51
|
Fawad Ansari M, Tan YM, Sun H, Li S, Zhou CH. Unique iminotetrahydroberberine-corbelled metronidazoles as potential membrane active broad-spectrum antibacterial agents. Bioorg Med Chem Lett 2022; 76:129012. [DOI: 10.1016/j.bmcl.2022.129012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 12/21/2022]
|
52
|
Yang X, Syed R, Fang B, Zhou C. A new discovery towards novel skeleton of benzimidazole‐conjugated pyrimidinones as unique effective antibacterial agents. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xi Yang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Rasheed Syed
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Cheng‐He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| |
Collapse
|
53
|
Aloe emodin-conjugated sulfonyl hydrazones as novel type of antibacterial modulators against S. aureus 25923 through multifaceted synergistic effects. Bioorg Chem 2022; 127:106035. [PMID: 35870413 DOI: 10.1016/j.bioorg.2022.106035] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022]
Abstract
Aloe emodin-conjugated sulfonyl hydrazones were designed and synthesized as novel type of antibacterial modulators. Aloe emodin benzenesulfonyl hydrazone 5a (AEBH-5a) was preponderant for the treatment of S. aureus 25923 (MIC = 0.5 μg/mL) over norfloxacin and presented high selectivity between bacterial membranes and mammalian membranes. Especially, AEBH-5a could eliminate the formed biofilms and relieve the development of S. aureus 25923 resistance. The antibacterial mechanism of AEBH-5a from extracellularity to intracellularity illustrated that AEBH-5a could destroy bacterial membrane integrity, leading to the leakage of protein and nucleic acid. Besides, AEBH-5a could not only interact with DNA and induce oxidative stress but also inhibit lactate dehydrogenase (LDH) activity as well as render metabolic inactivation. In silico ADME studies prediction of AEBH-5a revealed a favorable bioavailability score and prominent drug-likeness profile. This research showed that the multifaceted synergistic effect initiated by aloe emodin-conjugated sulfonyl hydrazones is a reasonable and effective tactic to combat menacing bacterial infections.
Collapse
|
54
|
Tan YM, Li D, Li FF, Fawad Ansari M, Fang B, Zhou CH. Pyrimidine-conjugated fluoroquinolones as new potential broad-spectrum antibacterial agents. Bioorg Med Chem Lett 2022; 73:128885. [PMID: 35835379 DOI: 10.1016/j.bmcl.2022.128885] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/26/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022]
Abstract
Pyrimidine-conjugated fluoroquinolones were constructed to cope with the dreadful resistance. Most of the target pyrimidine derivatives effectively suppressed the growth of the tested strains, especially, 4-aminopyrimidinyl compound 1c showed a broad antibacterial spectrum and low cytotoxicity and exhibited superior antibacterial potency against Enterococcus faecalis with a low MIC of 0.25 μg/mL to norfloxacin and ciprofloxacin. The active compound 1c with fast bactericidal potency could inhibit the formation of biofilms and showed much lower trend for the development of drug-resistance than norfloxacin and ciprofloxacin. Further exploration revealed that compound 1c could prompt ROS accumulations in bacterial cells and interact with DNA to form a DNA-1c complex, thus facilitating bacterial death. ADME analysis indicated that compound 1c possessed favorable drug-likeness and promising pharmacokinetic properties. These results demonstrated that pyrimidine-conjugated fluoroquinolones held hope as potential antibacterial candidates and deserve further study.
Collapse
Affiliation(s)
- Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Di Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Fen-Fen Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, PR China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
55
|
Yang XC, Hu CF, Zhang PL, Li S, Hu CS, Geng RX, Zhou CH. Coumarin thiazoles as unique structural skeleton of potential antimicrobial agents. Bioorg Chem 2022; 124:105855. [DOI: 10.1016/j.bioorg.2022.105855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/19/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
|
56
|
Li FF, Zhao WH, Tangadanchu VKR, Meng JP, Zhou CH. Discovery of novel phenylhydrazone-based oxindole-thiolazoles as potent antibacterial agents toward Pseudomonas aeruginosa. Eur J Med Chem 2022; 239:114521. [PMID: 35716514 DOI: 10.1016/j.ejmech.2022.114521] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/24/2022]
Abstract
With the soaring of bacterial infection and drug resistance, it is imperative to exploit new efficient antibacterial agents. This work constructed a series of unique phenylhydrazone-based oxindole-thiolazoles to combat monstrous bacterial resistance. Some target molecules showed potent antibacterial activity, among which oxindole-thiolimidazole derived carboxyphenylhydrazone 4e exhibited an 8-fold stronger inhibitory ability than norfloxacin on the growth of P. aeruginosa, with MIC value of 1 μg/mL. Compound 4e with imperceptible hemolysis could hamper bacterial biofilm formation and significantly impede the development of bacterial resistance. Subsequent mechanism studies demonstrated that 4e could destruct bacterial cytoplasmic membrane, causing the leakage of cellular contents (protein and nucleic acid). Moreover, metabolic stagnation and intracellular oxidative stress caused by 4e expedited the death of bacteria. Furthermore, molecule 4e existed supramolecular interactions with DNA to block DNA proliferation. These research results provided a promising light for phenylhydrazone-based oxindole-thiolazoles as novel potential antibacterial agents.
Collapse
Affiliation(s)
- Fen-Fen Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wen-Hao Zhao
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Vijai Kumar Reddy Tangadanchu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jiang-Ping Meng
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
57
|
Deng Z, Sun H, Bheemanaboina RRY, Luo Y, Zhou CH. Natural aloe emodin-hybridized sulfonamide aminophosphates as novel potential membrane-perturbing and DNA-intercalating agents against Enterococcus faecalis. Bioorg Med Chem Lett 2022; 64:128695. [PMID: 35314326 DOI: 10.1016/j.bmcl.2022.128695] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 11/27/2022]
Abstract
The dramatic rise in drug resistance accelerated the desire for new antibacterial agents to safeguard human health. This work constructed a novel type of aloe emodin-hybridized sulfonamide aminophosphates as unique potential antibacterial agents. The biological assay revealed that some target hybrids possessed potent inhibitory activity. Particularly, ethyl aminophosphate-hybridized sulfadiazine aloe emodin 7a (EASA-7a) not only displayed preponderant antibacterial efficiency against drug-resistant E. faecalis at low concentration as 0.25 μg/mL but also possessed strong bacteriostatic capacity and low propensity to develop resistance toward E. faecalis. The weak hemolysis toward human red blood cells and efficient biofilm-disruptive ability further implied the therapeutic potential of EASA-7a. Preliminary studies disclosed that the excellent antibacterial behavior of EASA-7a might be attributed to its capacity to permeate and depolarize the bacterial membrane, as well as promote ROS accumulation and intercalate with DNA. These findings manifested that EASA-7a was worthy of further development to combat life-threatening bacterial infections.
Collapse
Affiliation(s)
- Zhao Deng
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hang Sun
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan Luo
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
58
|
A. Ibrahim M, A. Alshaye N. 4-Amino-3-formylcoumarin as Building Block for Construction of Novel Heteroannulated Coumarins: Synthesis, Characterization and Antimicrobial Evaluation. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|