51
|
Mermer A, Demirbas N, Cakmak U, Colak A, Demirbas A, Alagumuthu M, Arumugam S. Discovery of Novel Sulfonamide‐Based 5‐Arylidenerhodanines as Effective Carbonic Anhydrase (II) Inhibitors: Microwave‐Assisted and Ultrasound‐Assisted One‐Pot Four‐Component Synthesis, Molecular Docking, and Anti‐CA II Screening Studies. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Arif Mermer
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | - Neslihan Demirbas
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | - Ummuhan Cakmak
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | - Ahmet Colak
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | - Ahmet Demirbas
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | | | - Sivakumar Arumugam
- Department of Biotechnology, School of Bio‐Science and TechnologyVIT Vellore India
| |
Collapse
|
52
|
Wu WN, Jiang YM, Fei Q, Du HT. Synthesis and fungicidal activity of novel 1,2,4-triazole derivatives containing a pyrimidine moiety. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1633321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wen-Neng Wu
- Food and pharmaceutical Engineering Institute, Guiyang University, Guiyang, PR China
| | - Yang-Ming Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, PR China
| | - Qiang- Fei
- Food and pharmaceutical Engineering Institute, Guiyang University, Guiyang, PR China
| | - Hai-Tang Du
- Food and pharmaceutical Engineering Institute, Guiyang University, Guiyang, PR China
| |
Collapse
|
53
|
Ahmed NM, Youns M, Soltan MK, Said AM. Design, synthesis, molecular modelling, and biological evaluation of novel substituted pyrimidine derivatives as potential anticancer agents for hepatocellular carcinoma. J Enzyme Inhib Med Chem 2019; 34:1110-1120. [PMID: 31117890 PMCID: PMC6537702 DOI: 10.1080/14756366.2019.1612889] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
New anticancer agents are highly needed to overcome cancer cell resistance. A novel series of pyrimidine pyrazoline-anthracene derivatives (PPADs) (4a-t) were designed and synthesised. The anti-liver cancer activity of all compounds was screened in vitro against two hepatocellular carcinoma (HCC) cell lines (HepG2 and Huh-7) as well as normal fibroblast cells by resazurin assay. The designed compounds 4a-t showed a broad-spectrum anticancer activity against the two cell lines and their activity was more prominent on cancer compared to normal cells. Compound 4e showed high potency against HepG2 and Huh-7 cell lines ((IC50=5.34 and 6.13 μg/mL, respectively) comparable to that of doxorubicin (DOX) activities. A structure activity relationship (SAR) has been investigated and compounds 4e, 4i, 4m, and 4q were the most promising anticancer agents against tested cell lines. These compounds induced apoptosis in HepG2 and Huh-7 cells through significant activation of caspase 3/7 at all tested concentrations. In conclusion, 4e could be a potent anticancer drug.
Collapse
Affiliation(s)
- Naglaa Mohamed Ahmed
- a Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy , Helwan University , Cairo , Egypt
| | - Mahmoud Youns
- b Biochemistry Department, Faculty of Pharmacy , Helwan University , Cairo , Egypt.,c Department of Functional Genome Analysis , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Moustafa Khames Soltan
- d Medicinal Chemistry Department, Faculty of Pharmacy , Zagazig University , Zagazig , Egypt.,e Oman College of Health Sciences , Muscat , Sultanate of Oman
| | - Ahmed Mohammed Said
- a Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy , Helwan University , Cairo , Egypt.,f Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , NY , USA
| |
Collapse
|
54
|
Popiołek Ł, Biernasiuk A, Paruch K, Malm A, Wujec M. Synthesis and in Vitro Antimicrobial Activity Screening of New 3-Acetyl-2,5-disubstituted-1,3,4-oxadiazoline Derivatives. Chem Biodivers 2019; 16:e1900082. [PMID: 31050208 DOI: 10.1002/cbdv.201900082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/29/2019] [Indexed: 01/18/2023]
Abstract
Thirteen new 3-acetyl-2,5-disubstituted-1,3,4-oxadiazoline derivatives were synthesized from corresponding hydrazide-hydrazones of isonicotinic acid in the reaction with acetic anhydride. The obtained compounds were identified with the use of spectral methods (IR, 1 H-NMR, 13 C-NMR, MS). In vitro antimicrobial activity screening of synthesized compounds against a panel of bacteria and fungi revealed interesting antibacterial and antifungal activity of tested 1,3,4-oxadiazoline derivatives, which is comparable to that of commonly used antimicrobial agents.
Collapse
Affiliation(s)
- Łukasz Popiołek
- Chair and Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 4A Chodźki Street, 20-093, Lublin, Poland
| | - Anna Biernasiuk
- Chair and Department of Pharmaceutical Microbiology, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 1 Chodźki Street, 20-093, Lublin, Poland
| | - Kinga Paruch
- Chair and Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 4A Chodźki Street, 20-093, Lublin, Poland
| | - Anna Malm
- Chair and Department of Pharmaceutical Microbiology, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 1 Chodźki Street, 20-093, Lublin, Poland
| | - Monika Wujec
- Chair and Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, 4A Chodźki Street, 20-093, Lublin, Poland
| |
Collapse
|
55
|
Özil M, Balaydın HT, Şentürk M. Synthesis of 5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-one’s aryl Schiff base derivatives and investigation of carbonic anhydrase and cholinesterase (AChE, BuChE) inhibitory properties. Bioorg Chem 2019; 86:705-713. [DOI: 10.1016/j.bioorg.2019.02.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022]
|
56
|
Koparir P. Synthesis, antioxidant and antitumor activities of some of new cyclobutane containing triazoles derivatives. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1597363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pelin Koparir
- Department of Chemistry, Forensic Medicine Institute, Malatya, Turkey
| |
Collapse
|
57
|
Synthesis of 1-(5-Chloro-2-hydroxyphenyl)-5-oxopyrrolidine-3-carboxylic Acid Derivatives and Their Antioxidant Activity. Molecules 2019; 24:molecules24050971. [PMID: 30857336 PMCID: PMC6429199 DOI: 10.3390/molecules24050971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 11/17/2022] Open
Abstract
A series of novel 1-(5-chloro-2-hydroxyphenyl)-5-oxopyrrolidine-3-carboxylic acid derivatives containing chloro, hydroxyl, isopropyl, nitro, nitroso, and amino substituents at benzene ring and 1-(5-chloro-2-hydroxyphenyl)-5-oxopyrrolidine-3-carbohydrazide derivatives bearing heterocyclic moieties were synthesized. Antioxidant activity of the synthesized compounds was screened by DPPH radical scavenging method and reducing power assay. A number of compounds were identified as potent antioxidants. Antioxidant activity of 1-(5-chloro-2-hydroxyphenyl)-4-(5-thioxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)pyrrolidin-2-one has been tested to be 1.5 times higher than that of a well-known antioxidant ascorbic acid. 1-(5-Chloro-2-hydroxyphenyl)-4-(4-methyl-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-yl)pyrrolidin-2-one has shown 1.35 times higher antioxidant activity than that of vitamin C by DPPH radical scavenging method and optical density value of 1.149 in reducing power assay. The structure of 1-(5-chloro-2-hydroxyphenyl)-N-(1,3-dioxoisoindolin-2-yl)-5-oxopyrrolidine-3-carboxamide was unambiguously assigned by means of X-ray diffraction analysis data.
Collapse
|
58
|
Santosh R, Prabhu A, Selvam MK, Krishna PM, Nagaraja GK, Rekha PD. Design, synthesis, and pharmacology of some oxadiazole and hydroxypyrazoline hybrids bearing thiazoyl scaffold: antiproliferative activity, molecular docking and DNA binding studies. Heliyon 2019; 5:e01255. [PMID: 30886919 PMCID: PMC6393698 DOI: 10.1016/j.heliyon.2019.e01255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/19/2018] [Accepted: 02/14/2019] [Indexed: 11/16/2022] Open
Abstract
A series of oxadiazole (7a-l) and hydroxypyrazoline derivatives (8a-l) incorporating thiazole were synthesized and characterized by spectral analysis (1H-NMR, 13C-NMR, Mass, and FT-IR). The synthesized compounds were screened for their in vitro cytotoxicity against MDA-MB231 and HT-29 human cell lines. Conjugates 7d, 7e, 7f, 7i, 7l, 8a, 8b, 8i and 8l exhibited significant antiproliferative activity on both MDA-MB231 and HT-29 cell lines. Flow cytometric analysis reveals that, 7i arrests both cells lines at Go/G1 phase whereas 8i induced G0/G1 arrest only in the HT-29 cells. Furthermore, Computational interaction studies of 7i and 8i exhibited its capacity of being a plausible CDK2 and BCL-2 inhibitor respectively. In addition, DNA binding of the synthesized compounds and DNA docking of 7i and 8i demonstrated the ability to interact with DNA. Compounds 7i and 8i causes' remarkable growth inhibition of MDA-MB231 and HT-29 cells but compound 8i was considerably effective against HT-29 cells. Overall these compounds can be practiced for further drug development.
Collapse
Affiliation(s)
- Rangappa Santosh
- Department of Studies in Chemistry, Mangalore University, Mangaluru, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya University, Mangaluru, Karnataka, India
| | - Mukunthan K Selvam
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Panchangam M Krishna
- Department of Chemistry, Ramaiah Institute of Technology, Bangalore, Karnataka, India
| | | | | |
Collapse
|
59
|
Reddy GM, Garcia JR, Zyryanov GV, Sravya G, Reddy NB. Pyranopyrazoles as efficient antimicrobial agents: Green, one pot and multicomponent approach. Bioorg Chem 2019; 82:324-331. [DOI: 10.1016/j.bioorg.2018.09.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/24/2018] [Indexed: 01/30/2023]
|
60
|
Nandwana N, Singh RP, Patel OPS, Dhiman S, Saini HK, Jha PN, Kumar A. Design and Synthesis of Imidazo/Benzimidazo[1,2- c]quinazoline Derivatives and Evaluation of Their Antimicrobial Activity. ACS OMEGA 2018; 3:16338-16346. [PMID: 31458269 PMCID: PMC6643530 DOI: 10.1021/acsomega.8b01592] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/19/2018] [Indexed: 05/26/2023]
Abstract
A new class of fused quinazolines has been designed and synthesized via copper-catalyzed Ullmann type C-N coupling followed by intramolecular cross-dehydrogenative coupling reaction in moderate to good yields. The synthesized compounds were tested for in vitro antibacterial activity against three Gram negative (Escherichia coli, Pseudomonas putida, and Salmonella typhi) and two Gram positive (Bacillus subtilis, and Staphylococcus aureus) bacteria. Among all tested compounds, 8ga, 8gc, and 8gd exhibited promising minimum inhibitory concentration (MIC) values (4-8 μg/mL) for all bacterial strains tested as compared to the positive control ciprofloxacin. The synthesized compounds were also evaluated for their in vitro antifungal activity against Aspergillus niger and Candida albicans and compounds 8ga, 8gc, and 8gd having potential antibacterial activity also showed pronounced antifungal activity (MIC values 8-16 μg/mL) against both strains. The bactericidal assay by propidium iodide and live-dead bacterial cell screening using a mixture of acridine orange/ethidium bromide (AO/Et·Br) showed considerable changes in the bacterial cell membrane, which might be the cause or consequence of cell death. Moreover, the hemolytic activity for most potent compounds (8ga, 8gc, and 8gd) showed their safety profile toward human blood cells.
Collapse
Affiliation(s)
- Nitesh
Kumar Nandwana
- Department
of Chemistry and Department of Biological Sciences, Birla
Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Rajnish Prakash Singh
- Department
of Chemistry and Department of Biological Sciences, Birla
Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Om P. S. Patel
- Department
of Chemistry and Department of Biological Sciences, Birla
Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Shiv Dhiman
- Department
of Chemistry and Department of Biological Sciences, Birla
Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Hitesh Kumar Saini
- Department
of Chemistry and Department of Biological Sciences, Birla
Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Prabhat N. Jha
- Department
of Chemistry and Department of Biological Sciences, Birla
Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Anil Kumar
- Department
of Chemistry and Department of Biological Sciences, Birla
Institute of Technology and Science, Pilani 333031, Rajasthan, India
| |
Collapse
|
61
|
Mermer A, Demirbas N, Colak A, Demir EA, Kulabas N, Demirbas A. One‐pot, Four‐Component Green Synthesis, Carbonic Anhydrase II Inhibition and Docking Studies of 5‐Arylidenerhodanines. ChemistrySelect 2018. [DOI: 10.1002/slct.201802677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Arif Mermer
- Karadeniz Technical UniversityDepartment of Chemistry 61080 Trabzon TURKEY
| | - Neslihan Demirbas
- Karadeniz Technical UniversityDepartment of Chemistry 61080 Trabzon TURKEY
| | - Ahmet Colak
- Karadeniz Technical UniversityDepartment of Chemistry 61080 Trabzon TURKEY
| | | | - Necla Kulabas
- Department of Pharmaceutical ChemistryFaculty of PharmacyMarmara University Haydarpaşa 34668 İstanbul TURKEY
| | - Ahmet Demirbas
- Karadeniz Technical UniversityDepartment of Chemistry 61080 Trabzon TURKEY
| |
Collapse
|
62
|
Gudi Y, Mangali MS, Gundala S, Venkatapuram P, Adivireddy P. Synthesis, characterization, and bioassay of a new class of pyrazolyl/isoxazolyl oxadiazoles. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2295-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
63
|
Gunthanakkala AK, Mangali M, Gudi Y, Tatha S, Venkatapuram P, Adivireddy P. Synthesis and Antioxidant Activity of Bis (Aroyl/Arylsulfonyl Ethenesulfonylmethylazolyl)Pyridines. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Madhusekhar Mangali
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | - Yamini Gudi
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | - Sreenivasulu Tatha
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | | | - Padmaja Adivireddy
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| |
Collapse
|
64
|
Lim FPL, Tan LY, Tiekink ERT, Dolzhenko A. Synthesis of 3-(5-amino-1H-1,2,4-triazol-3-yl)propanamides and their tautomerism. RSC Adv 2018; 8:22351-22360. [PMID: 35539716 PMCID: PMC9081160 DOI: 10.1039/c8ra04576c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
Two complementary pathways for the preparation of N-substituted 3-(5-amino-1H-1,2,4-triazol-3-yl)propanamides (5) were proposed and successfully realized in the synthesis of 20 representative examples. These methods use the same types of starting materials viz. succinic anhydride, aminoguanidine hydrochloride, and a variety of amines. The choice of the pathway and sequence of the introduction of reagents to the reaction depended on the amine nucleophilicity. The first pathway started with the preparation of N-guanidinosuccinimide, which then reacted with amines under microwave irradiation to afford 5. The desired products were successfully obtained in the reaction with aliphatic amines (primary and secondary) via a nucleophilic opening of the succinimide ring and the subsequent recyclization of the 1,2,4-triazole ring. This approach however failed when less nucleophilic aromatic amines were used. Therefore, an alternative pathway, with the initial preparation of N-arylsuccinimides and their subsequent reaction with aminoguanidine hydrochloride under microwave irradiation, was applied. The annular prototropic tautomerism in the prepared 1,2,4-triazoles 5 was studied using NMR spectroscopy and X-ray crystallography. Two complementary pathways for the preparation of N-substituted 3-(5-amino-1H-1,2,4-triazol-3-yl)propanamides were proposed and successfully realized in the synthesis of 20 representative examples.![]()
Collapse
Affiliation(s)
| | - Lin Yuing Tan
- School of Pharmacy
- Monash University Malaysia
- Selangor Darul Ehsan 47500
- Malaysia
| | - Edward R. T. Tiekink
- Research Centre for Crystalline Materials
- School of Science and Technology
- Sunway University
- Selangor Darul Ehsan 47500
- Malaysia
| | - Anton V. Dolzhenko
- School of Pharmacy
- Monash University Malaysia
- Selangor Darul Ehsan 47500
- Malaysia
- School of Pharmacy and Biomedical Sciences
| |
Collapse
|