51
|
Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer's disease. Eur J Med Chem 2018; 158:463-477. [PMID: 30243151 DOI: 10.1016/j.ejmech.2018.09.031] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/03/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders in elderly people. Considering the multifactorial nature of AD, the concept of multi-target-directed ligands (MTDLs) has recently emerged as a new strategy for designing therapeutic agents on AD. MTDLs are confirmed to simultaneously affect diverse targets which contribute to etiology of AD. As the most potent approved drug, donepezil affects various events of AD, like inhibiting cholinesterases activities, anti-Aβ aggregation, anti-oxidative stress et al. Modifications of donepezil or hybrids with pharmacophores of donepezil in recent five years are summarized in this article. On the basis of case studies, our concerns and opinions about development of donepezil derivatives, designing of MTDLs, and perspectives for AD treatments are discussed in final part.
Collapse
|
52
|
Caliandro R, Pesaresi A, Cariati L, Procopio A, Oliverio M, Lamba D. Kinetic and structural studies on the interactions of Torpedo californica acetylcholinesterase with two donepezil-like rigid analogues. J Enzyme Inhib Med Chem 2018; 33:794-803. [PMID: 29651884 PMCID: PMC6009889 DOI: 10.1080/14756366.2018.1458030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acetylcholinesterase inhibitors were introduced for the symptomatic treatment of Alzheimer’s disease (AD). Among the currently approved inhibitors, donepezil (DNP) is one of the most preferred choices in AD therapy. The X-ray crystal structures of Torpedo californica AChE in complex with two novel rigid DNP-like analogs, compounds 1 and 2, have been determined. Kinetic studies indicated that compounds 1 and 2 show a mixed-type inhibition against TcAChE, with Ki values of 11.12 ± 2.88 and 29.86 ± 1.12 nM, respectively. The DNP rigidification results in a likely entropy-enthalpy compensation with solvation effects contributing primarily to AChE binding affinity. Molecular docking evidenced the molecular basis for the binding of compounds 1 and 2 to the active site of β-secretase-1. Overall, these simplified DNP derivatives may represent new structural templates for the design of lead compounds for a more effective therapeutic strategy against AD by foreseeing a dual AChE and BACE-1 inhibitory activity.
Collapse
Affiliation(s)
- Rosanna Caliandro
- a Istituto di Cristallografia, Consiglio Nazionale delle Ricerche , Trieste , Italy
| | - Alessandro Pesaresi
- a Istituto di Cristallografia, Consiglio Nazionale delle Ricerche , Trieste , Italy
| | - Luca Cariati
- b Dipartimento di Scienze della Salute , Università degli Studi "Magna Graecia" , Catanzaro , Italy
| | - Antonio Procopio
- b Dipartimento di Scienze della Salute , Università degli Studi "Magna Graecia" , Catanzaro , Italy
| | - Manuela Oliverio
- b Dipartimento di Scienze della Salute , Università degli Studi "Magna Graecia" , Catanzaro , Italy
| | - Doriano Lamba
- a Istituto di Cristallografia, Consiglio Nazionale delle Ricerche , Trieste , Italy
| |
Collapse
|
53
|
Mezeiova E, Spilovska K, Nepovimova E, Gorecki L, Soukup O, Dolezal R, Malinak D, Janockova J, Jun D, Kuca K, Korabecny J. Profiling donepezil template into multipotent hybrids with antioxidant properties. J Enzyme Inhib Med Chem 2018. [PMID: 29529892 PMCID: PMC6009928 DOI: 10.1080/14756366.2018.1443326] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease is debilitating neurodegenerative disorder in the elderly. Current therapy relies on administration of acetylcholinesterase inhibitors (AChEIs) -donepezil, rivastigmine, galantamine, and N-methyl-d-aspartate receptor antagonist memantine. However, their therapeutic effect is only short-term and stabilizes cognitive functions for up to 2 years. Given this drawback together with other pathological hallmarks of the disease taken into consideration, novel approaches have recently emerged to better cope with AD onset or its progression. One such strategy implies broadening the biological profile of AChEIs into so-called multi-target directed ligands (MTDLs). In this review article, we made comprehensive literature survey emphasising on donepezil template which was structurally converted into plethora of MTLDs preserving anti-cholinesterase effect and, at the same time, escalating the anti-oxidant potential, which was reported as a crucial role in the pathogenesis of the Alzheimer’s disease.
Collapse
Affiliation(s)
- Eva Mezeiova
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,b National Institute of Mental Health , Klecany , Czech Republic
| | - Katarina Spilovska
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,b National Institute of Mental Health , Klecany , Czech Republic.,d Department of Chemistry , University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Eugenie Nepovimova
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , Hradec Kralove , Czech Republic.,d Department of Chemistry , University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Lukas Gorecki
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , Hradec Kralove , Czech Republic
| | - Ondrej Soukup
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,b National Institute of Mental Health , Klecany , Czech Republic
| | - Rafael Dolezal
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - David Malinak
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,d Department of Chemistry , University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Jana Janockova
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic
| | - Daniel Jun
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , Hradec Kralove , Czech Republic
| | - Kamil Kuca
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,d Department of Chemistry , University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Jan Korabecny
- a Biomedical Research Centre, University Hospital Hradec Kralove , Hradec Kralove , Czech Republic.,c Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences , Hradec Kralove , Czech Republic
| |
Collapse
|
54
|
Therapeutic evaluation of solid lipid nanoparticle of quercetin in pentylenetetrazole induced cognitive impairment of zebrafish. Life Sci 2018. [DOI: 10.1016/j.lfs.2018.03.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
55
|
Gondru R, Saini R, Vaarla K, Singh S, Sirassu N, Bavantula R, Saxena AK. Synthesis and Characterization of Chalcone-Pyridinium Hybrids as Potential Anti-Cancer and Anti-Microbial Agents. ChemistrySelect 2018. [DOI: 10.1002/slct.201702971] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ramesh Gondru
- Department of Chemistry; National Institute of Technology; Warangal- 506004, Telangana State India, Tel.: 0091-0870-2459445
| | - Ratni Saini
- CSIR-Central Drug Research Institute-Lucknow; Uttar Pradesh- 226031 India
| | - Krishnaiah Vaarla
- Department of Chemistry; National Institute of Technology; Warangal- 506004, Telangana State India, Tel.: 0091-0870-2459445
| | - Sarika Singh
- CSIR-Central Drug Research Institute-Lucknow; Uttar Pradesh- 226031 India
| | - Narsimha Sirassu
- Department of Chemistry; Kakatiya University; Warangal- 506009, Telangana State India
| | - Rajitha Bavantula
- Department of Chemistry; National Institute of Technology; Warangal- 506004, Telangana State India, Tel.: 0091-0870-2459445
| | - Anil K. Saxena
- CSIR-Central Drug Research Institute-Lucknow; Uttar Pradesh- 226031 India
| |
Collapse
|
56
|
Zhang X, He X, Chen Q, Lu J, Rapposelli S, Pi R. A review on the hybrids of hydroxycinnamic acid as multi-target-directed ligands against Alzheimer’s disease. Bioorg Med Chem 2018; 26:543-550. [DOI: 10.1016/j.bmc.2017.12.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/14/2017] [Accepted: 12/24/2017] [Indexed: 01/31/2023]
|
57
|
Novel donepezil-like N -benzylpyridinium salt derivatives as AChE inhibitors and their corresponding dihydropyridine “bio-oxidizable” prodrugs: Synthesis, biological evaluation and structure-activity relationship. Eur J Med Chem 2018; 145:165-190. [DOI: 10.1016/j.ejmech.2017.12.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 11/22/2022]
|
58
|
Dias Viegas FP, de Freitas Silva M, Divino da Rocha M, Castelli MR, Riquiel MM, Machado RP, Vaz SM, Simões de Lima LM, Mancini KC, Marques de Oliveira PC, Morais ÉP, Gontijo VS, da Silva FMR, D'Alincourt da Fonseca Peçanha D, Castro NG, Neves GA, Giusti-Paiva A, Vilela FC, Orlandi L, Camps I, Veloso MP, Leomil Coelho LF, Ionta M, Ferreira-Silva GÁ, Pereira RM, Dardenne LE, Guedes IA, de Oliveira Carneiro Junior W, Quaglio Bellozi PM, Pinheiro de Oliveira AC, Ferreira FF, Pruccoli L, Tarozzi A, Viegas C. Design, synthesis and pharmacological evaluation of N-benzyl-piperidinyl-aryl-acylhydrazone derivatives as donepezil hybrids: Discovery of novel multi-target anti-alzheimer prototype drug candidates. Eur J Med Chem 2018; 147:48-65. [PMID: 29421570 DOI: 10.1016/j.ejmech.2018.01.066] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/23/2022]
Abstract
A new series of sixteen multifunctional N-benzyl-piperidine-aryl-acylhydrazones hybrid derivatives was synthesized and evaluated for multi-target activities related to Alzheimer's disease (AD). The molecular hybridization approach was based on the combination, in a single molecule, of the pharmacophoric N-benzyl-piperidine subunit of donepezil, the substituted hydroxy-piperidine fragment of the AChE inhibitor LASSBio-767, and an acylhydrazone linker, a privileged structure present in a number of synthetic aryl- and aryl-acylhydrazone derivatives with significant AChE and anti-inflammatory activities. Among them, compounds 4c, 4d, 4g and 4j presented the best AChE inhibitory activities, but only compounds 4c and 4g exhibited concurrent anti-inflammatory activity in vitro and in vivo, against amyloid beta oligomer (AβO) induced neuroinflammation. Compound 4c also showed the best in vitro and in vivo neuroprotective effects against AβO-induced neurodegeneration. In addition, compound 4c showed a similar binding mode to donepezil in both acetylated and free forms of AChE enzyme in molecular docking studies and did not show relevant toxic effects on in vitro and in vivo assays, with good predicted ADME parameters in silico. Overall, all these results highlighted compound 4c as a promising and innovative multi-target drug prototype candidate for AD treatment.
Collapse
Affiliation(s)
- Flávia Pereira Dias Viegas
- Institute of Chemistry, Laboratory of Research on Medicinal Chemistry, Federal University of Alfenas, MG 37133-840, Brazil
| | - Matheus de Freitas Silva
- Institute of Chemistry, Laboratory of Research on Medicinal Chemistry, Federal University of Alfenas, MG 37133-840, Brazil
| | - Miguel Divino da Rocha
- Institute of Chemistry, Laboratory of Research on Medicinal Chemistry, Federal University of Alfenas, MG 37133-840, Brazil
| | - Maísa Rosa Castelli
- Institute of Chemistry, Laboratory of Research on Medicinal Chemistry, Federal University of Alfenas, MG 37133-840, Brazil
| | - Mariana Máximo Riquiel
- Institute of Chemistry, Laboratory of Research on Medicinal Chemistry, Federal University of Alfenas, MG 37133-840, Brazil
| | - Rafael Pereira Machado
- Institute of Chemistry, Laboratory of Research on Medicinal Chemistry, Federal University of Alfenas, MG 37133-840, Brazil
| | - Sarah Macedo Vaz
- Institute of Chemistry, Laboratory of Research on Medicinal Chemistry, Federal University of Alfenas, MG 37133-840, Brazil
| | - Laís Medeiros Simões de Lima
- Institute of Chemistry, Laboratory of Research on Medicinal Chemistry, Federal University of Alfenas, MG 37133-840, Brazil
| | - Karla Cristine Mancini
- Institute of Chemistry, Laboratory of Research on Medicinal Chemistry, Federal University of Alfenas, MG 37133-840, Brazil
| | | | - Élida Parreira Morais
- Institute of Chemistry, Laboratory of Research on Medicinal Chemistry, Federal University of Alfenas, MG 37133-840, Brazil
| | - Vanessa Silva Gontijo
- Institute of Chemistry, Laboratory of Research on Medicinal Chemistry, Federal University of Alfenas, MG 37133-840, Brazil
| | - Fernanda Motta R da Silva
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, RJ 21941-902, Brazil
| | | | - Newton Gonçalves Castro
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, RJ 21941-902, Brazil
| | - Gilda A Neves
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, RJ 21941-902, Brazil
| | - Alexandre Giusti-Paiva
- Institute of Biomedical Sciences, Federal University of Minas Gerais, MG 37130-000, Brazil
| | - Fabiana Cardoso Vilela
- Institute of Biomedical Sciences, Federal University of Minas Gerais, MG 37130-000, Brazil
| | - Lidiane Orlandi
- Institute of Biomedical Sciences, Federal University of Minas Gerais, MG 37130-000, Brazil
| | - Ihosvany Camps
- Institute of Exact Sciences, Federal University of Alfenas, MG 37130-000, Brazil
| | | | - Luis Felipe Leomil Coelho
- Laboratory of Vaccines, Institute of Biomedical Sciences, Federal University of Alfenas, MG 37130-000, Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Minas Gerais, MG 37130-000, Brazil
| | | | | | - Laurent E Dardenne
- National Laboratory of Computational Sciences, Petrópolis, RJ 25651-075, Brazil
| | | | | | | | | | - Fábio Furlan Ferreira
- Centre of Natural and Human Sciences, Federal University of ABC, Santo André, SP 09210-580, Brazil
| | - Letizia Pruccoli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini 47921, Italy
| | - Andrea Tarozzi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini 47921, Italy
| | - Claudio Viegas
- Institute of Chemistry, Laboratory of Research on Medicinal Chemistry, Federal University of Alfenas, MG 37133-840, Brazil.
| |
Collapse
|
59
|
Palanimuthu D, Poon R, Sahni S, Anjum R, Hibbs D, Lin HY, Bernhardt PV, Kalinowski DS, Richardson DR. A novel class of thiosemicarbazones show multi-functional activity for the treatment of Alzheimer's disease. Eur J Med Chem 2017; 139:612-632. [DOI: 10.1016/j.ejmech.2017.08.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/07/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022]
|
60
|
Chierrito TPC, Pedersoli-Mantoani S, Roca C, Requena C, Sebastian-Perez V, Castillo WO, Moreira NCS, Pérez C, Sakamoto-Hojo ET, Takahashi CS, Jiménez-Barbero J, Cañada FJ, Campillo NE, Martinez A, Carvalho I. From dual binding site acetylcholinesterase inhibitors to allosteric modulators: A new avenue for disease-modifying drugs in Alzheimer's disease. Eur J Med Chem 2017; 139:773-791. [PMID: 28863358 DOI: 10.1016/j.ejmech.2017.08.051] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022]
Abstract
The lack of an effective treatment for Alzheimer' disease (AD), an increasing prevalence and severe neurodegenerative pathology boost medicinal chemists to look for new drugs. Currently, only acethylcholinesterase (AChE) inhibitors and glutamate antagonist have been approved to the palliative treatment of AD. Although they have a short-term symptomatic benefits, their clinical use have revealed important non-cholinergic functions for AChE such its chaperone role in beta-amyloid toxicity. We propose here the design, synthesis and evaluation of non-toxic dual binding site AChEIs by hybridization of indanone and quinoline heterocyclic scaffolds. Unexpectely, we have found a potent allosteric modulator of AChE able to target cholinergic and non-cholinergic functions by fixing a specific AChE conformation, confirmed by STD-NMR and molecular modeling studies. Furthermore the promising biological data obtained on human neuroblastoma SH-SY5Y cell assays for the new allosteric hybrid 14, led us to propose it as a valuable pharmacological tool for the study of non-cholinergic functions of AChE, and as a new important lead for novel disease modifying agents against AD.
Collapse
Affiliation(s)
- Talita P C Chierrito
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Susimaire Pedersoli-Mantoani
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Carlos Roca
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carlos Requena
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Victor Sebastian-Perez
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Willian O Castillo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Natalia C S Moreira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Concepción Pérez
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900, 14040-900, Ribeirão Preto, SP, Brazil
| | - Catarina S Takahashi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900, 14040-900, Ribeirão Preto, SP, Brazil
| | - Jesús Jiménez-Barbero
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain; CIC BioGUNE, Parque Tecnologico de Bizkaia, Edif. 801A, 48160, Derio-Bizkaia, Bilbao, Spain
| | - F Javier Cañada
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Nuria E Campillo
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martinez
- IPSBB Unit, Centro de Investigaciones Biologicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
61
|
Kaushik AC, Kumar A, Dwivedi VD, Bharadwaj S, Kumar S, Bharti K, Kumar P, Chaudhary RK, Mishra SK. Deciphering the Biochemical Pathway and Pharmacokinetic Study of Amyloid βeta-42 with Superparamagnetic Iron Oxide Nanoparticles (SPIONs) Using Systems Biology Approach. Mol Neurobiol 2017; 55:3224-3236. [DOI: 10.1007/s12035-017-0546-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
|