51
|
Liu J, Ye W, Xu JP, Wang HT, Li XF, Wang WY, Zhou ZZ. Discovery of novel trimethoxyphenylbenzo[d]oxazoles as dual tubulin/PDE4 inhibitors capable of inducing apoptosis at G2/M phase arrest in glioma and lung cancer cells. Eur J Med Chem 2021; 224:113700. [PMID: 34311158 DOI: 10.1016/j.ejmech.2021.113700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/09/2021] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Abstract
To discover PDE4/tubulin dual inhibitors with novel skeleton structures, 7-trimethoxyphenylbenzo[d]oxazoles 4a-u and 4-trimethoxyphenylbenzo[d]oxazoles 5a-h were designed and synthesized by migrating the trimethoxyphenyl group of TH03 to the benzo[d]oxazole moiety. Among these compounds, approximately half of them displayed good antiproliferative activities against glioma (U251) and lung cancer (A549 and H460) cell lines. The structure-activity relationships of trimethoxyphenylbenzo[d]oxazoles led to the identification of 4r bearing indol-5-yl side-chain as a novel dual PDE4/tubulin inhibitor, which exhibited satisfactory antiproliferative activities against glioma (IC50 = 300 ± 50 nM) and lung cancer (average IC50 = 39.5 nM) cells. Further investigations revealed that 4r induced apoptosis at G2/M phase arrest and disrupted the microtubule network. The preliminary mechanism of action showed that 4r down-regulated the expression of cyclin B1 and its upstream regulator gene cdc25C in A549.
Collapse
Affiliation(s)
- Jie Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wan Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiang-Ping Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Key Laboratory of Mental Health of the Ministry Education, Southern Medical University, Guangzhou, 510515, China
| | - Hai-Tao Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Fang Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Wen-Ya Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zhong-Zhen Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Pharmacy Department, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
52
|
Negi M, Chawla P, Faruk A, Chawla V. Role of 4-Thiazolidinone Scaffold in Targeting Variable Biomarkers and Pathways Involving Cancer. Anticancer Agents Med Chem 2021; 22:1458-1477. [PMID: 34229596 DOI: 10.2174/1871520621666210706104227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer can be considered as a genetic as well as a metabolic disorder. Current cancer treatment scenario looks like aggravating tumor cell metabolism, causing the disease to progress even with greater intensity. The cancer therapy is restricted to limitations of poor patient compliance due to toxicities to normal tissues and multi-drug resistance development. There is an emerging need for cancer therapy to be more focused on the better understanding of genetic, epigenetic and transcriptional changes resulting in cancer progression and their relationship with treatment sensitivity. OBJECTIVE The 4-thiazolidinone nucleus possesses marked anticancer potential towards different biotargets, thus targeting different cancer types like breast, prostate, lung, colorectal and colon cancers, renal cell adenocarcinomas and gliomas. Therefore, conjugating the 4-thiazolidinone scaffold with other promising moieties or by directing the therapy towards targeted drug delivery systems like the use of nanocarrier systems, can provide the gateway for optimizing the anticancer efficiency and minimizing the adverse effects and drug resistance development, thus providing stimulus for personalized pharmacotherapy. METHODS An exhaustive literature survey has been carried out to give an insight into the anticancer potential of the 4-thiazolidinone nucleus either alone or in conjugation with other active moieties, with the mechanisms involved in preventing proliferation and metastasis of cancer covering a vast range of publications of repute. CONCLUSION This review aims to summarise the work reported on anticancer activity of 4-thiazolidinone derivatives covering various cancer biomarkers and pathways involved, citing the data from 2005 till now, which may be beneficial to the researchers for future development of more efficient 4-thiazolidinone derivatives.
Collapse
Affiliation(s)
- Meenakshi Negi
- Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar Garhwal, Uttarakhand, India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Abdul Faruk
- Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar Garhwal, Uttarakhand, India
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences and Research, BFUHS University, Faridkot, India
| |
Collapse
|
53
|
Matesanz AI, Herrero JM, Quiroga AG. Chemical and Biological Evaluation of Thiosemicarbazone-Bearing Heterocyclic Metal Complexes. Curr Top Med Chem 2021; 21:59-72. [PMID: 33092510 DOI: 10.2174/1568026620666201022144004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 01/07/2023]
Abstract
Thiosemicarbazones (TSCNs) constitute a broad family of compounds (R1R2C=N-NH-C(S)- NR3R4), particularly attractive because many of them display some biological activity against a wide range of microorganisms and cancer cells. Their activity can be related to their electronic and structural properties, which offer a rich set of donor atoms for metal coordination and a high electronic delocalization providing different binding modes for biomolecules. Heterocycles such as pyrrole, imidazole and triazole are present in biological molecules such as Vitamine B12 and amino acids and could potentially target multiple biological processes. Considering this, we have explored the chemistry and biological properties of thiosemicarbazones series and their complexes bearing heterocycles such as pyrrole, imidazole, thiazole and triazole. We focus at the chemistry and cytotoxicity of those derivatives to find out the structure activity relationships, and particularly we analyzed those examples with the TSCN units in which the mechanism of action information has been profoundly studied and pathways determined, to promote future studies for heterocycle derivatives.
Collapse
Affiliation(s)
- Ana I Matesanz
- Departamento Quimica Inorganica, Universidad Autonoma de Madrid, Madrid, Spain
| | - Jorge M Herrero
- Departamento Quimica Inorganica, Universidad Autonoma de Madrid, Madrid, Spain
| | - Adoración G Quiroga
- Departamento Quimica Inorganica, Universidad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
54
|
Design and synthesis of novel orally selective and type II pan-TRK inhibitors to overcome mutations by property-driven optimization. Eur J Med Chem 2021; 224:113673. [PMID: 34303872 DOI: 10.1016/j.ejmech.2021.113673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
Rare oncogenic NTRK gene fusions result in uncontrolled TRK signaling leading to various adult and pediatric solid tumors. Based on the architecture of our multi-targeted clinical candidate BPR1K871 (10), we designed and synthesized a series of quinazoline compounds as selective and orally bioavailable type II TRK inhibitors. Property-driven and lead optimization strategies informed by structure-activity relationship studies led to the identification of 39, which showed higher (about 15-fold) selectivity for TRKA over AURA and AURB, as well as potent cellular activity (IC50 = 56.4 nM) against the KM12 human colorectal cancer cell line. 39 also displayed good AUC and oral bioavailability (F = 27%), excellent in vivo efficacy (TGI = 64%) in a KM12 xenograft model, and broad-spectrum anti-TRK mutant potency (IC50 = 3.74-151.4 nM), especially in the double-mutant TRKA enzymatic assays. 39 is therefore proposed for further development as a next-generation, selective, and orally-administered type II TRK inhibitor.
Collapse
|
55
|
Effect of a novel thiazole derivative and its complex with a polymeric carrier on stability of DNA in human breast cancer cells. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
56
|
Bhagat DS, Chawla PA, Gurnule WB, Shejul SK, Bumbrah GS. An Insight into Synthesis and Anticancer Potential of Thiazole and 4-thiazolidinone Containing Motifs. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825999210101234704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the years, the branch of oncology has reached a mature stage, and substantial
development and advancement have been achieved in this dimension of medical science. The
synthesis and isolation of numerous novel anticancer agents of natural and synthetic origins
have been reported. Thiazole and 4-thiazolidinone containing heterocyclic compounds, having
a broad spectrum of pharmaceutical activities, represent a significant class of medicinal
chemistry. Thiazole and 4-thiazolidinone are five-membered unique heterocyclic motifs containing
S and N atoms as an essential core scaffold and have commendable medicinal significance.
Thiazoles and 4-thiazolidinones containing heterocyclic compounds are used as building
blocks for the next generation of pharmaceuticals. Thiazole precursors have been frequently
used due to their capabilities to bind to numerous cancer-specific protein targets.
Suitably, thiazole motifs have a biological suit via inhibition of different signaling pathways involved in cancer
causes. The scientific community has always tried to synthesize novel thiazole-based heterocycles by carrying out
different replacements of functional groups or skeleton around thiazole moiety. Herein, we report the current trend of
research and development in anticancer activities of thiazoles and 4-thiazolidinones containing scaffolds. In the current
study, we have also highlighted some other significant biological properties of thiazole, novel protocols of synthesis
for the synthesis of the new candidates, along with a significant broad spectrum of the anticancer activities of
thiazole containing scaffolds. This study facilitates the development of novel thiazole and 4-thiazolidinone containing
candidates with potent, efficient anticancer activity and less cytotoxic property.
Collapse
Affiliation(s)
- Devidas S. Bhagat
- Department of Forensic Chemistry and Toxicology, Government Institute of Forensic Science, Aurangabad 431 004, (MS), India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Wasudeo B. Gurnule
- Department of Chemistry, Kamla Nehru Mahavidyalaya, Nagpur-440024, (MS), India
| | - Sampada K. Shejul
- Department of Life Science, Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431 001, (MS), India
| | - Gurvinder S. Bumbrah
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University, 122413, Haryana, India
| |
Collapse
|
57
|
Wang DW, Liang L, Xue ZY, Yu SY, Zhang RB, Wang X, Xu H, Wen X, Xi Z. Discovery of N-Phenylaminomethylthioacetylpyrimidine-2,4-diones as Protoporphyrinogen IX Oxidase Inhibitors through a Reaction Intermediate Derivation Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4081-4092. [PMID: 33787231 DOI: 10.1021/acs.jafc.1c00796] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) is an effective target for green herbicide discovery. In this work, we reported the unexpected discovery of a novel series of N-phenylaminomethylthioacetylpyrimidine-2,4-diones (2-6) as promising PPO inhibitors based on investigating the reaction intermediates of our initially designed N-phenyluracil thiazolidinone (1). An efficient one-pot procedure that gave 41 target compounds in good to high yields was developed. Systematic Nicotiana tabacum PPO (NtPPO) inhibitory and herbicidal activity evaluations led to identifying some compounds with improved NtPPO inhibition potency than saflufenacil and good post-emergence herbicidal activity at 37.5-150 g of ai/ha. Among these analogues, ethyl 2-((((2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl)phenyl)amino)methyl)thio)acetate (2c) (Ki = 11 nM), exhibited excellent weed control at 37.5-150 g of ai/ha and was safe for rice at 150 g of ai/ha, indicating that compound 2c has the potential to be developed as a new herbicide for weed management in paddy fields. Additionally, our molecular simulation and metabolism studies showed that the side chains of compound 2c could form a hydrogen-bond-mediated seven-membered ring system; substituting a methyl group at R1 could reinforce the hydrogen bond of the ring system and reduce the metabolic rate of target compounds in planta.
Collapse
Affiliation(s)
- Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Lu Liang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhi-Yuan Xue
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Shu-Yi Yu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Rui-Bo Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xia Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Han Xu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
58
|
Fabra D, Matesanz AI, Herrero JM, Alvarez C, Balsa LM, Leon IE, Quiroga AG. Two Different Thiosemicarbazone Tauto‐Conformers Coordinate to Palladium (II). Stability and Biological Studies of the Final Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David Fabra
- Inorganic Chemistry Department Universidad Autónoma de Madrid Madrid 28049 Spain
| | - Ana I. Matesanz
- Inorganic Chemistry Department Universidad Autónoma de Madrid Madrid 28049 Spain
| | - Jorge M. Herrero
- Inorganic Chemistry Department Universidad Autónoma de Madrid Madrid 28049 Spain
| | - Cristina Alvarez
- Inorganic Chemistry Department Universidad Autónoma de Madrid Madrid 28049 Spain
| | - Lucia M. Balsa
- Centro de Química Inorgánica (CEQUINOR CONICET-UNLP) Facultad de Ciencias Exactas Universidad Nacional de La Plata Bv 120 1465 1900 La Plata Argentina
| | - Ignacio E. Leon
- Centro de Química Inorgánica (CEQUINOR CONICET-UNLP) Facultad de Ciencias Exactas Universidad Nacional de La Plata Bv 120 1465 1900 La Plata Argentina
| | - Adoracion G. Quiroga
- Inorganic Chemistry Department Universidad Autónoma de Madrid Madrid 28049 Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid Madrid 28049 Spain
| |
Collapse
|
59
|
Donarska B, Świtalska M, Płaziński W, Wietrzyk J, Łączkowski KZ. Effect of the dichloro-substitution on antiproliferative activity of phthalimide-thiazole derivatives. Rational design, synthesis, elastase, caspase 3/7, and EGFR tyrosine kinase activity and molecular modeling study. Bioorg Chem 2021; 110:104819. [PMID: 33752144 DOI: 10.1016/j.bioorg.2021.104819] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/20/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023]
Abstract
Phthalimide derivatives are a promising group of anticancer drugs, while aminothiazoles have great potential as elastase inhibitors. In these context fourteen phthalimido-thiazoles containing a dichloro-substituted phenyl ring with high antiproliferative activity against various cancer cell lines were designed and synthesized. Among the screened derivatives, compounds 5a-5e and 6a-6f showed high activity against human leukemia (MV4-11) cells with IC50 values in the range of 5.56-16.10 µM. The phthalimide-thiazoles 5a, 5b and 5d showed the highest selectivity index (SI) relative to MV4-11 with 11.92, 10.80 and 8.21 values, respectively. The antiproliferative activity of compounds 5e, 5f and 6e, 6f against human lung carcinoma (A549) cells is also very high, with IC50 values in the range of 6.69-10.41 µM. Lead compounds 6e and 6f showed elastase inhibition effect, with IC50 values about 32 μM with mixed mechanism of action. The molecular modeling studies showed that the binding energies calculated for all set of compounds are strongly correlated with the experimentally determined values of IC50. The lead compound 6e also increases almost 16 times caspase 3/7 activity in A549 cells compared to control. We have also demonstrated that compound 6f reduced EGFR tyrosine kinase levels in A549 cells by approximately 31%. These results clearly suggest that 3,4-dichloro-derivative 6e and 3,5-dichloro-derivative 6f could constitute lead dual-targeted anticancer drug candidates.
Collapse
Affiliation(s)
- Beata Donarska
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Marta Świtalska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Krzysztof Z Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland.
| |
Collapse
|
60
|
Importance of substituents in ring opening: a DFT study on a model reaction of thiazole to thioamide. J Mol Model 2021; 27:89. [PMID: 33611758 DOI: 10.1007/s00894-021-04704-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/04/2021] [Indexed: 02/05/2023]
Abstract
Thiazole ring is an important active molecular skeleton of drugs. Thiazole in natural products and drugs are usually harmlessly eliminated. However, hepatotoxic reactions may occur due to the biological activation of thiazole to produce reactive thioamide. A typical example is hepatotoxic sudoxicam and safety meloxicam. The only structural difference between them is a methyl group on C5 position of thiazole in meloxicam. The molecular basis for the difference remains unknown and the bioactivation mechanism of the thiazole ring is still obscure. Quantum chemical calculations were performed to elucidate the activation mechanism of the thiazole ring under P450 catalysis, and the influence of the substituents on the activation pathways of thiazole ring was also studied. The calculated results show that the activation of thiazole is closely related to the substituents on the thiazole and spin state of Cpd I. The thiazole and substituted thiazole directly open the ring when catalyzed by doublet spin state Cpd I that catalyzed by the quartet spin state Cpd I can open the ring directly or indirectly, which is related to the substituents. Thiazoles modified with electron-donating substituents mainly undergo direct ring opening, while thiazoles modified with electron-withdrawing groups or weak electron-donating groups mainly undergo indirect ring-opening process accompanied by intermediate formation. The research results laid the foundation for the design of thiazole ring drugs, and also laid a theoretical foundation for the study of reducing the toxicity of thiazole ring drugs.
Collapse
|
61
|
An Overview of the Synthesis and Antimicrobial, Antiprotozoal, and Antitumor Activity of Thiazole and Bisthiazole Derivatives. Molecules 2021; 26:molecules26030624. [PMID: 33504100 PMCID: PMC7865802 DOI: 10.3390/molecules26030624] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Thiazole, a five-membered heteroaromatic ring, is an important scaffold of a large number of synthetic compounds. Its diverse pharmacological activity is reflected in many clinically approved thiazole-containing molecules, with an extensive range of biological activities, such as antibacterial, antifungal, antiviral, antihelmintic, antitumor, and anti-inflammatory effects. Due to its significance in the field of medicinal chemistry, numerous biologically active thiazole and bisthiazole derivatives have been reported in the scientific literature. The current review provides an overview of different methods for the synthesis of thiazole and bisthiazole derivatives and describes various compounds bearing a thiazole and bisthiazole moiety possessing antibacterial, antifungal, antiprotozoal, and antitumor activity, encouraging further research on the discovery of thiazole-containing drugs.
Collapse
|
62
|
Qi F, Song J, Huang J. Synthesis, spectral characteristics, weak interactions, electronic properties and biological activity of (E)-1-(4-hydroxybenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone: An experimental and theoretical approach. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
63
|
Barani H, Haseloer A, Mathur S, Klein A. Sustained release of a thiosemicarbazone from antibacterial electrospun poly(lactic‐co‐glycolic acid) fiber mats. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Alexander Haseloer
- Department of Chemistry, Institute for Inorganic Chemistry University of Cologne Cologne Germany
| | - Sanjay Mathur
- Department of Chemistry, Institute for Inorganic Chemistry University of Cologne Cologne Germany
| | - Axel Klein
- Department of Carpet University of Birjand Birjand Iran
- Department of Chemistry, Institute for Inorganic Chemistry University of Cologne Cologne Germany
| |
Collapse
|
64
|
Preparation of thiazolidin-4-one derivatives using ZnO–NiO–NiFe2O4 nano-composite system. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04287-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
65
|
Yan X, Wen J, Zhou L, Fan L, Wang X, Xu Z. Current Scenario of 1,3-oxazole Derivatives for Anticancer Activity. Curr Top Med Chem 2020; 20:1916-1937. [PMID: 32579505 DOI: 10.2174/1568026620666200624161151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
Cancer, which has been cursed for human beings for long time is considered as one of the
leading causes of morbidity and mortality across the world. In spite of different types of treatments
available, chemotherapy is still deemed as a favored treatment for the cancer. Unfortunately, many currently
accessible anticancer agents have developed multidrug resistance along with fatal adverse effects.
Therefore, intensive efforts have been made to seek for new active drugs with improved anticancer efficacy
and reduced adverse effects. In recent years, the emergence of heterocyclic ring-containing anticancer
agents has gained a great deal of attention among medicinal chemists. 1,3- oxazole is a versatile
heterocyclic compound, and its derivatives possess broad-spectrum pharmacological properties, including
anticancer activity against both drug-susceptible, drug-resistant and even multidrug-resistant cancer
cell lines through multiple mechanisms. Thus, the 1,3-oxazole moiety is a useful template for the development
of novel anticancer agents. This review will provide a comprehensive overview of the recent
advances on 1,3-oxazole derivatives with potential therapeutic applications as anticancer agents, focus
on the chemical structures, anticancer activity, and mechanisms of action.
Collapse
Affiliation(s)
- Xinjia Yan
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Jing Wen
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Lin Zhou
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Lei Fan
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Xiaobo Wang
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Zhi Xu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
66
|
Güzel-Akdemir Ö, Trawally M, Özbek-Babuç M, Özbek-Çelik B, Ermut G, Özdemir H. Synthesis and antibacterial activity of new hybrid derivatives of 5-sulfamoyl-1H-indole and 4-thiazolidinone groups. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02664-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
67
|
Magnesium acetate – an effective electrophilic activator of the carbonyl group in transesterification of dialkylaziridine dicarboxylates. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02744-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
68
|
Milunović MNM, Palamarciuc O, Sirbu A, Shova S, Dumitrescu D, Dvoranová D, Rapta P, Petrasheuskaya TV, Enyedy EA, Spengler G, Ilic M, Sitte HH, Lubec G, Arion VB. Insight into the Anticancer Activity of Copper(II) 5-Methylenetrimethylammonium-Thiosemicarbazonates and Their Interaction with Organic Cation Transporters. Biomolecules 2020; 10:E1213. [PMID: 32825480 PMCID: PMC7565988 DOI: 10.3390/biom10091213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
A series of four water-soluble salicylaldehyde thiosemicarbazones with a positively charged trimethylammonium moiety ([H2LR]Cl, R = H, Me, Et, Ph) and four copper(II) complexes [Cu(HLR)Cl]Cl (1-4) were synthesised with the aim to study (i) their antiproliferative activity in cancer cells and, (ii) for the first time for thiosemicarbazones, the interaction with membrane transport proteins, specifically organic cation transporters OCT1-3. The compounds were comprehensively characterised by analytical, spectroscopic and X-ray diffraction methods. The highest cytotoxic effect was observed in the neuroblastoma cell line SH-5YSY after 24 h exposure and follows the rank order: 3 > 2 > 4 > cisplatin > 1 >>[H2LR]Cl. The copper(II) complexes showed marked interaction with OCT1-3, comparable to that of well-known OCT inhibitors (decynium 22, prazosin and corticosterone) in the cell-based radiotracer uptake assays. The work paves the way for the development of more potent and selective anticancer drugs and/or OCT inhibitors.
Collapse
Affiliation(s)
- Miljan N. M. Milunović
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Oleg Palamarciuc
- Department of Chemistry, Moldova State University, A. Mateevici Street 60, MD-2009 Chisinau, Moldova; (O.P.); (A.S.)
| | - Angela Sirbu
- Department of Chemistry, Moldova State University, A. Mateevici Street 60, MD-2009 Chisinau, Moldova; (O.P.); (A.S.)
| | - Sergiu Shova
- Petru Poni Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, Aleea Grigore Ghica Voda, Nr. 41A, 700487 Iasi, Romania;
| | - Dan Dumitrescu
- Elettra—Sincrotrone Trieste S.C.p.A, Strada Statale 14—km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy;
| | - Dana Dvoranová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia; (D.D.); (P.R.)
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovakia; (D.D.); (P.R.)
| | - Tatsiana V. Petrasheuskaya
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (T.V.P.); (E.A.E.)
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary;
| | - Eva A. Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (T.V.P.); (E.A.E.)
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary;
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary;
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | - Marija Ilic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria;
- Institute of Pharmacology, Centre for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria;
- Neuroproteomics, Paracelsus Private Medical University, 5020 Salzburg, Austria;
| | - Harald H. Sitte
- Institute of Pharmacology, Centre for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria;
| | - Gert Lubec
- Neuroproteomics, Paracelsus Private Medical University, 5020 Salzburg, Austria;
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|
69
|
Alvarez N, Velluti F, Guidali F, Serra G, Gabriela Kramer M, Ellena J, Facchin G, Scarone L, Torre MH. New BI and TRI-Thiazole copper (II) complexes in the search of new cytotoxic drugs against breast cancer cells. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
70
|
Elzahhar PA, Abd El Wahab SM, Elagawany M, Daabees H, Belal AS, EL-Yazbi AF, Eid AH, Alaaeddine R, Hegazy RR, Allam RM, Helmy MW, Bahaa Elgendy, Angeli A, El-Hawash SA, Supuran CT. Expanding the anticancer potential of 1,2,3-triazoles via simultaneously targeting Cyclooxygenase-2, 15-lipoxygenase and tumor-associated carbonic anhydrases. Eur J Med Chem 2020; 200:112439. [DOI: 10.1016/j.ejmech.2020.112439] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
|
71
|
Guo H, Diao QP. 1,3,5-Triazine-azole Hybrids and their Anticancer Activity. Curr Top Med Chem 2020; 20:1481-1492. [DOI: 10.2174/1568026620666200310122741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
Abstract
1,3,5-Triazine and azole can interact with various therapeutic targets, and their derivatives
possess promising in vitro and in vivo anticancer activity. Hybrid molecules have the potential to enhance
efficiency, overcome drug resistance and reduce side effects, and many hybrid molecules are under
different phases of clinical trials, so hybridization of 1,3,5-triazine with azole may provide valuable
therapeutic intervention for the treatment of cancer. Substantial efforts have been made to develop
azole-containing 1,3,5-triazine hybrids as novel anticancer agents, and some of them exhibited excellent
activity. This review emphasizes azole-containing 1,3,5-triazine hybrids with potential anticancer activity,
and the structure-activity relationships as well as the mechanisms of action are also discussed to
provide comprehensive and target-oriented information for the development of this kind of anticancer
drugs.
Collapse
Affiliation(s)
- Hua Guo
- School of Chemistry and Life Science, Anshan Normal University, Anshan, Liaoning, China
| | - Quan-Ping Diao
- School of Chemistry and Life Science, Anshan Normal University, Anshan, Liaoning, China
| |
Collapse
|
72
|
Johnson J, Yardily A. Synthesis, spectral investigation, thermal, molecular modeling and bio-molecular docking studies of a thiazole derived chalcone and its metal complexes. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1795145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jino Johnson
- Department of Chemistry and Research Centre, Scott Christian College, (Autonomous) Nagercoil, Tamil Nadu, India (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India)
| | - A. Yardily
- Department of Chemistry and Research Centre, Scott Christian College, (Autonomous) Nagercoil, Tamil Nadu, India (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India)
| |
Collapse
|
73
|
Farghaly TA, Abo Alnaja AM, El-Ghamry HA, Shaaban MR. Synthesis and DNA binding of novel bioactive thiazole derivatives pendent to N-phenylmorpholine moiety. Bioorg Chem 2020; 102:104103. [PMID: 32717695 DOI: 10.1016/j.bioorg.2020.104103] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022]
Abstract
An easy access to a series of N-phenylmorpholine derivatives linked with thiazole or formazan moieties were achieved using simple experimental procedure under conventional and microwaves irradiation conditions. The reaction of 2-(N-phenylmorpholine)ethylidene)hydrazine-1-carbothioamide derivatives and [1-(4-morpholin-4-yl-phenyl)-ethylidene]-hydrazine with a variety of hydrazonoyl chlorides or phenacyl bromide derivatives afforded the corresponding thiazoles or N-substitutedhydrazino-derivatives linked to N-phenylmorpholine moiety in good to excellent yields. The structures of the newly synthesized compounds were fully emphasized and characterized by spectroscopic as well as elemental analyses. The mode of binding of some selected compounds with SS-DNA was evaluated using UV-Vis absorption, and viscosity measurements. The results showed intercalation binding mode of most of the tested compounds. Both antimicrobial and anti-cancer activities have been studied for some selected compounds from synthetic derivatives. Their results showed a remarkable efficacy for some derivatives against both examined microbes and cancer cells.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt; Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Almukaramah, Saudi Arabia.
| | - Alaa M Abo Alnaja
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Almukaramah, Saudi Arabia
| | - Hoda A El-Ghamry
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Almukaramah, Saudi Arabia; Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed R Shaaban
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
74
|
Barani H, Khorashadizadeh M, Haseloer A, Klein A. Characterization and Release Behavior of a Thiosemicarbazone from Electrospun Polyvinyl Alcohol Core-Shell Nanofibers. Polymers (Basel) 2020; 12:E1488. [PMID: 32635276 PMCID: PMC7407991 DOI: 10.3390/polym12071488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022] Open
Abstract
Mats of polyvinyl alcohol (PVA) core-shell nanofibers were produced using coaxial electrospinning in the presence of a thiosemicarbazone (TSC) N4-(S)-1-phenylethyl)-2-(pyridin-2-yl-ethylidene)hydrazine-1-carbothioamide (HapyTSCmB). Monolithic fibers with 0% or 5% TSC and core-shell fibers with 10% TSC in the spinning solution were studied to compare stability and release rates. SEM showed the formation of uniform, bead-free, cylindrical, and smooth fibers. NMR spectroscopy and thermal analysis (TG/DTA) gave proof for the chemical integrity of the TSC in the fiber mats after the electrospinning process. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy showed no TSC on the surface of the PVA/TSC-PVA fibers confirming the core-shell character. The TSC release profiles of the fibers as studied using UV-vis absorption spectroscopy showed a slower release from the PVA/TSC-PVA core-shell structure compared with the monolithic PVA/TSC fibers as well as lower cumulative release percentage (17%). Out of several release models, the Korsmeyer-Peppas model gave the best fit to the experimental data. The main release phase can be described with a Fick-type diffusion mechanism. Antibacterial properties were tested against the Gram-positive Staphylococcus aureus bacterium and gave a minimal inhibitory concentration of 12.5 μg/mL. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazoliumbromide (MTT)-based cytotoxicity experiments showed that the cell viability of fibroblast at different contents of TSC was slightly decreased from 1.5% up to 3.5% when compared to control cells.
Collapse
Affiliation(s)
- Hossein Barani
- Department of Carpet, Faculty of Arts, University of Birjand, Birjand 9717434765, Iran
| | - Mohsen Khorashadizadeh
- Department of Medical Biotechnology, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Alexander Haseloer
- Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany;
| | - Axel Klein
- Department of Carpet, Faculty of Arts, University of Birjand, Birjand 9717434765, Iran
- Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany;
| |
Collapse
|
75
|
In vitro cytotoxic activity of thiazole-indenoquinoxaline hybrids as apoptotic agents, design, synthesis, physicochemical and pharmacokinetic studies. Bioorg Chem 2020; 100:103951. [DOI: 10.1016/j.bioorg.2020.103951] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/23/2020] [Accepted: 05/14/2020] [Indexed: 01/09/2023]
|
76
|
Bakir M, Lawrence MW, Bohari Yamin M. Novel κ2-Nim,S- and κ4-C,Nim,(μ-S),(μ-S)-coordination of di-2-thienyl ketone thiosemicarbazone (dtktsc). Hydrogen evolution and catalytic properties of palladacyclic [Pd(κ4-C,Nim,(μ-S),(μ-S)-dtktsc-2H)]4. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
77
|
Almeida CM, de Carvalho JGM, Fujimori M, França EL, Honorio-França AC, Parreira RLT, Orenha RP, Gatto CC. Structural investigation of group 10 metal complexes with thiosemicarbazone: crystal structure, mass spectrometry, Hirshfeld surface and in vitro antitumor activity. Struct Chem 2020. [DOI: 10.1007/s11224-020-01564-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
78
|
Gao F, Huang G, Xiao J. Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure-activity relationship. Med Res Rev 2020; 40:2049-2084. [PMID: 32525247 DOI: 10.1002/med.21698] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022]
Abstract
The continuous emergency of drug-resistant cancers and the low specificity of anticancer agents have been the major challenges in the control and treatment of cancer, making an urgent need to develop novel anticancer agents with high efficacy. Chalcones, precursors of flavonoids and isoflavonoids, exhibit structural heterogeneity and can act on various drug targets. Chalcones which demonstrated potential in vitro and in vivo activity against both drug-susceptible and drug-resistant cancers, are useful templates for the development of novel anticancer agents. Hybridization of chalcone moiety with other anticancer pharmacophores could provide the hybrids which have the potential to overcome drug resistance and improve the specificity, so it represents a promising strategy to develop novel anticancer agents. This review emphasizes the development, the mechanisms of action as well as structure-activity relationships of chalcone hybrids with potential therapeutic application for many cancers in recent 10 years.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
79
|
Synthesis and anticancer activities of thiosemicarbazones derivatives of thiochromanones and related scaffolds. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02503-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
80
|
Shimada K, Isogami M, Maeda K, Nishinomiya R, Korenaga T. Convenient Synthesis of 2,3-Dihydro-1,2,4-thiadiazoles, 4,5-Dihydro-1,3-thiazoles, and 1,3-Thiazoles through a [4+1]-Type Oxidative Ring Closure of 1,3-Thiaza-1,3-butadienes. HETEROCYCLES 2020. [DOI: 10.3987/com-20-14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
81
|
Salhi L, Achouche-Bouzroura S, Nechak R, Nedjar-Kolli B, Rabia C, Merazig H, Poulain-Martini S, Dunach E. Synthesis of functionalized dihydroimidazo[1,2-A]pyridines and 4-thiazolidinone derivatives from maleimide, as new class of antimicrobial agents. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1699933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lydia Salhi
- Laboratory of Applied Organic Chemistry, University of Sciences and Technology, Bab-Ezzouar, Algiers, Algeria
| | - Samia Achouche-Bouzroura
- Laboratory of Applied Organic Chemistry, University of Sciences and Technology, Bab-Ezzouar, Algiers, Algeria
| | - Rosa Nechak
- Laboratory of Applied Organic Chemistry, University of Sciences and Technology, Bab-Ezzouar, Algiers, Algeria
| | - Bellara Nedjar-Kolli
- Laboratory of Applied Organic Chemistry, University of Sciences and Technology, Bab-Ezzouar, Algiers, Algeria
| | - Chérifa Rabia
- Laboratory of Natural Gas Chemistry, University of Sciences and Technology, Bab-Ezzouar, Algiers, Algeria
| | - Hocine Merazig
- Chemistry Research Unit of Environmental and Molecular Structural (CHEMS), Faculty of Exact Sciences, Department of Chemistry, University of Constantine, Constantine, Algeria
| | | | - Elisabet Dunach
- Chemistry Institute of Nice, Université Côte d'Azur, CNRS, Nice Cedex 2, France
| |
Collapse
|
82
|
Farghaly TA, El-Metwaly N, Al-Soliemy AM, Katouah HA, Muhammad ZA, Sabour R. Synthesis, Molecular Docking and Antitumor Activity of New Dithiazoles. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1689512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nashwa El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amerah M. Al-Soliemy
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hanadi A. Katouah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Zeinab A. Muhammad
- National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Rehab Sabour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
83
|
Khan MH, Cai M, Li S, Zhang Z, Zhang J, Wen X, Sun H, Liang H, Yang F. Developing a binuclear multi-target Bi(III) complex by optimizing 2-acetyl-3-ethylpyrazine thiosemicarbazides. Eur J Med Chem 2019; 182:111616. [DOI: 10.1016/j.ejmech.2019.111616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/25/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
|
84
|
Piechowska K, Świtalska M, Cytarska J, Jaroch K, Łuczykowski K, Chałupka J, Wietrzyk J, Misiura K, Bojko B, Kruszewski S, Łączkowski KZ. Discovery of tropinone-thiazole derivatives as potent caspase 3/7 activators, and noncompetitive tyrosinase inhibitors with high antiproliferative activity: Rational design, one-pot tricomponent synthesis, and lipophilicity determination. Eur J Med Chem 2019; 175:162-171. [DOI: 10.1016/j.ejmech.2019.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/03/2019] [Indexed: 12/24/2022]
|