and 40 copies for hTERT-AT and hTERT-FL, respectively. Using these cut-off values, there was a significant difference in the survival of patients with high or low hTERT levels (P<0.0001). Unmutated cases with low hTERT levels had an overall survival close to mutated cases with high hTERT levels. Thus, this work identifies hTERT-RNA level as a new prognostic marker in B-CLL, and may be used to identify previously unrecognized patient groups with the same IgVH mutation status and different disease outcomes.
Collapse
Affiliation(s)
- L Terrin
- Section of Oncology, Department of Oncology and Surgical Sciences, University of Padua, Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Wolfrom C, Martin OC, Laurent M, Deschatrette J. Sinusoidal swinging dynamics of the telomere repair and cell growth activation functions of telomerase in rat liver cancer cells. FEBS Lett 2006; 581:125-30. [PMID: 17182040 DOI: 10.1016/j.febslet.2006.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 08/02/2006] [Accepted: 12/03/2006] [Indexed: 12/27/2022]
Abstract
Telomerase is a multimolecular complex of reverse transcriptase, RNA template, and regulatory proteins. It has two known functions: catalysis of the addition of [TTAGGG] repeats to telomeric DNA and the activation of various genes controlling cell proliferation. The possible coordination of these two functions is a key issue in understanding the growth of cancer cells. We report long-term changes to this complex system, as shown by specific data analysis methods. We show that the dynamics of the two functions of telomerase are tightly linked, with a change in predominant function every 13-14 weeks. The conservative behavior of this dynamic system probably accounts for the persistent proliferation of cancer cells.
Collapse
Affiliation(s)
- Claire Wolfrom
- CNRS-UMR 8080 Développement et Evolution, Bâtiment 440, Université Paris-Sud Orsay, F-91405 Orsay, France.
| | | | | | | |
Collapse
|
59
|
Massard C, Zermati Y, Pauleau AL, Larochette N, Métivier D, Sabatier L, Kroemer G, Soria JC. hTERT: a novel endogenous inhibitor of the mitochondrial cell death pathway. Oncogene 2006; 25:4505-14. [PMID: 16619047 DOI: 10.1038/sj.onc.1209487] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
hTERT is the catalytic subunit of the telomerase and is hence required for telomerase maintenance activity and cancer cell immortalization. Here, we show that acute hTERT depletion has no adverse effects on the viability or proliferation of cervical and colon carcinoma cell lines, as evaluated within 72 h after transfection with hTERT-specific small interfering RNAs (siRNAs). Within the same time frame, hTERT depletion facilitated the induction of apoptotic cell death by cisplatin, etoposide, mitomycin C and reactive oxygen species, yet failed to sensitize cells to death induction via the CD95 death receptor. Experiments performed with p53 knockout cells or chemical p53 inhibitors revealed that p53 was not involved in the chemosensitizing effect of hTERT knockdown. However, the proapoptotic Bcl-2 family protein Bax was involved in cell death induction by hTERT siRNAs. Depletion of hTERT facilitated the conformational activation of Bax induced by genotoxic agents. Moreover, Bax knockout abolished the chemosensitizing effect of hTERT siRNAs. Inhibition of mitochondrial membrane permeabilization by overexpression of Bcl-2 or expression of the cytomegalovirus-encoded protein vMIA (viral mitochondrial inhibitor of apoptosis), which acts as a specific Bax inhibitor, prevented the induction of cell death by the combination of hTERT depletion and chemotherapeutic agents. Altogether, our data indicate that hTERT inhibition may constitute a promising strategy for facilitating the induction of the mitochondrial pathway of apoptosis.
Collapse
Affiliation(s)
- C Massard
- CNRS-UMR8125, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Pallini R, Sorrentino A, Pierconti F, Maggiano N, Faggi R, Montano N, Maira G, Larocca LM, Levi A, Falchetti ML. Telomerase inhibition by stable RNA interference impairs tumor growth and angiogenesis in glioblastoma xenografts. Int J Cancer 2006; 118:2158-67. [PMID: 16331616 DOI: 10.1002/ijc.21613] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Telomerase is highly expressed in advanced stages of most cancers where it allows the clonal expansion of transformed cells by counteracting telomere erosion. Telomerase may also contribute to tumor progression through still undefined cell growth-promoting functions. Here, we inhibited telomerase activity in 2 human glioblastoma (GBM) cell lines, TB10 and U87MG, by targeting the catalytic subunit, hTERT, via stable RNA interference (RNAi). Although the reduction in telomerase activity had no effect on GBM cell growth in vitro, the development of tumors in subcutaneously and intracranially grafted nude mice was significantly inhibited by antitelomerase RNAi. The in vivo effect was observed within a relatively small number of population doublings, suggesting that telomerase inhibition may hinder cancer cell growth in vivo prior to a substantial shortening of telomere length. Tumor xenografts that arose from telomerase-inhibited GBM cells also showed a less-malignant phenotype due both to the absence of massive necrosis and to reduced angiogenesis.
Collapse
Affiliation(s)
- Roberto Pallini
- Institute of Neurosurgery, Catholic University School of Medicine, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Kraemer K, Schmidt U, Fuessel S, Herr A, Wirth MP, Meye A. Microarray analyses in bladder cancer cells: Inhibition of hTERT expression down-regulates EGFR. Int J Cancer 2006; 119:1276-84. [PMID: 16615118 DOI: 10.1002/ijc.21975] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human telomerase reverse transcriptase (hTERT) contributes to the immortal phenotype of the majority of cancers. Targeting hTERT by transfection with antisense oligonucleotides (AS-ODNs) induced immediate growth inhibition in human bladder cancer (BCa) cells. The molecular basis of the antiproliferative capacity of hTERT AS-ODNs was investigated by oligonucleotide microarray analyses and was compared to effects caused by siRNA-mediated knock-down of hTERT in EJ28 BCa cells. Two different AS-ODNs -- both down-regulated the expression of hTERT -- changed the expression of different genes mainly involved in stress response (including EGR1, ATF3 and GDF15), but without an association to telomerase function. This indicates that the immediate growth inhibition was caused, at least in part, by off-target effects. In comparison to that the blockade of the expression of hTERT using 2 different siRNAs was accompanied by the down-regulation of the oncogenes FOS-like antigen 1 (FOSL1) and epidermal growth factor receptor (EGFR), known to be overexpressed in BCa. We show here for the first time that repression of the hTERT transcript number decreased the expression of EGFR both at the mRNA and protein levels, suggesting a potential new function of hTERT in the regulation of EGFR-stimulated proliferation. Furthermore, the suppression of hTERT by siRNAs caused an enhancement of the antiproliferative capacity of the chemotherapeutics mitomycin C and cisplatin. The results presented herein may support the hypothesis that hTERT promotes the growth of tumor cells by mechanisms independent from telomere lengthening. The detailed clarification of these processes will shed light on the question, whether telomerase inhibitors might constitute suitable anticancer tools.
Collapse
Affiliation(s)
- Kai Kraemer
- Department of Urology, Technical University of Dresden, Dresden, Germany
| | | | | | | | | | | |
Collapse
|