51
|
Zhang W, Zhang S, Guan W, Huang Z, Kong J, Huang C, Wang H, Yang S. Poly C Binding Protein 1 Regulates p62/SQSTM1 mRNA Stability and Autophagic Degradation to Repress Tumor Progression. Front Genet 2020; 11:930. [PMID: 32922440 PMCID: PMC7457068 DOI: 10.3389/fgene.2020.00930] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence show that Poly C Binding Protein 1 (PCBP1) is deleted in distinct types of tumors as a novel tumor suppressor, but its tumor suppression mechanism remains elusive. Here, we firstly describe that downregulation of PCBP1 is significantly associated with clinical ovarian tumor progression. Mechanistically, PCBP1 overexpression affects various autophagy-related genes expression at various expression levels to attenuate the intrinsic cell autophagy, including the autophagy-initiating ULK, ATG12, ATG7 as well as the bona fide marker of autophagosome, LC3B. Accordingly, knockdown of the endogenous PCBP1 in turn enhances autophagy and less cell death. Meanwhile, PCBP1 upregulates p62/SQSTM1 via inhibition p62/SQSTM1 autophagolysome and proteasome degradation as well as its mRNA stability, consequently accompanying with the caspase 3 or 8 activation for tumor cell apoptosis. Importantly, clinical ovary cancer sample analysis consistently validates the relevance of PCBP1 expression to both p62/SQSTM1 and caspase-8 to overall survival, and indicates PCBP1 may be a master player to repress tumor initiation. Taken together, our results uncover the tumorigenic mechanism of PCBP1 depletion and suggest that inhibition of tumor cell autophagy with autophagic inhibitors could be an effective therapeutical strategy for PCBP1-deficient tumor.
Collapse
Affiliation(s)
- Wenliang Zhang
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shaoyang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wen Guan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhicong Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jianqiu Kong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunlong Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | - Shulan Yang
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering and Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
52
|
Mou Y, Wen S, Li YX, Gao XX, Zhang X, Jiang ZY. Recent progress in Keap1-Nrf2 protein-protein interaction inhibitors. Eur J Med Chem 2020; 202:112532. [PMID: 32668381 DOI: 10.1016/j.ejmech.2020.112532] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 12/16/2022]
Abstract
Therapeutic targeting the protein-protein interaction (PPI) of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and its main regulator, Kelch-like ECH-Associating protein 1 (Keap1) has been emerged as a feasible way to combat oxidative stress related diseases, due to the key role of Nrf2 in oxidative stress regulation. In recent years, many efforts have been made to develop potent Keap1-Nrf2 inhibitors with new chemical structures. Various molecules with diverse chemical structures have been reported and some compounds exhibit high potency. This review summarizes peptide and small molecule Keap1-Nrf2 inhibitors reported recently. We also highlight the pharmacological effects and discuss the possible therapeutic application of Keap1-Nrf2 inhibitors.
Collapse
Affiliation(s)
- Yi Mou
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Shuai Wen
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Yu-Xiu Li
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Xin-Xing Gao
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Xin Zhang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Zheng-Yu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|