51
|
Tse J, Geoghegan S. Calculations of dose point kernels of 64 Cu in different media with PENELOPE Monte Carlo code. Med Phys 2019; 46:2422-2429. [PMID: 30822361 DOI: 10.1002/mp.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The unique decay properties of copper-64 (64 Cu) has made it a radionuclide of interest in theragnostic applications of nuclear medicine. This study aims to calculate the dose point kernels (DPKs) of 64 Cu in various media with PENELOPE Monte Carlo code. METHODS Monte Carlo simulations were performed using PENELOPE code (version 2014). To calculate DPKs, the simulation comprised an isotropic point radiation source positioned at the origin of a spherical object of radius 50 cm. The absorbed dose along the radial direction outwards from the point source were scored with a resolution of 20 μm. Validations were firstly performed by calculating the DPKs of monoenergetic electrons and photons in water and the results were compared against the literature values. The continuous energy spectra of the beta minus and positron emissions from 64 Cu were numerically modeled and used as inputs to the simulation. DPKs of 64 Cu were calculated in water, soft tissue, lung tissue, and cortical bone, including all emissions types. RESULTS The simulations have been successfully validated against literature values. The largest deviations have been observed with 10 keV monoenergetic electrons with the average and maximum dose difference of -1.01% and -10.56%. The modeled energy spectra closely compared with the average energies from Brookhaven Laboratory National Nuclear Data Centre and the combined spectral shapes from the RAdiation Dose Assessment Resource (RADAR). The DPKs of 64 Cu demonstrated different radial dose deposition in different media owing to the different physical density and effective atomic number. CONCLUSIONS The DPKs of 64 Cu have been calculated with Monte Carlo simulations in four different media. They will be useful to study the dosimetric properties of 64 Cu-labeled radiopharmaceuticals and perform therapeutic dose planning.
Collapse
Affiliation(s)
- Jason Tse
- Medical Physics Department, Austin Hospital, Melbourne, VIC, Australia.,Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia
| | - Sean Geoghegan
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
52
|
Savchenko A, Sergeeva D, Tishchenko A, Strikhanov M. Small-angle x-ray transition radiation from multilayered structures. Int J Clin Exp Med 2019. [DOI: 10.1103/physrevd.99.016015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
53
|
Okada S, Murakami K, Incerti S, Amako K, Sasaki T. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale. Med Phys 2019; 46:1483-1500. [PMID: 30593679 PMCID: PMC6850505 DOI: 10.1002/mp.13370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 11/23/2022] Open
Abstract
Purpose Track structure simulation codes can accurately reproduce the stochastic nature of particle–matter interactions in order to evaluate quantitatively radiation damage in biological cells such as DNA strand breaks and base damage. Such simulations handle large numbers of secondary charged particles and molecular species created in the irradiated medium. Every particle and molecular species are tracked step‐by‐step using a Monte Carlo method to calculate energy loss patterns and spatial distributions of molecular species inside a cell nucleus with high spatial accuracy. The Geant4‐DNA extension of the Geant4 general‐purpose Monte Carlo simulation toolkit allows for such track structure simulations and can be run on CPUs. However, long execution times have been observed for the simulation of DNA damage in cells. We present in this work an improvement of the computing performance of such simulations using ultraparallel processing on a graphical processing unit (GPU). Methods A new Monte Carlo simulator named MPEXS‐DNA, allowing high computing performance by using a GPU, has been developed for track structure and radiolysis simulations at the subcellular scale. MPEXS‐DNA physics and chemical processes are based on Geant4‐DNA processes available in Geant4 version 10.02 p03. We have reimplemented the Geant4‐DNA process codes of the physics stage (electromagnetic processes of charged particles) and the chemical stage (diffusion and chemical reactions for molecular species) for microdosimetry simulation by using the CUDA language. MPEXS‐DNA can calculate a distribution of energy loss in the irradiated medium caused by charged particles and also simulate production, diffusion, and chemical interactions of molecular species from water radiolysis to quantitatively assess initial damage to DNA. The validation of MPEXS‐DNA physics and chemical simulations was performed by comparing various types of distributions, namely the radial dose distributions for the physics stage, and the G‐value profiles for each chemical product and their linear energy transfer dependency for the chemical stage, to existing experimental data and simulation results obtained by other simulation codes, including PARTRAC. Results For physics validation, radial dose distributions calculated by MPEXS‐DNA are consistent with experimental data and numerical simulations. For chemistry validation, MPEXS‐DNA can also reproduce G‐value profiles for each molecular species with the same tendency as existing experimental data. MPEXS‐DNA also agrees with simulations by PARTRAC reasonably well. However, we have confirmed that there are slight discrepancies in G‐value profiles calculated by MPEXS‐DNA for molecular species such as H2 and H2O2 when compared to experimental data and PARTRAC simulations. The differences in G‐value profiles between MPEXS‐DNA and PARTRAC are caused by the different chemical reactions considered. MPEXS‐DNA can drastically boost the computing performance of track structure and radiolysis simulations. By using NVIDIA's GPU devices adopting the Volta architecture, MPEXS‐DNA has achieved speedup factors up to 2900 against Geant4‐DNA simulations with a single CPU core. Conclusion The MPEXS‐DNA Monte Carlo simulation achieves similar accuracy to Monte Carlo simulations performed using other codes such as Geant4‐DNA and PARTRAC, and its predictions are consistent with experimental data. Notably, MPEXS‐DNA allows calculations that are, at maximum, 2900 times faster than conventional simulations using a CPU.
Collapse
Affiliation(s)
- Shogo Okada
- KEK, 1-1, Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | | | - Sebastien Incerti
- University of Bordeaux, CENBG, UMR 5797, Gradignan, F-33170, France.,CNRS, IN2P3, CENBG, UMR 5797, Gradignan, F-33170, France
| | | | | |
Collapse
|
54
|
Chatzipapas KP, Papadimitroulas P, Obeidat M, McConnell KA, Kirby N, Loudos G, Papanikolaou N, Kagadis GC. Quantification of DNA double-strand breaks using Geant4-DNA. Med Phys 2019; 46:405-413. [PMID: 30418675 PMCID: PMC7379675 DOI: 10.1002/mp.13290] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 01/24/2023] Open
Abstract
PURPOSE This study aims to standardize the simulation procedure in measuring DNA double-strand breaks (DSBs), by using advanced Monte Carlo toolkits, and newly introduced experimental methods for DNA DSB measurement. METHODS For the experimental quantification of DNA DSB, an innovative DNA dosimeter was used to produce experimental data. GATE in combination with Geant4-DNA toolkit were exploited to simulate the experimental environment. The PDB4DNA example of Geant4-DNA was upgraded and investigated. Parameters of the simulation such energy threshold (ET) for a strand break and base pair threshold (BPT) for a DSB were evaluated, depending on the dose. RESULTS Simulations resulted to minimum differentiation in comparison to experimental data for ET = 19 ± 1 eV and BPT = 10 bp, and high differentiation for ET<17.5 eV or ET>22.5 eV and BPT = 10 bp. There was also small differentiation for ET = 17.5 eV and BPT = 6 bp. Uncertainty has been kept lower than 3%. CONCLUSIONS This study includes first results on the quantification of DNA double-strand breaks. The energy spectrum of a LINAC was simulated and used for the first time to irradiate DNA molecules. Simulation outcome was validated on experimental data that were produced by a prototype DNA dosimeter.
Collapse
Affiliation(s)
| | | | | | | | - Neil Kirby
- University of TexasHealth Science CenterSan AntonioTX78229USA
| | - George Loudos
- University of West AtticaDepartment of Biomedical EngineeringEgaleoGR12243Greece
| | | | | |
Collapse
|
55
|
Henthorn NT, Warmenhoven JW, Sotiropoulos M, Aitkenhead AH, Smith EAK, Ingram SP, Kirkby NF, Chadwick A, Burnet NG, Mackay RI, Kirkby KJ, Merchant MJ. Clinically relevant nanodosimetric simulation of DNA damage complexity from photons and protons. RSC Adv 2019; 9:6845-6858. [PMID: 35518487 PMCID: PMC9061037 DOI: 10.1039/c8ra10168j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Relative Biological Effectiveness (RBE), the ratio of doses between radiation modalities to produce the same biological endpoint, is a controversial and important topic in proton therapy. A number of phenomenological models incorporate variable RBE as a function of Linear Energy Transfer (LET), though a lack of mechanistic description limits their applicability. In this work we take a different approach, using a track structure model employing fundamental physics and chemistry to make predictions of proton and photon induced DNA damage, the first step in the mechanism of radiation-induced cell death. We apply this model to a proton therapy clinical case showing, for the first time, predictions of DNA damage on a patient treatment plan. Our model predictions are for an idealised cell and are applied to an ependymoma case, at this stage without any cell specific parameters. By comparing to similar predictions for photons, we present a voxel-wise RBE of DNA damage complexity. This RBE of damage complexity shows similar trends to the expected RBE for cell kill, implying that damage complexity is an important factor in DNA repair and therefore biological effect. Relative Biological Effectiveness (RBE) is a controversial and important topic in proton therapy. This work uses Monte Carlo simulations of DNA damage for protons and photons to probe this phenomenon, providing a plausible mechanistic understanding.![]()
Collapse
Affiliation(s)
- N. T. Henthorn
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - J. W. Warmenhoven
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - M. Sotiropoulos
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - A. H. Aitkenhead
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - E. A. K. Smith
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - S. P. Ingram
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - N. F. Kirkby
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - A. L. Chadwick
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - N. G. Burnet
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - R. I. Mackay
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - K. J. Kirkby
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - M. J. Merchant
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| |
Collapse
|
56
|
Peukert D, Incerti S, Kempson I, Douglass M, Karamitros M, Baldacchino G, Bezak E. Validation and investigation of reactive species yields of Geant4-DNA chemistry models. Med Phys 2018; 46:983-998. [PMID: 30536689 DOI: 10.1002/mp.13332] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/22/2018] [Accepted: 12/02/2018] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Indirect biological damage due to reactive species produced in water radiolysis reactions is responsible for the majority of biological effect for low linear energy transfer (LET) radiation. Modeling water radiolysis and the subsequent interactions of reactive species, as well as track structures, is essential to model radiobiology on the microscale. Recently, chemistry models have been developed for Geant4-DNA to be used in combination with the comprehensive existing physics models. In the current work, the first detailed, independent, in silico validation of all species yields with published experimental observations and comparison with other radiobiological simulations is presented. Additionally, the effect of LET of protons and heavier ions on reactive species yield in the model was examined, as well as the completeness of the chemical reactions following the radiolysis within the time after physical interactions simulated in the model. METHODS Yields over time of reactive species were simulated for water radiolysis by incident electrons, protons, alpha particles, and ions with various LETs using Geant4 and RITRACKS simulation tools. Water dissociation and recombination was simulated using Geant4 to determine the completeness of chemical reactions at the end of the simulation. Yield validation was performed by comparing yields simulated using Geant4 with experimental observations and other simulations. Validation was performed for all species for low LET radiation and the solvated electron and hydroxyl radical for high LET ions. RESULTS It was found that the Geant4-DNA chemistry yields were generally in good agreement with experimental observations and other simulations. However, the Geant4-DNA yields for the hydroxyl radical and hydrogen peroxide at the end of the chemistry stage were found to be respectively considerably higher and lower than the experimentally observed yields. Increasing the LET of incident hadrons increased the yield of secondary species and decreased the yield of primary species. The effect of LET on the yield of the hydroxyl radical at 100 ns simulated with Geant4 was in good agreement with experimental measurements. Additionally, by the end of the simulation only 40% of dissociated water molecules had been recombined and the rate of recombination was slowing. CONCLUSIONS The yields simulated using Geant4 are within reasonable agreement with experimental observations. Higher LET radiation corresponds with increased yields of secondary species and decreased yields of primary species. These trends combined with the LET having similar effects on the 100 ns hydroxyl radical yield for Geant4 and experimental measurements indicate that Geant4 accurately models the effect of LET on radiolysis yields. The limited recombination within the modeled chemistry stage and the slowing rate of recombination at the end of the stage indicate potential long-range indirect biological damage.
Collapse
Affiliation(s)
- Dylan Peukert
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia.,Division of ITEE, University of South Australia, Adelaide, SA, Australia
| | - Sebastien Incerti
- Univ. Bordeaux, CENBG, UMR 5797, Gradignan, F-33170, France.,CNRS, IN2P3, CENBG, UMR 5797, Gradignan, F-33170, France
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Michael Douglass
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, SA, Australia.,Department of Physics, University of Adelaide, Adelaide, SA, Australia
| | - Mathieu Karamitros
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Gérard Baldacchino
- LIDYL, UMR 9222, CEA-CNRS-Université Paris-Saclay, CEA Paris-Saclay, F-91191, Gif sur Yvette, France
| | - Eva Bezak
- Department of Physics, University of Adelaide, Adelaide, SA, Australia.,Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
57
|
Schuemann J, McNamara AL, Warmenhoven JW, Henthorn NT, Kirkby KJ, Merchant MJ, Ingram S, Paganetti H, Held KD, Ramos-Mendez J, Faddegon B, Perl J, Goodhead DT, Plante I, Rabus H, Nettelbeck H, Friedland W, Kundrát P, Ottolenghi A, Baiocco G, Barbieri S, Dingfelder M, Incerti S, Villagrasa C, Bueno M, Bernal MA, Guatelli S, Sakata D, Brown JMC, Francis Z, Kyriakou I, Lampe N, Ballarini F, Carante MP, Davídková M, Štěpán V, Jia X, Cucinotta FA, Schulte R, Stewart RD, Carlson DJ, Galer S, Kuncic Z, Lacombe S, Milligan J, Cho SH, Sawakuchi G, Inaniwa T, Sato T, Li W, Solov'yov AV, Surdutovich E, Durante M, Prise KM, McMahon SJ. A New Standard DNA Damage (SDD) Data Format. Radiat Res 2018; 191:76-92. [PMID: 30407901 DOI: 10.1667/rr15209.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Our understanding of radiation-induced cellular damage has greatly improved over the past few decades. Despite this progress, there are still many obstacles to fully understand how radiation interacts with biologically relevant cellular components, such as DNA, to cause observable end points such as cell killing. Damage in DNA is identified as a major route of cell killing. One hurdle when modeling biological effects is the difficulty in directly comparing results generated by members of different research groups. Multiple Monte Carlo codes have been developed to simulate damage induction at the DNA scale, while at the same time various groups have developed models that describe DNA repair processes with varying levels of detail. These repair models are intrinsically linked to the damage model employed in their development, making it difficult to disentangle systematic effects in either part of the modeling chain. These modeling chains typically consist of track-structure Monte Carlo simulations of the physical interactions creating direct damages to DNA, followed by simulations of the production and initial reactions of chemical species causing so-called "indirect" damages. After the induction of DNA damage, DNA repair models combine the simulated damage patterns with biological models to determine the biological consequences of the damage. To date, the effect of the environment, such as molecular oxygen (normoxic vs. hypoxic), has been poorly considered. We propose a new standard DNA damage (SDD) data format to unify the interface between the simulation of damage induction in DNA and the biological modeling of DNA repair processes, and introduce the effect of the environment (molecular oxygen or other compounds) as a flexible parameter. Such a standard greatly facilitates inter-model comparisons, providing an ideal environment to tease out model assumptions and identify persistent, underlying mechanisms. Through inter-model comparisons, this unified standard has the potential to greatly advance our understanding of the underlying mechanisms of radiation-induced DNA damage and the resulting observable biological effects when radiation parameters and/or environmental conditions change.
Collapse
Affiliation(s)
- J Schuemann
- a Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - A L McNamara
- a Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - J W Warmenhoven
- b Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - N T Henthorn
- b Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - K J Kirkby
- b Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - M J Merchant
- b Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - S Ingram
- b Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - H Paganetti
- a Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - K D Held
- a Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - J Ramos-Mendez
- c Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - B Faddegon
- c Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - J Perl
- d SLAC National Accelerator Laboratory, Menlo Park, California
| | - D T Goodhead
- e Medical Research Council, Harwell, United Kingdom
| | | | - H Rabus
- g Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany.,h Task Group 6.2 "Computational Micro- and Nanodosimetry", European Radiation Dosimetry Group e.V., Neuherberg, Germany
| | - H Nettelbeck
- g Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany.,h Task Group 6.2 "Computational Micro- and Nanodosimetry", European Radiation Dosimetry Group e.V., Neuherberg, Germany
| | - W Friedland
- h Task Group 6.2 "Computational Micro- and Nanodosimetry", European Radiation Dosimetry Group e.V., Neuherberg, Germany.,i Institute of Radiation Protection, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - P Kundrát
- i Institute of Radiation Protection, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - A Ottolenghi
- j Physics Department, University of Pavia, Pavia, Italy
| | - G Baiocco
- h Task Group 6.2 "Computational Micro- and Nanodosimetry", European Radiation Dosimetry Group e.V., Neuherberg, Germany.,j Physics Department, University of Pavia, Pavia, Italy
| | - S Barbieri
- h Task Group 6.2 "Computational Micro- and Nanodosimetry", European Radiation Dosimetry Group e.V., Neuherberg, Germany.,j Physics Department, University of Pavia, Pavia, Italy
| | - M Dingfelder
- k Department of Physics, East Carolina University, Greenville, North Carolina
| | - S Incerti
- l CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France.,m University of Bordeaux, CENBG, UMR 5797, F-33170 Gradignan, France
| | - C Villagrasa
- h Task Group 6.2 "Computational Micro- and Nanodosimetry", European Radiation Dosimetry Group e.V., Neuherberg, Germany.,n Institut de Radioprotection et Sûreté Nucléaire, F-92262 Fontenay aux Roses Cedex, France
| | - M Bueno
- n Institut de Radioprotection et Sûreté Nucléaire, F-92262 Fontenay aux Roses Cedex, France
| | - M A Bernal
- o Applied Physics Department, Gleb Wataghin Institute of Physics, State University of Campinas, Campinas, SP, Brazil
| | - S Guatelli
- p Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - D Sakata
- p Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - J M C Brown
- q Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands
| | - Z Francis
- r Department of Physics, Faculty of Science, Saint Joseph University, Beirut, Lebanon
| | - I Kyriakou
- s Medical Physics Laboratory, University of Ioannina Medical School, Ioannina, Greece
| | - N Lampe
- l CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France
| | - F Ballarini
- j Physics Department, University of Pavia, Pavia, Italy.,t Italian National Institute of Nuclear Physics, Section of Pavia, I-27100 Pavia, Italy
| | - M P Carante
- j Physics Department, University of Pavia, Pavia, Italy.,t Italian National Institute of Nuclear Physics, Section of Pavia, I-27100 Pavia, Italy
| | - M Davídková
- u Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Řež, Czech Republic
| | - V Štěpán
- u Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Řež, Czech Republic
| | - X Jia
- v Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - F A Cucinotta
- w Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, Nevada
| | - R Schulte
- x Division of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - R D Stewart
- y Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - D J Carlson
- z Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - S Galer
- aa Medical Radiation Science Group, National Physical Laboratory, Teddington, United Kingdom
| | - Z Kuncic
- bb School of Physics, University of Sydney, Sydney, NSW, Australia
| | - S Lacombe
- cc Institut des Sciences Moléculaires d'Orsay (UMR 8214) University Paris-Sud, CNRS, University Paris-Saclay, 91405 Orsay Cedex, France
| | | | - S H Cho
- ee Department of Radiation Physics and Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - G Sawakuchi
- ee Department of Radiation Physics and Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - T Inaniwa
- ff Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, Chiba, Japan
| | - T Sato
- gg Japan Atomic Energy Agency, Nuclear Science and Engineering Center, Tokai 319-1196, Japan
| | - W Li
- i Institute of Radiation Protection, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,hh Task Group 7.7 "Internal Micro- and Nanodosimetry", European Radiation Dosimetry Group e.V., Neuherberg, Germany
| | - A V Solov'yov
- ii MBN Research Center, 60438 Frankfurt am Main, Germany
| | - E Surdutovich
- jj Department of Physics, Oakland University, Rochester, Michigan
| | - M Durante
- kk GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany
| | - K M Prise
- ll Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, United Kingdom
| | - S J McMahon
- ll Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, United Kingdom
| |
Collapse
|
58
|
McNamara AL, Ramos-Méndez J, Perl J, Held K, Dominguez N, Moreno E, Henthorn NT, Kirkby KJ, Meylan S, Villagrasa C, Incerti S, Faddegon B, Paganetti H, Schuemann J. Geometrical structures for radiation biology research as implemented in the TOPAS-nBio toolkit. Phys Med Biol 2018; 63:175018. [PMID: 30088810 DOI: 10.1088/1361-6560/aad8eb] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Computational simulations, such as Monte Carlo track structure simulations, offer a powerful tool for quantitatively investigating radiation interactions within cells. The modelling of the spatial distribution of energy deposition events as well as diffusion of chemical free radical species, within realistic biological geometries, can help provide a comprehensive understanding of the effects of radiation on cells. Track structure simulations, however, generally require advanced computing skills to implement. The TOPAS-nBio toolkit, an extension to TOPAS (TOol for PArticle Simulation), aims to provide users with a comprehensive framework for radiobiology simulations, without the need for advanced computing skills. This includes providing users with an extensive library of advanced, realistic, biological geometries ranging from the micrometer scale (e.g. cells and organelles) down to the nanometer scale (e.g. DNA molecules and proteins). Here we present the geometries available in TOPAS-nBio.
Collapse
Affiliation(s)
- Aimee L McNamara
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 30 Fruit St, Boston, MA 02114, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Thomaz R, Louette P, Hoff G, Müller S, Pireaux JJ, Trautmann C, Papaléo RM. Bond-Breaking Efficiency of High-Energy Ions in Ultrathin Polymer Films. PHYSICAL REVIEW LETTERS 2018; 121:066101. [PMID: 30141670 DOI: 10.1103/physrevlett.121.066101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Thin films of poly(methyl methacrylate) and poly(vinyl chloride) of different thickness are used to investigate the effect of spatial confinement on the efficiency of bond breaking induced by 2 MeV H^{+} and 2.1 GeV Bi ions. Effective cross sections for oxygen and chlorine loss are extracted for films down to a thickness of about 5 nm and are compared to theoretical estimations based on radial energy density profiles simulated with geant-dna. The cross sections are to a large extent thickness independent, indicating that bond breaking is dominated by short-range processes. This is in contrast to the strongly reduced efficiencies found recently for cratering induced by high-energy ions in similar ultrathin polymer films [Phys. Rev. Lett. 114, 118302 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.118302].
Collapse
Affiliation(s)
- R Thomaz
- Interdisciplinary Center of Nanoscience and Micro-Nanotechnology, School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Avenida Ipiranga 6681, 90619-900 Porto Alegre, Brazil
| | - P Louette
- Université de Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - G Hoff
- Università di Cagliari and IFN Sex. Di Cagliari- Dipartimento di Fisica, I-09042 Monserrato (CA), Italy
| | - S Müller
- Interdisciplinary Center of Nanoscience and Micro-Nanotechnology, School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Avenida Ipiranga 6681, 90619-900 Porto Alegre, Brazil
| | - J J Pireaux
- Université de Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - C Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt, Germany
- Technische Universität Darmstadt, Alarich-Weiss-Strasse 2, 64287 Darmstadt, Germany
| | - R M Papaléo
- Interdisciplinary Center of Nanoscience and Micro-Nanotechnology, School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Avenida Ipiranga 6681, 90619-900 Porto Alegre, Brazil
| |
Collapse
|
60
|
|
61
|
Independent dose validation system for Gamma Knife radiosurgery, using a DICOM-RT interface and Geant4. Phys Med 2018; 51:117-124. [PMID: 29914795 DOI: 10.1016/j.ejmp.2018.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 11/21/2022] Open
Abstract
Leksell GammaPlan was specifically designed for Gamma Knife (GK) radiosurgery planning, but it has limited accuracy for estimating the dose distribution in inhomogeneous areas, such as the embolization of arteriovenous malformations. We aimed to develop an independent patient dose validation system based on a patient-specific model, constructed using a DICOM-RT interface and the Geant4 toolkit. Leksell Gamma Knife Perfexion was designed in Geant4.10.00 and includes a DICOM-RT interface. Output factors for each collimator in a sector and dose distributions in a spherical water phantom calculated using a Monte Carlo (MC) algorithm were compared with the output factors calculated by the tissue maximum ratio (TMR) 10 algorithm and dose distributions measured using film, respectively. Studies using two types of water phantom and two patient simulation cases were evaluated by comparing the dose distributions calculated by the MC, the TMR and the convolution algorithms. The water phantom studies showed that if the beam size is small and the target is located in heterogeneous media, the dose difference could be up to 11%. In the two patient simulations, the TMR algorithm overestimated the dose by about 4% of the maximum dose if a complex and large bony structure was located on the beam path, whereas the convolution algorithm showed similar results to those of the MC algorithm. This study demonstrated that the in-house system could accurately verify the patient dose based on full MC simulation and so would be useful for patient cases where the dose differences are suspected.
Collapse
|
62
|
de la Fuente Rosales L, Incerti S, Francis Z, Bernal MA. Accounting for radiation-induced indirect damage on DNA with the Geant 4-DNA code. Phys Med 2018; 51:108-116. [PMID: 29908994 DOI: 10.1016/j.ejmp.2018.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 01/02/2023] Open
Abstract
The use of Monte Carlo (MC) simulations remains a powerful tool to study the biological effects induced by ionizing radiation on living beings. Several MC codes are commonly used in research fields such as nanodosimetry, radiotherapy, radiation protection, and space radiation. This work presents an enhancement of an existing model [1] for radiobiological purposes, to account for the indirect DNA damage induced by ionizing particles. The Geant4-DNA simulation toolkit was used to simulate the physical, pre-chemical, and chemical stages of early DNA damage induced by protons and α-particles. Liquid water was used as the medium for simulations. Two phase-space files were generated, one containing the energy deposition events and another with the position of chemical species produced by water radiolysis from 0.1 ps up to 1 ns. These files were used as input in the radiobiological code that contains the genetic material model with atomic resolution, consisting of several copies of 30 nm chromatin fibers. The B-DNA configuration was used. This work focused on the indirect damage produced by the hydroxyl radical (OH) attack on the sugar-phosphate group. The approach followed to account for the indirect DNA damage was the same as those used by other radiobiological codes [2,3]. The critical parameter considered here was the reaction radius, which was calculated from the Smoluchowski's diffusion equation. Single, double, and total strand break yields produced by direct, indirect, and mixed mechanisms are reported. The obtained results are consistent with experimental and calculation data sets published in the literature.
Collapse
Affiliation(s)
| | | | - Ziad Francis
- Université Saint Joseph, Faculty of Sciences, Department of Physics, Beirut, Lebanon
| | - Mario A Bernal
- Departamento de Física Aplicada, Instituto de Física "Gleb Wataghin", UNICAMP, Campinas, Brazil
| |
Collapse
|
63
|
Incerti S, Kyriakou I, Bernal MA, Bordage MC, Francis Z, Guatelli S, Ivanchenko V, Karamitros M, Lampe N, Lee SB, Meylan S, Min CH, Shin WG, Nieminen P, Sakata D, Tang N, Villagrasa C, Tran HN, Brown JMC. Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project. Med Phys 2018; 45. [PMID: 29901835 DOI: 10.1002/mp.13048] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/03/2018] [Accepted: 06/04/2018] [Indexed: 01/11/2023] Open
Abstract
This Special Report presents a description of Geant4-DNA user applications dedicated to the simulation of track structures (TS) in liquid water and associated physical quantities (e.g., range, stopping power, mean free path…). These example applications are included in the Geant4 Monte Carlo toolkit and are available in open access. Each application is described and comparisons to recent international recommendations are shown (e.g., ICRU, MIRD), when available. The influence of physics models available in Geant4-DNA for the simulation of electron interactions in liquid water is discussed. Thanks to these applications, the authors show that the most recent sets of physics models available in Geant4-DNA (the so-called "option4" and "option 6" sets) enable more accurate simulation of stopping powers, dose point kernels, and W-values in liquid water, than the default set of models ("option 2") initially provided in Geant4-DNA. They also serve as reference applications for Geant4-DNA users interested in TS simulations.
Collapse
Affiliation(s)
- S Incerti
- University of Bordeaux, CENBG, UMR 5797, F-33170, Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, F-33170, Gradignan, France
| | - I Kyriakou
- Medical Physics Laboratory, University of Ioannina Medical School, 45110, Ioannina, Greece
| | - M A Bernal
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - M C Bordage
- Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Toulouse, France
- Inserm, UMR1037 CRCT, Toulouse, France
| | - Z Francis
- Department of Physics, Faculty of Sciences, Université Saint Joseph, Beirut, Lebanon
| | - S Guatelli
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
- Illawarra Health & Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - V Ivanchenko
- Geant4 Associates International Ltd., Hebden Bridge, UK
- Tomsk State University, Tomsk, Russia
| | - M Karamitros
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA
| | - N Lampe
- Vicinity Centres, Data Science & Insights, Office Tower One, 1341 Dandenong Rd, Chadstone, Victoria, 3148, Australia
| | - S B Lee
- Proton Therapy Center, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea
| | - S Meylan
- SymAlgo Technologies, 75 rue Léon Frot, 75011, Paris, France
| | - C H Min
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Korea
| | - W G Shin
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Korea
| | | | - D Sakata
- University of Bordeaux, CENBG, UMR 5797, F-33170, Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, F-33170, Gradignan, France
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - N Tang
- IRSN, Institut de Radioprotection et de Sureté Nucléaire, 92262, Fontenay-aux-Roses, France
| | - C Villagrasa
- IRSN, Institut de Radioprotection et de Sureté Nucléaire, 92262, Fontenay-aux-Roses, France
| | - H N Tran
- Division of Nuclear Physics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - J M C Brown
- Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
64
|
Ackerman NL, de la Fuente Rosales L, Falzone N, Vallis KA, Bernal MA. Targeted alpha therapy with 212Pb or 225Ac: Change in RBE from daughter migration. Phys Med 2018; 51:91-98. [PMID: 29807854 DOI: 10.1016/j.ejmp.2018.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 12/11/2022] Open
Abstract
Targeted α-therapy (TAT) could be delivered early to patients who are at a high-risk for developing brain metastases, targeting the areas of the vasculature where tumor cells are penetrating into the brain. We have utilized a Monte Carlo model representing brain vasculature to calculate physical dose and DNA damage from the α-emitters 225Ac and 212Pb. The micron-scale dose distributions from all radioactive decay products were modeled in Geant4, including the eV-scale interactions using the Geant4-DNA models. These interactions were then superimposed on an atomic-scale DNA model to estimate strand break yields. In addition to 225Ac having a higher dose per decay than 212Pb, it also has a double strand break yield per decay that is 4.7 ± 0.5 times that of 212Pb. However, the efficacy of both nuclides depends on retaining the daughter nuclei at the target location in the brain vasculature. The relative biological effectiveness (RBE) of 225Ac and 212Pb are similar when the entire decay chains are included, with maxima of 2.7 ± 0.6 and 2.5 ± 0.5 (respectively), and RBE values of about 2 to a depth of 80 μm. If the initial daughter is lost, the RBE of 212Pb is completely reduced to 1 or lower and the RBE of 225Ac is approximately 2 only for the first 40 μm.
Collapse
Affiliation(s)
- Nicole L Ackerman
- Department of Physics and Astronomy, Agnes Scott College, Decatur, GA, USA.
| | | | - Nadia Falzone
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Katherine A Vallis
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Mario A Bernal
- Departamento de Física Aplicada, Instituto de Física "Gleb Wataghin", UNICAMP, Campinas, Brazil
| |
Collapse
|
65
|
Obeidat M, McConnell KA, Li X, Bui B, Stathakis S, Papanikolaou N, Rasmussen K, Ha CS, Lee SE, Shim EY, Kirby N. DNA double-strand breaks as a method of radiation measurements for therapeutic beams. Med Phys 2018; 45:3460-3465. [PMID: 29745994 DOI: 10.1002/mp.12956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/20/2018] [Accepted: 04/29/2018] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Many types of dosimeters are used to measure radiation dose and calibrate radiotherapy equipment, but none directly measure the biological effect of this dose. The purpose here is to create a dosimeter that can measure the probability of double-strand breaks (DSB) for DNA, which is directly related to the biological effect of radiation. METHODS A DNA dosimeter, consisting of magnetic streptavidin beads attached to four kilobase pair DNA strands labeled with biotin and fluorescein amidite (FAM) on opposing ends, was suspended in phosphate-buffered saline (PBS). Fifty microliter samples were placed in plastic tubes inside a water tank setup and irradiated at the dose levels of 25, 50, 100, 150, and 200 Gy. After irradiation, the dosimeters were mechanically separated into beads (intact DNA) and supernatant (broken DNA/FAM) using a magnet. The fluorescence was read and the probability of DSB was calculated. This DNA dosimeter response was benchmarked against a Southern blot analysis technique for the measurement of DSB probability. RESULTS For the DNA dosimeter, the probabilities of DSB at the dose levels of 25, 50, 100, 150, and 200 Gy were 0.043, 0.081, 0.149, 0.196, and 0.242, respectively, and the standard errors of the mean were 0.002, 0.003, 0.006, 0.005, and 0.011, respectively. For the Southern blot method, the probabilities of DSB at the dose levels of 25, 50, 100, 150, and 200 Gy were 0.053, 0.105, 0.198, 0.235, and 0.264, respectively, and the standard errors of the mean were 0.013, 0.024, 0.040, 0.044, and 0.063, respectively. CONCLUSIONS A DNA dosimeter can accurately determine the probability of DNA double-strand break (DSB), one of the most toxic effects of radiotherapy, for absorbed radiation doses from 25 to 200 Gy. This is an important step in demonstrating the viability of DNA dosimeters as a measurement technique for radiation.
Collapse
Affiliation(s)
- Mohammad Obeidat
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kristen A McConnell
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xiaolei Li
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Brian Bui
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Sotirios Stathakis
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Niko Papanikolaou
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Karl Rasmussen
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Chul Soo Ha
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Sang Eun Lee
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Eun Yong Shim
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Neil Kirby
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
66
|
Ramos-Méndez J, Perl J, Schuemann J, McNamara A, Paganetti H, Faddegon B. Monte Carlo simulation of chemistry following radiolysis with TOPAS-nBio. Phys Med Biol 2018; 63:105014. [PMID: 29697057 PMCID: PMC6027650 DOI: 10.1088/1361-6560/aac04c] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Simulation of water radiolysis and the subsequent chemistry provides important information on the effect of ionizing radiation on biological material. The Geant4 Monte Carlo toolkit has added chemical processes via the Geant4-DNA project. The TOPAS tool simplifies the modeling of complex radiotherapy applications with Geant4 without requiring advanced computational skills, extending the pool of users. Thus, a new extension to TOPAS, TOPAS-nBio, is under development to facilitate the configuration of track-structure simulations as well as water radiolysis simulations with Geant4-DNA for radiobiological studies. In this work, radiolysis simulations were implemented in TOPAS-nBio. Users may now easily add chemical species and their reactions, and set parameters including branching ratios, dissociation schemes, diffusion coefficients, and reaction rates. In addition, parameters for the chemical stage were re-evaluated and updated from those used by default in Geant4-DNA to improve the accuracy of chemical yields. Simulation results of time-dependent and LET-dependent primary yields Gx (chemical species per 100 eV deposited) produced at neutral pH and 25 °C by short track-segments of charged particles were compared to published measurements. The LET range was 0.05-230 keV µm-1. The calculated Gx values for electrons satisfied the material balance equation within 0.3%, similar for protons albeit with long calculation time. A smaller geometry was used to speed up proton and alpha simulations, with an acceptable difference in the balance equation of 1.3%. Available experimental data of time-dependent G-values for [Formula: see text] agreed with simulated results within 7% ± 8% over the entire time range; for [Formula: see text] over the full time range within 3% ± 4%; for H2O2 from 49% ± 7% at earliest stages and 3% ± 12% at saturation. For the LET-dependent Gx, the mean ratios to the experimental data were 1.11 ± 0.98, 1.21 ± 1.11, 1.05 ± 0.52, 1.23 ± 0.59 and 1.49 ± 0.63 (1 standard deviation) for [Formula: see text], [Formula: see text], H2, H2O2 and [Formula: see text], respectively. In conclusion, radiolysis and subsequent chemistry with Geant4-DNA has been successfully incorporated in TOPAS-nBio. Results are in reasonable agreement with published measured and simulated data.
Collapse
Affiliation(s)
- J Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
67
|
Lampe N, Karamitros M, Breton V, Brown JMC, Sakata D, Sarramia D, Incerti S. Mechanistic DNA damage simulations in Geant4-DNA Part 2: Electron and proton damage in a bacterial cell. Phys Med 2018; 48:146-155. [PMID: 29371062 DOI: 10.1016/j.ejmp.2017.12.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 11/18/2022] Open
Abstract
We extended a generic Geant4 application for mechanistic DNA damage simulations to an Escherichia coli cell geometry, finding electron damage yields and proton damage yields largely in line with experimental results. Depending on the simulation of radical scavenging, electrons double strand breaks (DSBs) yields range from 0.004 to 0.010 DSB Gy-1 Mbp-1, while protons have yields ranging from 0.004 DSB Gy-1 Mbp-1 at low LETs and with strict assumptions concerning scavenging, up to 0.020 DSB Gy-1 Mbp-1 at high LETs and when scavenging is weakest. Mechanistic DNA damage simulations can provide important limits on the extent to which physical processes can impact biology in low background experiments. We demonstrate the utility of these studies for low dose radiation biology calculating that in E. coli, the median rate at which the radiation background induces double strand breaks is 2.8 × 10-8 DSB day-1, significantly less than the mutation rate per generation measured in E. coli, which is on the order of 10-3.
Collapse
Affiliation(s)
- Nathanael Lampe
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France; Université de Bordeaux, CNRS/IN2P3, CENBG, F-33175 Gradignan, France
| | | | - Vincent Breton
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France
| | - Jeremy M C Brown
- Radiation Science and Technology, Delft University of Technology, Mekelweg 15, Delft 26295B, The Netherlands
| | - Dousatsu Sakata
- Université de Bordeaux, CNRS/IN2P3, CENBG, F-33175 Gradignan, France
| | - David Sarramia
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France
| | - Sébastien Incerti
- Université de Bordeaux, CNRS/IN2P3, CENBG, F-33175 Gradignan, France.
| |
Collapse
|
68
|
Sakata D, Kyriakou I, Okada S, Tran HN, Lampe N, Guatelli S, Bordage MC, Ivanchenko V, Murakami K, Sasaki T, Emfietzoglou D, Incerti S. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes. Med Phys 2018; 45:2230-2242. [PMID: 29480947 DOI: 10.1002/mp.12827] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/17/2018] [Accepted: 02/03/2018] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Gold nanoparticles (GNPs) are known to enhance the absorbed dose in their vicinity following photon-based irradiation. To investigate the therapeutic effectiveness of GNPs, previous Monte Carlo simulation studies have explored GNP dose enhancement using mostly condensed-history models. However, in general, such models are suitable for macroscopic volumes and for electron energies above a few hundred electron volts. We have recently developed, for the Geant4-DNA extension of the Geant4 Monte Carlo simulation toolkit, discrete physics models for electron transport in gold which include the description of the full atomic de-excitation cascade. These models allow event-by-event simulation of electron tracks in gold down to 10 eV. The present work describes how such specialized physics models impact simulation-based studies on GNP-radioenhancement in a context of x-ray radiotherapy. METHODS The new discrete physics models are compared to the Geant4 Penelope and Livermore condensed-history models, which are being widely used for simulation-based NP radioenhancement studies. An ad hoc Geant4 simulation application has been developed to calculate the absorbed dose in liquid water around a GNP and its radioenhancement, caused by secondary particles emitted from the GNP itself, when irradiated with a monoenergetic electron beam. The effect of the new physics models is also quantified in the calculation of secondary particle spectra, when originating in the GNP and when exiting from it. RESULTS The new physics models show similar backscattering coefficients with the existing Geant4 Livermore and Penelope models in large volumes for 100 keV incident electrons. However, in submicron sized volumes, only the discrete models describe the high backscattering that should still be present around GNPs at these length scales. Sizeable differences (mostly above a factor of 2) are also found in the radial distribution of absorbed dose and secondary particles between the new and the existing Geant4 models. The degree to which these differences are due to intrinsic limitations of the condensed-history models or to differences in the underling scattering cross sections requires further investigation. CONCLUSIONS Improved physics models for gold are necessary to better model the impact of GNPs in radiotherapy via Monte Carlo simulations. We implemented discrete electron transport models for gold in Geant4 that is applicable down to 10 eV including the modeling of the full de-excitation cascade. It is demonstrated that the new model has a significant positive impact on particle transport simulations in gold volumes with submicron dimensions compared to the existing Livermore and Penelope condensed-history models of Geant4.
Collapse
Affiliation(s)
- Dousatsu Sakata
- Univ. Bordeaux, CENBG, UMR 5797, Gradignan, France.,CNRS, IN2P3, CENBG, UMR 5797, Gradignan, France
| | - Ioanna Kyriakou
- Medical Physics Laboratory, University of Ioannina Medical School, Ioannina, Greece
| | - Shogo Okada
- Organization for Advanced and Integrated Research, Kobe University, Kobe, Japan
| | - Hoang N Tran
- Irfu, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Susanna Guatelli
- University of Wollongong, Centre For Medical Radiation Physics, Wollongong, Australia
| | - Marie-Claude Bordage
- INSERM, UMR1037 CRCT, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, Toulouse, France
| | - Vladimir Ivanchenko
- Geant4 Associates International Ltd, Hebden Bridge, UK.,Tomsk State University, Tomsk, Russia
| | | | | | | | - Sebastien Incerti
- Univ. Bordeaux, CENBG, UMR 5797, Gradignan, France.,CNRS, IN2P3, CENBG, UMR 5797, Gradignan, France
| |
Collapse
|
69
|
Piroozfar B, Raisali G, Alirezapour B, Mirzaii M. The effect of 111In radionuclide distance and auger electron energy on direct induction of DNA double-strand breaks: a Monte Carlo study using Geant4 toolkit. Int J Radiat Biol 2018; 94:385-393. [DOI: 10.1080/09553002.2018.1440329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Behnaz Piroozfar
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Gholamreza Raisali
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Behrouz Alirezapour
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mohammad Mirzaii
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| |
Collapse
|
70
|
Lazarakis P, Incerti S, Ivanchenko V, Kyriakou I, Emfietzoglou D, Corde S, Rosenfeld AB, Lerch M, Tehei M, Guatelli S. Investigation of track structure and condensed history physics models for applications in radiation dosimetry on a micro and nano scale in Geant4. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaa6aa] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
71
|
Calculation by GAMOS/Geant4 simulation of cellular energy distributions from alpha and lithium-7 particles created by BNCT. Appl Radiat Isot 2018; 132:206-211. [DOI: 10.1016/j.apradiso.2017.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/19/2017] [Accepted: 11/15/2017] [Indexed: 11/20/2022]
|
72
|
El Naqa I, Kerns SL, Coates J, Luo Y, Speers C, West CML, Rosenstein BS, Ten Haken RK. Radiogenomics and radiotherapy response modeling. Phys Med Biol 2017; 62:R179-R206. [PMID: 28657906 PMCID: PMC5557376 DOI: 10.1088/1361-6560/aa7c55] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Advances in patient-specific information and biotechnology have contributed to a new era of computational medicine. Radiogenomics has emerged as a new field that investigates the role of genetics in treatment response to radiation therapy. Radiation oncology is currently attempting to embrace these recent advances and add to its rich history by maintaining its prominent role as a quantitative leader in oncologic response modeling. Here, we provide an overview of radiogenomics starting with genotyping, data aggregation, and application of different modeling approaches based on modifying traditional radiobiological methods or application of advanced machine learning techniques. We highlight the current status and potential for this new field to reshape the landscape of outcome modeling in radiotherapy and drive future advances in computational oncology.
Collapse
Affiliation(s)
- Issam El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Sung W, Ye SJ, McNamara AL, McMahon SJ, Hainfeld J, Shin J, Smilowitz HM, Paganetti H, Schuemann J. Dependence of gold nanoparticle radiosensitization on cell geometry. NANOSCALE 2017; 9:5843-5853. [PMID: 28429022 PMCID: PMC5526329 DOI: 10.1039/c7nr01024a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The radiosensitization effect of gold nanoparticles (GNPs) has been demonstrated both in vitro and in vivo in radiation therapy. The purpose of this study was to systematically assess the biological effectiveness of GNPs distributed in the extracellular media for realistic cell geometries. TOPAS-nBio simulations were used to determine the nanometre-scale radial dose distributions around the GNPs, which were subsequently used to predict the radiation dose response of cells surrounded by GNPs. MDA-MB-231 human breast cancer cells and F-98 rat glioma cells were used as models to assess different cell geometries by changing (1) the cell shape, (2) the nucleus location within the cell, (3) the size of GNPs, and (4) the photon energy. The results show that the sensitivity enhancement ratio (SER) was increased up to a factor of 1.2 when the location of the nucleus is close to the cell membrane for elliptical-shaped cells. Heat-maps of damage-likelihoods show that most of the lethal events occur in the regions of the nuclei closest to the membrane, potentially causing highly clustered damage patterns. The effect of the GNP size on radiosensitization was limited when the GNPs were located outside the cell. The improved modelling of the cell geometry was shown to be crucial because the dose enhancement caused by GNPs falls off rapidly with distance from the GNPs. We conclude that radiosensitization can be achieved for kV photons even without cellular uptake of GNPs when the nucleus is shifted towards the cell membrane. Furthermore, damage was found to concentrate in a small region of the nucleus in close proximity to the extracellular, GNP-laden region.
Collapse
Affiliation(s)
- Wonmo Sung
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Sung-Joon Ye
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Robotics Research Laboratory for Extreme Environment, Advanced Institutes of Convergence Technology, Seoul National University, Suwon, South Korea
- corresponding authors: .
| | - Aimee L. McNamara
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen J McMahon
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, UK
| | | | - Jungwook Shin
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | | | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- corresponding authors: .
| |
Collapse
|
74
|
Guatelli S, Incerti S. Monte Carlo simulations for medical physics: From fundamental physics to cancer treatment. Phys Med 2017; 33:179-181. [PMID: 28111100 DOI: 10.1016/j.ejmp.2017.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 01/02/2017] [Indexed: 01/11/2023] Open
Affiliation(s)
- S Guatelli
- Centre For Medical Radiation Physics (CMRP), University of Wollongong (UOW), Wollongong, NSW, Australia.
| | | |
Collapse
|
75
|
McNamara A, Geng C, Turner R, Mendez JR, Perl J, Held K, Faddegon B, Paganetti H, Schuemann J. Validation of the radiobiology toolkit TOPAS-nBio in simple DNA geometries. Phys Med 2016; 33:207-215. [PMID: 28017738 DOI: 10.1016/j.ejmp.2016.12.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 12/08/2016] [Accepted: 12/11/2016] [Indexed: 11/30/2022] Open
Abstract
Computational simulations offer a powerful tool for quantitatively investigating radiation interactions with biological tissue and can help bridge the gap between physics, chemistry and biology. The TOPAS collaboration is tackling this challenge by extending the current Monte Carlo tool to allow for sub-cellular in silico simulations in a new extension, TOPAS-nBio. TOPAS wraps and extends the Geant4 Monte Carlo simulation toolkit and the new extension allows the modeling of particles down to vibrational energies (∼2eV) within realistic biological geometries. Here we present a validation of biological geometries available in TOPAS-nBio, by comparing our results to two previously published studies. We compare the prediction of strand breaks in a simple linear DNA strand from TOPAS-nBio to a published Monte Carlo track structure simulation study. While TOPAS-nBio confirms the trend in strand break generation, it predicts a higher frequency of events below an energy of 17.5eV compared to the alternative Monte Carlo track structure study. This is due to differences in the physics models used by each code. We also compare the experimental measurement of strand breaks from incident protons in DNA plasmids to TOPAS-nBio simulations. Our results show good agreement of single and double strand breaks predicting a similar increase in the strand break yield with increasing LET.
Collapse
Affiliation(s)
- Aimee McNamara
- Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA.
| | - Changran Geng
- Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | | | - Jose Ramos Mendez
- University of California San Francisco Comprehensive Cancer Center, San Francisco, CA, USA
| | - Joseph Perl
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Kathryn Held
- Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Bruce Faddegon
- University of California San Francisco Comprehensive Cancer Center, San Francisco, CA, USA
| | - Harald Paganetti
- Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Jan Schuemann
- Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| |
Collapse
|