51
|
Sincere NI, Anand K, Ashique S, Yang J, You C. PROTACs: Emerging Targeted Protein Degradation Approaches for Advanced Druggable Strategies. Molecules 2023; 28:molecules28104014. [PMID: 37241755 DOI: 10.3390/molecules28104014] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
A potential therapeutic strategy to treat conditions brought on by the aberrant production of a disease-causing protein is emerging for targeted protein breakdown using the PROTACs technology. Few medications now in use are tiny, component-based and utilize occupancy-driven pharmacology (MOA), which inhibits protein function for a short period of time to temporarily alter it. By utilizing an event-driven MOA, the proteolysis-targeting chimeras (PROTACs) technology introduces a revolutionary tactic. Small-molecule-based heterobifunctional PROTACs hijack the ubiquitin-proteasome system to trigger the degradation of the target protein. The main challenge PROTAC's development facing now is to find potent, tissue- and cell-specific PROTAC compounds with favorable drug-likeness and standard safety measures. The ways to increase the efficacy and selectivity of PROTACs are the main focus of this review. In this review, we have highlighted the most important discoveries related to the degradation of proteins by PROTACs, new targeted approaches to boost proteolysis' effectiveness and development, and promising future directions in medicine.
Collapse
Affiliation(s)
- Nuwayo Ishimwe Sincere
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut 250103, India
| | - Jing Yang
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
52
|
Lin JY, Liu HJ, Wu Y, Jin JM, Zhou YD, Zhang H, Nagle DG, Chen HZ, Zhang WD, Luan X. Targeted Protein Degradation Technology and Nanomedicine: Powerful Allies against Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207778. [PMID: 36693784 DOI: 10.1002/smll.202207778] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/08/2023] [Indexed: 05/04/2023]
Abstract
Targeted protein degradation (TPD) is an emerging therapeutic strategy with the potential of targeting undruggable pathogenic proteins. After the first proof-of-concept proteolysis-targeting chimeric (PROTAC) molecule was reported, the TPD field has entered a new era. In addition to PROTAC, numerous novel TPD strategies have emerged to expand the degradation landscape. However, their physicochemical properties and uncontrolled off-target side effects have limited their therapeutic efficacy, raising concerns regarding TPD delivery system. The combination of TPD and nanotechnology offers great promise in improving safety and therapeutic efficacy. This review provides an overview of novel TPD technologies, discusses their clinical applications, and highlights the trends and perspectives in TPD nanomedicine.
Collapse
Affiliation(s)
- Jia-Yi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hai-Jun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ye Wu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Dong Zhou
- Department of Chemistry and Biochemistry, College of Liberal Arts, University of Mississippi, University-1848, Boston, MA, 38677, USA
| | - Hong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dale G Nagle
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University-1848, Boston, MA, 38677, USA
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
53
|
Tseng YL, Lu PC, Lee CC, He RY, Huang YA, Tseng YC, Cheng TJR, Huang JJT, Fang JM. Degradation of neurodegenerative disease-associated TDP-43 aggregates and oligomers via a proteolysis-targeting chimera. J Biomed Sci 2023; 30:27. [PMID: 37101169 PMCID: PMC10131537 DOI: 10.1186/s12929-023-00921-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) associated with TAR DNA-binding protein 43 (TDP-43) aggregation has been considered as a lethal and progressive motor neuron disease. Recent studies have shown that both C-terminal TDP-43 (C-TDP-43) aggregates and oligomers were neurotoxic and pathologic agents in ALS and frontotemporal lobar degeneration (FTLD). However, misfolding protein has long been considered as an undruggable target by applying conventional inhibitors, agonists, or antagonists. To provide this unmet medical need, we aim to degrade these misfolding proteins by designing a series of proteolysis targeting chimeras (PROTACs) against C-TDP-43. METHODS By applying filter trap assay, western blotting, and microscopy imaging, the degradation efficiency of C-TDP-43 aggregates was studied in Neuro-2a cells overexpressing eGFP-C-TDP-43 or mCherry-C-TDP-43. The cell viability was characterized by alarmarBlue assay. The beneficial and disaggregating effects of TDP-43 PROTAC were examined with the YFP-C-TDP-43 transgenic C. elegans by motility assay and confocal microscopy. The impact of TDP-43 PROTAC on C-TDP-43 oligomeric intermediates was monitored by fluorescence lifetime imaging microscopy and size exclusion chromatography in the Neuro-2a cells co-expressing eGFP-C-TDP-43 and mCherry-C-TDP-43. RESULTS Four PROTACs with different linker lengths were synthesized and characterized. Among these chimeras, PROTAC 2 decreased C-TDP-43 aggregates and relieved C-TDP-43-induced cytotoxicity in Neuro-2a cells without affecting endogenous TDP-43. We showed that PROTAC 2 bound to C-TDP-43 aggregates and E3 ligase to initiate ubiquitination and proteolytic degradation. By applying advanced microscopy, it was further shown that PROTAC 2 decreased the compactness and population of C-TDP-43 oligomers. In addition to cellular model, PROTAC 2 also improved the motility of transgenic C. elegans by reducing the C-TDP-43 aggregates in the nervous system. CONCLUSIONS Our study demonstrated the dual-targeting capacity of the newly-designed PROTAC 2 against both C-TDP-43 aggregates and oligomers to reduce their neurotoxicity, which shed light on the potential drug development for ALS as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu-Ling Tseng
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Po-Chao Lu
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University, Taipei, 100, Taiwan
| | - Chi-Chang Lee
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Ruei-Yu He
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Yung-An Huang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Yin-Chen Tseng
- The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | | | - Joseph Jen-Tse Huang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan.
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan.
- Department of Applied Chemistry, National Chiayi University, Chiayi City, 600, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, 115, Taiwan.
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan.
- The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
54
|
Miñarro-Lleonar M, Bertran-Mostazo A, Duro J, Barril X, Juárez-Jiménez J. Lenalidomide Stabilizes Protein-Protein Complexes by Turning Labile Intermolecular H-Bonds into Robust Interactions. J Med Chem 2023; 66:6037-6046. [PMID: 37083375 PMCID: PMC10184122 DOI: 10.1021/acs.jmedchem.2c01692] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Targeted protein degradation is a promising therapeutic strategy, spearheaded by the anti-myeloma drugs lenalidomide and pomalidomide. These drugs stabilize very efficiently the complex between the E3 ligase Cereblon (CRBN) and several non-native client proteins (neo-substrates), including the transcription factors Ikaros and Aiolos and the enzyme Caseine Kinase 1α (CK1α,), resulting in their degradation. Although the structures for these complexes have been determined, there are no evident interactions that can account for the high efficiency of formation of the ternary complex. We show that lenalidomide's stabilization of the CRBN-CK1α complex is largely due to hydrophobic shielding of intermolecular hydrogen bonds. We also find a quantitative relationship between hydrogen bond robustness and binding affinities of the ternary complexes. These results pave the way to further understand cooperativity effects in drug-induced protein-protein complexes and could help in the design of improved molecular glues and more efficient protein degraders.
Collapse
Affiliation(s)
- Marina Miñarro-Lleonar
- Unitat de Fisicoquímica, Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTC), Facultat de Química i Física, Universitat de Barcelona (UB), C. Martí i Franquès, 1, 08028 Barcelona, Spain
- Institut de Biomedicina, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain
| | - Andrea Bertran-Mostazo
- Unitat de Fisicoquímica, Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Institut de Biomedicina, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain
| | - Jorge Duro
- Unitat de Fisicoquímica, Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTC), Facultat de Química i Física, Universitat de Barcelona (UB), C. Martí i Franquès, 1, 08028 Barcelona, Spain
| | - Xavier Barril
- Unitat de Fisicoquímica, Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTC), Facultat de Química i Física, Universitat de Barcelona (UB), C. Martí i Franquès, 1, 08028 Barcelona, Spain
- Institut de Biomedicina, Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys, 23 08010 Barcelona, Spain
| | - Jordi Juárez-Jiménez
- Unitat de Fisicoquímica, Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTC), Facultat de Química i Física, Universitat de Barcelona (UB), C. Martí i Franquès, 1, 08028 Barcelona, Spain
| |
Collapse
|
55
|
Wang J, Xiang Y, Fan M, Fang S, Hua Q. The Ubiquitin-Proteasome System in Tumor Metabolism. Cancers (Basel) 2023; 15:cancers15082385. [PMID: 37190313 DOI: 10.3390/cancers15082385] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic reprogramming, which is considered a hallmark of cancer, can maintain the homeostasis of the tumor environment and promote the proliferation, survival, and metastasis of cancer cells. For instance, increased glucose uptake and high glucose consumption, known as the "Warburg effect," play an essential part in tumor metabolic reprogramming. In addition, fatty acids are harnessed to satisfy the increased requirement for the phospholipid components of biological membranes and energy. Moreover, the anabolism/catabolism of amino acids, such as glutamine, cystine, and serine, provides nitrogen donors for biosynthesis processes, development of the tumor inflammatory environment, and signal transduction. The ubiquitin-proteasome system (UPS) has been widely reported to be involved in various cellular biological activities. A potential role of UPS in the metabolic regulation of tumor cells has also been reported, but the specific regulatory mechanism has not been elucidated. Here, we review the role of ubiquitination and deubiquitination modification on major metabolic enzymes and important signaling pathways in tumor metabolism to inspire new strategies for the clinical treatment of cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuandi Xiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mengqi Fan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shizhen Fang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
56
|
Yan Z, Lyu X, Lin D, Wu G, Gong Y, Ren X, Xiao J, Lou J, Huang H, Chen Y, Zhao Y. Selective degradation of cellular BRD3 and BRD4-L promoted by PROTAC molecules in six cancer cell lines. Eur J Med Chem 2023; 254:115381. [PMID: 37084596 DOI: 10.1016/j.ejmech.2023.115381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
Targeted degradation of BET family proteins BRD2/3/4 or only BRD4 with PROTAC molecules has been a promising strategy for the treatment of human cancer. Meanwhile, selective degradation of cellular BRD3 and BRD4-L remains a challenging task. We report herein a novel PROTAC molecule 24 that promoted selective degradation of cellular BRD3 and BRD4-L, but not BRD2 or BRD4-S, in a panel of six cancer cell lines. The observed target selectivity was partially attributed to differences in protein degradation kinetics and in types of cell lines. In a MM.1S mouse xenograft model, an optimized lead compound 28 promoted selective degradation of BRD3 and BRD4-L in vivo and exhibited robust antitumor activity. In summary, we have demonstrated that selective degradation of BRD3 and BRD4-L over BRD2 and BRD4-S is a feasible and robust approach in multiple cancer cell lines and an animal model, which could be helpful for further investigations on BRD3 and BRD4-L that ultimately benefitting cancer research and therapeutics.
Collapse
Affiliation(s)
- Ziqin Yan
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China
| | - Dongze Lin
- Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China
| | - Gaoxing Wu
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yang Gong
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, China
| | - Xuelian Ren
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China
| | - Jian Xiao
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China
| | - Jianfeng Lou
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - He Huang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China
| | - Yi Chen
- Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China.
| | - Yujun Zhao
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China.
| |
Collapse
|
57
|
Yang H, Ai H, Zhang J, Ma J, Liu K, Li Z. UPS: Opportunities and challenges for gastric cancer treatment. Front Oncol 2023; 13:1140452. [PMID: 37077823 PMCID: PMC10106573 DOI: 10.3389/fonc.2023.1140452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Gastric cancer remains the fourth most frequently diagnosed malignancy and the fifth leading cause of cancer-related mortality worldwide owning to the lack of efficient drugs and targets for therapy. Accumulating evidence indicates that UPS, which consists of E1, E2, and E3 enzymes and proteasome, plays an important role in the GC tumorigenesis. The imbalance of UPS impairs the protein homeostasis network during development of GC. Therefore, modulating these enzymes and proteasome may be a promising strategy for GC target therapy. Besides, PROTAC, a strategy using UPS to degrade the target protein, is an emerging tool for drug development. Thus far, more and more PROTAC drugs enter clinical trials for cancer therapy. Here, we will analyze the abnormal expression enzymes in UPS and summarize the E3 enzymes which can be developed in PROTAC so that it can contribute to the development of UPS modulator and PROTAC technology for GC therapy.
Collapse
Affiliation(s)
- Hang Yang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Huihan Ai
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jialin Zhang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jie Ma
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Zhi Li, ; Kangdong Liu,
| | - Zhi Li
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Zhi Li, ; Kangdong Liu,
| |
Collapse
|
58
|
Michaelides IN, Collie GW. E3 Ligases Meet Their Match: Fragment-Based Approaches to Discover New E3 Ligands and to Unravel E3 Biology. J Med Chem 2023; 66:3173-3194. [PMID: 36821822 PMCID: PMC10009759 DOI: 10.1021/acs.jmedchem.2c01882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 02/25/2023]
Abstract
Ubiquitination is a key post-translational modification of proteins, affecting the regulation of multiple cellular processes. Cells are equipped with over 600 ubiquitin orchestrators, called E3 ubiquitin ligases, responsible for directing the covalent attachment of ubiquitin to substrate proteins. Due to their regulatory role in cells, significant efforts have been made to discover ligands for E3 ligases. The recent emergence of the proteolysis targeting chimera (PROTAC) and molecular glue degrader (MGD) modalities has further increased interest in E3 ligases as drug targets. This perspective focuses on how fragment based lead discovery (FBLD) methods have been used to discover new ligands for this important target class. In some cases these efforts have led to clinical candidates; in others, they have provided tools for deepening our understanding of E3 ligase biology. Recently, FBLD-derived ligands have inspired the design of PROTACs that are able to artificially modulate protein levels in cells.
Collapse
Affiliation(s)
- Iacovos N. Michaelides
- Discovery Sciences, BioPharmaceuticals
R&D, AstraZeneca, Cambridge, CB4 0WG, United
Kingdom
| | - Gavin W. Collie
- Discovery Sciences, BioPharmaceuticals
R&D, AstraZeneca, Cambridge, CB4 0WG, United
Kingdom
| |
Collapse
|
59
|
Wang C, Zhang Y, Deng J, Liang B, Xing D. Developments of PROTACs technology in immune-related diseases. Eur J Med Chem 2023; 249:115127. [PMID: 36724631 DOI: 10.1016/j.ejmech.2023.115127] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Traditional chemotherapy and immunotherapy are primary disease-treatment strategies. However, they face numerous challenges, including limited therapeutic benefits, off-target effects, serious adverse effects, drug resistance, long half-life time, poor oral bioavailability, and drugging undruggable proteins. Proteolytic targeted chimeras (PROTACs) were suggested to solve these problems. PROTACs are heterogeneous functional molecules linked by a chemical linker and contain a binding ligand for the protein of interest and a recruiting ligand for the E3 ligand. The binding of a PROTAC to a target protein brings the E3 ligand enzyme into proximity, initiating polyubiquitination of the target protein, followed by protease-mediated degradation. To date, PROTACs against dozens of immunological targets have been successfully developed, many of which have been clinically validated drug targets, and several have entered clinical trials for immune-related diseases. This article reviews the role of PROTACs-mediated degradation of critical proteins in immune disorders and cancer immunotherapy. Chemical structures, cellular and in vivo activities, and pharmacodynamics of these PROTACs are summarized. Lastly, we also discuss the prospects and potential limitations that PROTACs face.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Junwen Deng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
60
|
PROTACs: Promising approach for anticancer therapy. Cancer Lett 2023; 556:216065. [PMID: 36642326 DOI: 10.1016/j.canlet.2023.216065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) are being developed as an effective method for degrading cancer-related proteins by modifying the endogenous ubiquitin-proteasome system. To investigate the dynamics between an E3 ligase and target protein, researchers have developed a wide variety of bifunctional PROTACs by combining small molecule ligands. These PROTACs employ numerous ligands, some of which are reversible, some of which are irreversible, some attach to orthosteric sites, while others bind to allosteric sites. Some are agonists, while others are antagonists, and the target protein may be activated in either a positive or negative manner. A variety of targeted ligand approaches can be used to enhance PROTAC properties, including tumor selectivity and drug delivery, and to overcome drug resistance. The processes and behaviors of small molecule-based PROTACs and targeted proteolysis approaches as anticancer therapeutic molecules have been introduced in this mini-review.
Collapse
|
61
|
Xie H, Li C, Tang H, Tandon I, Liao J, Roberts BL, Zhao Y, Tang W. Development of Substituted Phenyl Dihydrouracil as the Novel Achiral Cereblon Ligands for Targeted Protein Degradation. J Med Chem 2023; 66:2904-2917. [PMID: 36749666 PMCID: PMC10398712 DOI: 10.1021/acs.jmedchem.2c01941] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glutarimides such as thalidomide, pomalidomide, and lenalidomide are the most frequently used ligands to recruit E3 ubiquitin ligase cereblon (CRBN) for the development of proteolysis-targeting chimeras (PROTACs). Due to the rapid and spontaneous racemization of glutarimides, most CRBN-recruiting PROTACs are synthesized as a mixture of racemates or diastereomers. Since the (S)-enantiomer is primarily responsible for binding to CRBN, the existence of the largely inactive (R)-enantiomer complicates the drug development process. Herein, we report that substituted achiral phenyl dihydrouracil (PDHU) can be used as a novel class of CRBN ligands for the development of PROTACs. Although the parent PDHU has a minimal binding affinity to CRBN, we found that some substituted PDHUs had a comparable binding affinity to lenalidomide. Structural modeling provided a further understanding of the molecular interactions between PDHU ligands and CRBN. PDHUs also have greater stability than lenalidomide. Finally, potent BRD4 degraders were developed by employing trisubstituted PDHUs.
Collapse
Affiliation(s)
- Haibo Xie
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Chunrong Li
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Hua Tang
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Ira Tandon
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Junzhuo Liao
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Brett L. Roberts
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Yu Zhao
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Weiping Tang
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706 (USA)
| |
Collapse
|
62
|
Wijaya AJ, Farnaby W, Ciulli A. Crystallization of VHL-based PROTAC-induced ternary complexes. Methods Enzymol 2023; 681:241-263. [PMID: 36764760 DOI: 10.1016/bs.mie.2022.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
X-ray crystal structures of PROTAC-induced ternary complexes provide invaluable insights into the critical species underpinning PROTAC mode of action, explain protein degradation selectivity profiles, and can guide rational degrader design. Nevertheless, crystallization of the ternary complexes formed by PROTACs remains an important bottleneck in employing this method. This is mainly due to the potential flexibility and heterogeneity that is inherent to a non-native protein-protein complex mediated by a small molecule, which together can hamper crystallization of the desired species. To overcome this limitation, selecting PROTAC compounds that enable the formation of stable, high-affinity and preferably cooperative ternary complexes in stoichiometric amount is, in our experience, critical to the success of co-crystallization studies. In this chapter, examples of stable PROTAC-mediated ternary complexes are illustrated. Learnings from biophysical & biochemical data are used as a guideline in achieving the highest "crystallizability" of ternary complexes. A case study of VHL-based SMARCA2 PROTAC degrader ternary complex crystallization is described. The procedure includes over-expression and purification of the E3 ligase and target protein, forming (and sometimes isolating) the ternary complex, and crystallizing it. The protocols can be applied for other combinations of E3 ligase, PROTAC and target protein.
Collapse
Affiliation(s)
- Andre J Wijaya
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - William Farnaby
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom.
| |
Collapse
|
63
|
Wang C, Yang S, Deng J, Shi L, Chang J, Meng J, Liu W, Zeng J, Xing K, Wen J, Liang B, Xing D. The research progress on the anxiolytic effect of plant-derived flavonoids by regulating neurotransmitters. Drug Dev Res 2023; 84:458-469. [PMID: 36744648 DOI: 10.1002/ddr.22038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
Phytopharmaceuticals have attracted a lot of attention due to their multicomponent and multiple targets. The natural phenolic chemicals known as flavonoids are found in a wide variety of plants, fruits, vegetables, and herbs. Recently, they have been found to have modulatory effects on anxiety disorders, with current research focusing on the modulation of neurotransmitters. There has not yet been a review of the various natural flavonoid monomer compounds and total plant flavonoids that have been found to have anxiolytic effects. The study on the anti-anxiety effects of plant-derived flavonoids on neurotransmitters was reviewed in this paper. We, therefore, anticipate that further study on the conformational interaction underlying flavonoids' anti-anxiety effects will offer a theoretical framework for the creation of pertinent treatments.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Shanbo Yang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Junwen Deng
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Lingyu Shi
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jing Chang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jingsen Meng
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wenjing Liu
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jun Zeng
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Kunyue Xing
- Alliance Manchester Business School, The University of Manchester, Manchester, UK
| | - Jialian Wen
- School of Social Science, The University of Manchester, Manchester, UK
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
64
|
Huang J, Zhang J, Xu W, Wu Q, Zeng R, Liu Z, Tao W, Chen Q, Wang Y, Zhu WG. Structure-Based Discovery of Selective Histone Deacetylase 8 Degraders with Potent Anticancer Activity. J Med Chem 2023; 66:1186-1209. [PMID: 36516047 DOI: 10.1021/acs.jmedchem.2c00739] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inducing protein degradation by proteolysis targeting chimeras has gained tremendous momentum as a promising novel therapeutic strategy. Here, we report the design, synthesis, and biological characterization of highly potent proteolysis targeting chimeric small molecules targeting the epigenetic regulator histone deacetylase 8 (HDAC8). We developed potent and effective HDAC8 degraders, as exemplified by SZUH280 (16e), which effectively induced HDAC8 protein degradation and inhibited cancer cell growth even at low micromolar concentrations. Our preliminary mechanistic studies revealed that SZUH280 hampers DNA damage repair in cancer cells, promoting cellular radiosensitization. In mice, a single SZUH280 dose induced rapid and prolonged HDAC8 protein degradation in xenograft tumor tissues. Moreover, SZUH280 alone or in combination with irradiation resulted in long-lasting tumor regression in an A549 tumor mouse model. Our findings qualify a new chemical tool for HDAC8 knockdown and may lead to the development of a new class of cancer therapeutics.
Collapse
Affiliation(s)
- Jinbo Huang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, and International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518055, China.,Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China.,Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Jun Zhang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, and International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518055, China.,Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China.,Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Wenchao Xu
- Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Qiong Wu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, and International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518055, China.,Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China.,Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Rongsheng Zeng
- Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen 518055, China
| | - Zhichao Liu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, and International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518055, China.,Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China.,Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Wenhui Tao
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, and International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518055, China.,Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China.,Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Qian Chen
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, and International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518055, China.,Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China.,Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Yongqing Wang
- Division of Rheumatology and Immunology, University of Toledo Medical Center, 3120 Glendale Avenue, Toledo 43614, Ohio, United States
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, and International Cancer Center, Shenzhen University School of Medicine, Shenzhen 518055, China.,Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen University School of Medicine, Shenzhen 518055, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen 518055, China.,Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
65
|
Wang C, Shi L, Yang S, Chang J, Liu W, Zeng J, Meng J, Zhang R, Xing D. Research progress on antitumor activity of XRP44X and analogues as microtubule targeting agents. Front Chem 2023; 11:1096666. [PMID: 36936533 PMCID: PMC10014799 DOI: 10.3389/fchem.2023.1096666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Cancer threatens human health and life. Therefore, it is particularly important to develop safe and effective antitumor drugs. Microtubules, the main component of cytoskeleton, play an important role in maintaining cell morphology, mitosis, and signal transduction, which are one of important targets of antitumor drug research and development. Colchicine binding site inhibitors have dual effects of inhibiting proliferation and destroying blood vessels. In recent years, a series of inhibitors targeting this target have been studied and some progress has been made. XRP44X has a novel structure and overcomes some disadvantages of traditional inhibitors. It is also a multifunctional molecule that regulates not only the function of tubulin but also a variety of biological pathways. Therefore, the structure, synthesis, structure-activity relationship, and biological activity of XRP44X analogues reported in recent years were summarized in this paper, to provide a useful reference for the rational design of efficient colchicine binding site inhibitors.
Collapse
Affiliation(s)
- Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Chao Wang, ; Dongming Xing,
| | - Lingyu Shi
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shanbo Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jing Chang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenjing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jun Zeng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jingsen Meng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Chao Wang, ; Dongming Xing,
| |
Collapse
|
66
|
Matutino Santos P, Pereira Campos G, Nascimento C. Endo-Lysosomal and Autophagy Pathway and Ubiquitin-Proteasome System in Mood Disorders: A Review Article. Neuropsychiatr Dis Treat 2023; 19:133-151. [PMID: 36684613 PMCID: PMC9849791 DOI: 10.2147/ndt.s376380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023] Open
Abstract
Mood disorders are disabling conditions that cause significant functional impairment. Due to the clinical heterogeneity and complex nature of these disorders, diagnostic and treatment strategies face challenges. The etiology of mood disorders is multifactorial, involving genetic and environmental aspects that are associated with specific biological pathways including inflammation, oxidative stress, and neuroprotection. Alterations in these pathways may reduce the cell's ability to recover from stress conditions occurring during mood episodes. The endo-lysosomal and autophagy pathway (ELAP) and the ubiquitin-proteasome system (UPS) play critical roles in protein homeostasis, impacting neuroplasticity and neurodevelopment. Thus, emerging evidence has suggested a role for these pathways in mental disorders. In the case of neurodegenerative diseases (NDDs), a deeper understanding in the role of ELAP and UPS has been critical to discover new treatment targets. Since it is suggested that NDDs and mood disorders share clinical symptomatology and risk factors, it has been hypothesized that there might be common underlying molecular pathways. Here, we review the importance of the ELAP and UPS for the central nervous system and for mood disorders. Finally, we discuss potential translational strategies for the diagnosis and treatment of major depressive disorder and bipolar disorder associated with these pathways.
Collapse
Affiliation(s)
- Petala Matutino Santos
- Center for Mathematics, Computing and Cognition (CMCC), Federal University of ABC (UFABC), São Paulo, Brazil
| | - Giovanna Pereira Campos
- Center for Mathematics, Computing and Cognition (CMCC), Federal University of ABC (UFABC), São Paulo, Brazil
| | - Camila Nascimento
- Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
67
|
Proteolysis-Targeting Chimeras (PROTACs) in Cancer Therapy: Present and Future. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248828. [PMID: 36557960 PMCID: PMC9785308 DOI: 10.3390/molecules27248828] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The PROteolysis TArgeting Chimeras (PROTACs) is an innovative technique for the selective degradation of target proteins via the ubiquitin-proteasome system. Compared with traditional protein inhibitor drugs, PROTACs exhibit advantages in the efficacy and selectivity of and in overcoming drug resistance in cancer therapy, providing new insights into the discovery of anti-cancer drugs. In the last two decades, many PROTAC molecules have been developed to induce the degradation of cancer-related targets, and they have been subjected to clinical trials. Here, we comprehensively review the historical milestones and latest updates in PROTAC technology. We focus on the structures and mechanisms of PROTACs and their application in targeting tumor-related targets. We have listed several representative PROTACs based on CRBN, VHL, MDM2, or cIAP1 E3 ligases, and PROTACs that are undergoing anti-cancer clinical trials. In addition, the limitations of the current research, as well as the future research directions are described to improve the PROTAC design and development for cancer therapy.
Collapse
|
68
|
Wang C, Zhang Y, Yang S, Chen W, Xing D. PROTACs for BRDs proteins in cancer therapy: a review. J Enzyme Inhib Med Chem 2022; 37:1694-1703. [PMID: 35702740 PMCID: PMC9225710 DOI: 10.1080/14756366.2022.2081164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 11/11/2022] Open
Abstract
BRDs proteins that recognise chromatin acetylation regulate gene expression, are epigenetic readers and master transcription coactivators. BRDs proteins are now emerging as targets for new therapeutic development. Blocking the function of any of BRDs proteins can be a control agent for diseases, such as cancer. Traditional drugs like enzyme inhibitors and protein-protein inhibitors have many limitations. The therapeutic efficacy of them remains to be proven. Recently, Proteolysis-Targeting Chimaeras (PROTACs) have become an advanced tool in therapeutic intervention as they remove disease-causing proteins. Extremely potent and efficacious small-molecule PROTACs of the BRDs proteins, based on available, potent, and selective BRDs inhibitors, have been reported. This review presents a comprehensive overview of the development of PROTACs for BRDs proteins regulation in cancer, and the chances and challenges associated with this area are also highlighted.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, PR China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, PR China
- School of Pharmacy, Qingdao University, Qingdao, PR China
| | - Shanbo Yang
- The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, PR China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, PR China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, PR China
- School of Life Sciences, Tsinghua University, Beijing, PR China
| |
Collapse
|
69
|
Wang XR, Wang S, Mu HX, Xu KY, Wang XT, Shi JT, Cui QH, Zhang LW, Chen SW. Discovery of novel VEGFR-2-PROTAC degraders based on the localization of lysine residues via recruiting VHL for the treatment of gastric cancer. Eur J Med Chem 2022; 244:114821. [DOI: 10.1016/j.ejmech.2022.114821] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/04/2022]
|
70
|
Wang C, Zhang Y, Zhang T, Shi L, Geng Z, Xing D. Proteolysis-targeting chimaeras (PROTACs) as pharmacological tools and therapeutic agents: advances and future challenges. J Enzyme Inhib Med Chem 2022; 37:1667-1693. [PMID: 35702041 PMCID: PMC9225776 DOI: 10.1080/14756366.2022.2076675] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Proteolysis-targeting chimaeras (PROTACs) have been developed to be an emerging technology for targeted protein degradation and attracted the favour of academic institutions, large pharmaceutical enterprises, and biotechnology companies. The mechanism is based on the inhibition of protein function by hijacking a ubiquitin E3 ligase for protein degradation. The heterobifunctional PROTACs contain a ligand for recruiting an E3 ligase, a linker, and another ligand to bind with the protein targeted for degradation. To date, PROTACs targeting ∼70 proteins, many of which are clinically validated drug targets, have been successfully developed with several in clinical trials for diseases therapy. In this review, the recent advances in PROTACs against clinically validated drug targets are summarised and the chemical structure, cellular and in vivo activity, pharmacokinetics, and pharmacodynamics of these PROTACs are highlighted. In addition, the potential advantages, challenges, and prospects of PROTACs technology in disease treatment are discussed.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China.,School of Pharmacy, Qingdao University, Qingdao, China
| | - Tingting Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Lingyu Shi
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Zhongmin Geng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
71
|
Yang S, Wang C, Shi L, Chang J, Zhang Y, Meng J, Liu W, Zeng J, Zhang R, Shao Y, Xing D. Design, synthesis and biological evaluation of novel diarylpyridine derivatives as tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2022; 37:2755-2764. [PMID: 36196773 PMCID: PMC9553186 DOI: 10.1080/14756366.2022.2130284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A set of novel diarylpyridines as anti-tubulin agents were designed, synthesised using a rigid pyridine as a linker to fix the cis-orientation of ring-A and ring-B. All of the target compounds were evaluated for their in vitro antiproliferative activities. Among them, 10t showed remarkable antiproliferative activities against three cancer cell lines (HeLa, MCF-7 and SGC-7901) in sub-micromolar concentrations. Consistent with its potent antiproliferative activity, 10t also displayed potent anti-tubulin activity. Cellular mechanism investigation elucidated 10t disrupted the cellular microtubule structure, arrested cell cycle at G2/M phase and induces apoptosis. Molecular modelling studies showed that 10t could bind to the colchicine binding site on microtubules. These results provide motivation and further guidance for the development of new CA-4 analogues.
Collapse
Affiliation(s)
- Shanbo Yang
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Lingyu Shi
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Jing Chang
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jingsen Meng
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Wenjing Liu
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Jun Zeng
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Yingchun Shao
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
72
|
Chang J, Wang C, Yang S, Shi L, Zhang Y, Liu W, Meng J, Zeng J, Zhang R, Liu N, Xing D. Design, synthesis, and biological evaluation of diarylpyrazole derivatives as antitumor agents targeting microtubules. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
73
|
Zhai F, Wang J, Yang W, Ye M, Jin X. The E3 Ligases in Cervical Cancer and Endometrial Cancer. Cancers (Basel) 2022; 14:5354. [PMID: 36358773 PMCID: PMC9658772 DOI: 10.3390/cancers14215354] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 07/28/2023] Open
Abstract
Endometrial (EC) and cervical (CC) cancers are the most prevalent malignancies of the female reproductive system. There is a global trend towards increasing incidence and mortality, with a decreasing age trend. E3 ligases label substrates with ubiquitin to regulate their activity and stability and are involved in various cellular functions. Studies have confirmed abnormal expression or mutations of E3 ligases in EC and CC, indicating their vital roles in the occurrence and progression of EC and CC. This paper provides an overview of the E3 ligases implicated in EC and CC and discusses their underlying mechanism. In addition, this review provides research advances in the target of ubiquitination processes in EC and CC.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jie Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Weili Yang
- Department of Gynecology, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| |
Collapse
|
74
|
Wang C, Chang J, Yang S, Shi L, Zhang Y, Liu W, Meng J, Zeng J, Zhang R, Xing D. Advances in antitumor research of CA-4 analogs carrying quinoline scaffold. Front Chem 2022; 10:1040333. [PMID: 36385996 PMCID: PMC9650302 DOI: 10.3389/fchem.2022.1040333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 08/01/2024] Open
Abstract
Combretastatin A-4 (CA-4) is a potent inhibitor of tubulin polymerization and a colchicine binding site inhibitor (CBSI). The structure-activity relationship study of CA-4 showed that the cis double bond configuration and the 3,4,5-trimethoxy group on the A ring were important factors to maintain the activity of CA-4. Therefore, starting from this condition, chemists modified the double bond and also substituted 3,4,5-trimethoxyphenyl with various heterocycles, resulting in a new generation of CA-4 analogs such as chalcone, Flavonoid derivatives, indole, imidazole, etc. Quinoline derivatives have strong biological activity and have been sought after by major researchers for their antitumor activity in recent years. This article reviews the research progress of novel CA-4 containing quinoline analogs in anti-tumor from 1992 to 2022 and expounds on the pharmacological mechanisms of these effective compounds, including but not limited to apoptosis, cell cycle, tubulin polymerization inhibition, immune Fluorescence experiments, etc., which lay the foundation for the subsequent development of CA-4 containing quinoline analogs for clinical use.
Collapse
Affiliation(s)
- Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Jing Chang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Shanbo Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Lingyu Shi
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenjing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Jingsen Meng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Jun Zeng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
75
|
Singh H, Agrawal DK. Recent advancements in the discovery of cereblon-based protease-targeted chimeras with potential for therapeutic intervention. Future Med Chem 2022; 14:1403-1416. [PMID: 36047364 PMCID: PMC9518005 DOI: 10.4155/fmc-2022-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Protease-targeted chimeras (PROTACs) have been employed as a novel therapeutic approach, utilizing the ubiquitin-proteasome system for targeted protein degradation. PROTACs are heterobifunctional molecules consisting of an E3 ligase ligand and a small-molecule inhibitor for recruiting a protein of interest. After binding, PROTAC molecules recruit E3 ligase for ubiquitination of the protein of interest, which is followed by its proteasome-mediated degradation. PROTAC molecules have several advantages over traditional small-molecule inhibitors. A number of PROTAC molecules based on small-molecule inhibitors have been developed against various diseases, among which cereblon-based PROTAC molecules have received the greatest interest due to their promising clinical use. This article highlights the current trends in the discovery of cereblon-based PROTAC molecules along with their medicinal chemistry, clinical progression and future outlook in cancers, cardiovascular diseases and neurodegenerative disorders.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
76
|
Shi L, Yang S, Chang J, Zhang Y, Liu W, Zeng J, Meng J, Zhang R, Wang C, Xing D. Design, synthesis and biological evaluation of 9-aryl-5H-pyrido[4,3-b]indole derivatives as potential tubulin polymerization inhibitors. Front Chem 2022; 10:1004835. [PMID: 36186601 PMCID: PMC9520531 DOI: 10.3389/fchem.2022.1004835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
A series of new 9-aryl-5H-pyrido[4,3-b]indole derivatives as tubulin polymerization inhibitors were designed, synthesized, and evaluated for antitumor activity. All newly prepared compounds were tested for their anti-proliferative activity in vitro against three different cancer cells (SGC-7901, HeLa, and MCF-7). Among the designed compounds, compound 7k displayed the strongest anti-proliferative activity against HeLa cells with IC50 values of 8.7 ± 1.3 μM. In addition, 7k could inhibit the polymerization of tubulin and disrupt the microtubule network of cells. Further mechanism studies revealed that 7k arrested cell cycle at the G2/M phase and induced apoptosis in a dose-dependent manner. Molecular docking analysis confirmed that 7k may bind to colchicine binding sites on microtubules. Our study aims to provide a new strategy for the development of antitumor drugs targeting tubulin.
Collapse
Affiliation(s)
- Lingyu Shi
- Cancer Institute, The Affiliated Hospital of Qingdao University and School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Shanbo Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University and School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jing Chang
- Cancer Institute, The Affiliated Hospital of Qingdao University and School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenjing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University and School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jun Zeng
- Cancer Institute, The Affiliated Hospital of Qingdao University and School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jingsen Meng
- Cancer Institute, The Affiliated Hospital of Qingdao University and School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University and School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University and School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- *Correspondence: Chao Wang, ; Dongming Xing,
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University and School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Chao Wang, ; Dongming Xing,
| |
Collapse
|
77
|
Hu M, Li Y, Li J, Zhou H, Liu C, liu Z, Gong Y, Ying B, Xie Y. Discovery of potent and selective HER2 PROTAC degrader based Tucatinib with improved efficacy against HER2 positive cancers. Eur J Med Chem 2022; 244:114775. [DOI: 10.1016/j.ejmech.2022.114775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 11/04/2022]
|
78
|
A Comprehensive Review of BET-targeting PROTACs for Cancer Therapy. Bioorg Med Chem 2022; 73:117033. [DOI: 10.1016/j.bmc.2022.117033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022]
|
79
|
Wolska-Washer A, Smolewski P. Targeting Protein Degradation Pathways in Tumors: Focusing on their Role in Hematological Malignancies. Cancers (Basel) 2022; 14:3778. [PMID: 35954440 PMCID: PMC9367439 DOI: 10.3390/cancers14153778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Cells must maintain their proteome homeostasis by balancing protein synthesis and degradation. This is facilitated by evolutionarily-conserved processes, including the unfolded protein response and the proteasome-based system of protein clearance, autophagy, and chaperone-mediated autophagy. In some hematological malignancies, including acute myeloid leukemia, misfolding or aggregation of the wild-type p53 tumor-suppressor renders cells unable to undergo apoptosis, even with an intact p53 DNA sequence. Moreover, blocking the proteasome pathway triggers lymphoma cell apoptosis. Extensive studies have led to the development of proteasome inhibitors, which have advanced into drugs (such as bortezomib) used in the treatment of certain hematological tumors, including multiple myeloma. New therapeutic options have been studied making use of the so-called proteolysis-targeting chimeras (PROTACs), that bind desired proteins with a linker that connects them to an E3 ubiquitin ligase, resulting in proteasomal-targeted degradation. This review examines the mechanisms of protein degradation in the cells of the hematopoietic system, explains the role of dysfunctional protein degradation in the pathogenesis of hematological malignancies, and discusses the current and future advances of therapies targeting these pathways, based on an extensive search of the articles and conference proceedings from 2005 to April 2022.
Collapse
Affiliation(s)
| | - Piotr Smolewski
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland;
| |
Collapse
|
80
|
Sun Z, Deng B, Yang Z, Mai R, Huang J, Ma Z, Chen T, Chen J. Discovery of pomalidomide-based PROTACs for selective degradation of histone deacetylase 8. Eur J Med Chem 2022; 239:114544. [PMID: 35759908 DOI: 10.1016/j.ejmech.2022.114544] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
Overexpression of histone deacetylase 8 (HDAC8) is associated with various diseases such as cancer. Thus, compounds that can modulate HDAC8 levels have therapeutic potential for these diseases. Based on the proteolysis targeting chimera (PROTAC) strategy, we designed and synthesized a series of HDAC8 degraders by tethering an HDAC6/8 dual inhibitor with pomalidomide (a cereblon ligand). Among them, compound ZQ-23 exhibited significant and selective degradation of HDAC8 with DC50 of 147 nM and Dmax of 93%, and exhibited no effects on HDAC1 and HDAC3. Interestingly, we found that the degradation of target protein started at ∼2 h after treatment with ZQ-23 and the maximal degradation effect was achieved at 10 h. The HDAC8 level was partially recovered within 24 h. In addition, ZQ-23 had no degrading effects on HDAC1 and HDAC3 at all concentrations, but could dose-dependently increase the levels of acetylated SMC-3 (HDAC8 substrate). Mechanism study demonstrated that ZQ-23 degraded HDAC8 through the ubiquitin-protease pathway, rather than lysosome system. Collectively, these results suggest that ZQ-23 represents a novel PROTAC-based HDAC8 degrader worthy of further investigation.
Collapse
Affiliation(s)
- Zhiqiang Sun
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Bulian Deng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Zichao Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Ruiyao Mai
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Junli Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Zeli Ma
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ting Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China; Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
81
|
Wang C, Zhang Y, Shi L, Yang S, Chang J, Zhong Y, Li Q, Xing D. Recent advances in IAP-based PROTACs (SNIPERs) as potential therapeutic agents. J Enzyme Inhib Med Chem 2022; 37:1437-1453. [PMID: 35589670 PMCID: PMC9122363 DOI: 10.1080/14756366.2022.2074414] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteolytic targeting chimaeras (PROTACs) have been developed as an effective technology for targeted protein degradation. PROTACs are heterobifunctional molecules that can trigger the polyubiquitination of proteins of interest (POIs) by recruiting the ubiquitin-proteasome system, thereby inhibiting the intracellular level of POIs. To date, a variety of small-molecule PROTACs (CRBN, VHL, IAP, and MDM2-based PROTACs) have been developed. IAP-based PROTACs, also known as specific and nongenetic IAP-dependent protein erasers (SNIPERs), are used to degrade the target proteins closely related to diseases. Their structures consist of three parts, including target protein ligand, E3 ligase ligand, and the linker between them. So far, many SNIPERs have been extensively studied worldwide and have performed well in multiple diseases, especially cancer. In this review, we will present the most relevant advances in the field of SNIPERs and provide our perspective on the opportunities and challenges for SNIPERs to become therapeutic agents.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lingyu Shi
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Shanbo Yang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Jing Chang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yingjie Zhong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Qian Li
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
82
|
Sun SL, Wu SH, Kang JB, Ma YY, Chen L, Cao P, Chang L, Ding N, Xue X, Li NG, Shi ZH. Medicinal Chemistry Strategies for the Development of Bruton's Tyrosine Kinase Inhibitors against Resistance. J Med Chem 2022; 65:7415-7437. [PMID: 35594541 DOI: 10.1021/acs.jmedchem.2c00030] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite significant efficacy, one of the major limitations of small-molecule Bruton's tyrosine kinase (BTK) agents is the presence of clinically acquired resistance, which remains a major clinical challenge. This Perspective focuses on medicinal chemistry strategies for the development of BTK small-molecule inhibitors against resistance, including the structure-based design of BTK inhibitors targeting point mutations, e.g., (i) developing noncovalent inhibitors from covalent inhibitors, (ii) avoiding steric hindrance from mutated residues, (iii) making interactions with the mutated residue, (iv) modifying the solvent-accessible region, and (v) developing new scaffolds. Additionally, a comparative analysis of multi-inhibitions of BTK is presented based on cross-comparisons between 2916 unique BTK ligands and 283 other kinases that cover 7108 dual/multiple inhibitions. Finally, targeting the BTK allosteric site and uding proteolysis-targeting chimera (PROTAC) as two potential strategies are addressed briefly, while also illustrating the possibilities and challenges to find novel ligands of BTK.
Collapse
Affiliation(s)
- Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shi-Han Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ji-Bo Kang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi-Yuan Ma
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lu Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng Cao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi-Hao Shi
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
83
|
Drula R, Iluta S, Gulei D, Iuga C, Dima D, Ghiaur G, Buzoianu AD, Ciechanover A, Tomuleasa C. Exploiting the ubiquitin system in myeloid malignancies. From basic research to drug discovery in MDS and AML. Blood Rev 2022; 56:100971. [PMID: 35595613 DOI: 10.1016/j.blre.2022.100971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system is the crucial homeostatic mechanism responsible for the degradation and turnover of proteins. As such, alterations at this level are often associated with oncogenic processes, either through accumulation of undegraded pathway effectors or, conversely, excessive degradation of tumor-suppressing factors. Therefore, investigation of the ubiquitin- proteasome system has gained much attraction in recent years, especially in the context of hematological malignancies, giving rise to efficient therapeutics such as bortezomib for multiple myeloma. Current investigations are now focused on manipulating protein degradation via fine-tuning of the ubiquitination process through inhibition of deubiquitinating enzymes or development of PROTAC systems for stimulation of ubiquitination and protein degradation. On the other hand, the efficiency of Thalidomide derivates in myelodysplastic syndromes (MDS), such as Lenalidomide, acted as the starting point for the development of targeted leukemia-associated protein degradation molecules. These novel molecules display high efficiency in overcoming the limitations of current therapeutic regimens, such as refractory diseases. Therefore, in this manuscript we will address the therapeutic opportunities and strategies based on the ubiquitin-proteasome system, ranging from the modulation of deubiquitinating enzymes and, conversely, describing the potential of modern targeted protein degrading molecules and their progress into clinical implementation.
Collapse
Affiliation(s)
- Rares Drula
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Cristina Iuga
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Gabriel Ghiaur
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Aaron Ciechanover
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Rappaport Technion Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel; Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Ciprian Tomuleasa
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
| |
Collapse
|
84
|
Sun Y, Wang R, Sun Y, Wang L, Xue Y, Wang J, Wu T, Yin W, Qin Q, Sun Y, Zhao D, Cheng M. Identification of novel and potent PROTACs targeting FAK for non-small cell lung cancer: Design, synthesis, and biological study. Eur J Med Chem 2022; 237:114373. [PMID: 35486993 DOI: 10.1016/j.ejmech.2022.114373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 12/22/2022]
Abstract
The intracellular non-receptor tyrosine protein kinase Focal adhesion kinase (FAK) is a key signalling regulator, which mediates tumor survival, invasion, metastasis, and angiogenesis through its kinase catalytic functions and non-kinase scaffolding functions. Previous efforts have clarified that it is crucial to address both FAK kinase and scaffolding functions instead of just inhibiting FAK kinase activity because it may be insufficient to completely block FAK signaling. Proteolysis targeting chimera (PROTAC) technology is a method of targeting a specific protein and inducing its degradation in the cell, which can simultaneously eliminate both kinase-dependent enzymatic functions and scaffolding functions. In current study, we designed and synthesized a series of novel FAK PROTACs and the optimal PROTAC B5 exhibited potent FAK affinity with an IC50 value of 14.9 nM. Furthermore, in A549 cells, PROTAC B5 presented strong FAK degradation activity (86.4% degradation @ 10 nM), powerful antiproliferative activity (IC50 = 0.14 ± 0.01 μM) and inhibited cell migration and invasion in a concentration-dependent manner. Additionally, the in vitro preliminary drug-like properties evaluation of PROTAC B5 showed outstanding plasma stability and moderate membrane permeability. Together, current results provided a promising FAK PROTAC B5 as lead compound for cancer-related drug discovery and FAK-degradation functions exploration in biological systems.
Collapse
Affiliation(s)
- Yin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Ruifeng Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China; Department of Pharmacy, Shanxi Medical University, 56 Xinjiannan Road, Yingze District, Taiyuan, 030001, PR China
| | - Yu Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Lin Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yanli Xue
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Jingkai Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Qiaohua Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| |
Collapse
|
85
|
Targeted protein degradation: mechanisms, strategies and application. Signal Transduct Target Ther 2022; 7:113. [PMID: 35379777 PMCID: PMC8977435 DOI: 10.1038/s41392-022-00966-4] [Citation(s) in RCA: 360] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022] Open
Abstract
Traditional drug discovery mainly focuses on direct regulation of protein activity. The development and application of protein activity modulators, particularly inhibitors, has been the mainstream in drug development. In recent years, PROteolysis TArgeting Chimeras (PROTAC) technology has emerged as one of the most promising approaches to remove specific disease-associated proteins by exploiting cells’ own destruction machinery. In addition to PROTAC, many different targeted protein degradation (TPD) strategies including, but not limited to, molecular glue, Lysosome-Targeting Chimaera (LYTAC), and Antibody-based PROTAC (AbTAC), are emerging. These technologies have not only greatly expanded the scope of TPD, but also provided fresh insights into drug discovery. Here, we summarize recent advances of major TPD technologies, discuss their potential applications, and hope to provide a prime for both biologists and chemists who are interested in this vibrant field.
Collapse
|
86
|
Juan A, del Mar Noblejas-López M, Arenas-Moreira M, Alonso-Moreno C, Ocaña A. Options to Improve the Action of PROTACs in Cancer: Development of Controlled Delivery Nanoparticles. Front Cell Dev Biol 2022; 9:805336. [PMID: 35186955 PMCID: PMC8851355 DOI: 10.3389/fcell.2021.805336] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Classical targeting in cancer focuses on the development of chemical structures able to bind to protein pockets with enzymatic activity. Some of these molecules are designed to bind the ATP side of the kinase domain avoiding protein activation and the subsequent oncogenic activity. A further improvement of these agents relies on the generation of non-allosteric inhibitors that once bound are able to limit the kinase function by producing a conformational change at the protein and, therefore, augmenting the antitumoural potency. Unfortunately, not all oncogenic proteins have enzymatic activity and cannot be chemically targeted with these types of molecular entities. Very recently, exploiting the protein degradation pathway through the ubiquitination and subsequent proteasomal degradation of key target proteins has gained momentum. With this approach, non-enzymatic proteins such as Transcription Factors can be degraded. In this regard, we provide an overview of current applications of the PROteolysis TArgeting Chimeras (PROTACs) compounds for the treatment of solid tumours and ways to overcome their limitations for clinical development. Among the different constraints for their development, improvements in bioavailability and safety, due to an optimized delivery, seem to be relevant. In this context, it is anticipated that those targeting pan-essential genes will have a narrow therapeutic index. In this article, we review the advantages and disadvantages of the potential use of drug delivery systems to improve the activity and safety of PROTACs.
Collapse
Affiliation(s)
- Alberto Juan
- Unidad NanoCRIB, Centro Regional de Investigaciones Biomédicas, Albacete, Spain
| | - María del Mar Noblejas-López
- Oncología Traslacional, Centro Regional de Investigaciones Biomédicas, Albacete, Spain
- Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, Oncología Traslacional, Albacete, Spain
| | | | - Carlos Alonso-Moreno
- Unidad NanoCRIB, Centro Regional de Investigaciones Biomédicas, Albacete, Spain
- Facultad de Farmacia de Albacete Universidad de Castilla-La Mancha, Albacete, Spain
| | - Alberto Ocaña
- Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, Oncología Traslacional, Albacete, Spain
- Experimental Therapeutics Unit, Hospital Clínico San Carlos, IdISSC and CIBERONC, Madrid, Spain
| |
Collapse
|
87
|
Wang C, Zhang Y, Wang J, Xing D. VHL-based PROTACs as potential therapeutic agents: Recent progress and perspectives. Eur J Med Chem 2022; 227:113906. [PMID: 34656901 DOI: 10.1016/j.ejmech.2021.113906] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
Proteolysis targeting chimeras (PROTACs), which hijack proteins of interest (POIs) and recruit E3 ligases for target degradation via the ubiquitin-proteasome pathway, are a novel drug discovery paradigm that has been widely used as biological tools and medicinal molecules with the potential of clinical application value. To date, a wide variety of small molecule PROTACs have been developed. Importantly, VHL-based PROTACs have emerged to be a promising approach for proteins, including those non-druggable ones, such as transcriptional factors and scaffold proteins. VHL-based PRTOACs have been developed for the treatment of diseases that are difficult to be dealt with by conventional methods, such as radiotherapy, chemotherapy, and small molecule inhibitors. In this review, the recent advances of VHL-based PRTOACs were summarized, and the chances and challenges associated with this area were also highlighted.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; School of Pharmacy, Qingdao University, Qingdao, 266021, Shandong, China.
| | - Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Dongming Xing
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|