51
|
Wood MD, Gillard M. Evidence for a differential interaction of brivaracetam and levetiracetam with the synaptic vesicle 2A protein. Epilepsia 2016; 58:255-262. [DOI: 10.1111/epi.13638] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2016] [Indexed: 01/31/2023]
|
52
|
Löscher W, Gillard M, Sands ZA, Kaminski RM, Klitgaard H. Synaptic Vesicle Glycoprotein 2A Ligands in the Treatment of Epilepsy and Beyond. CNS Drugs 2016; 30:1055-1077. [PMID: 27752944 PMCID: PMC5078162 DOI: 10.1007/s40263-016-0384-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synaptic vesicle glycoprotein SV2A belongs to the major facilitator superfamily (MFS) of transporters and is an integral constituent of synaptic vesicle membranes. SV2A has been demonstrated to be involved in vesicle trafficking and exocytosis, processes crucial for neurotransmission. The anti-seizure drug levetiracetam was the first ligand to target SV2A and displays a broad spectrum of anti-seizure activity in various preclinical models. Several lines of preclinical and clinical evidence, including genetics and protein expression changes, support an important role of SV2A in epilepsy pathophysiology. While the functional consequences of SV2A ligand binding are not fully elucidated, studies suggest that subsequent SV2A conformational changes may contribute to seizure protection. Conversely, the recently discovered negative SV2A modulators, such as UCB0255, counteract the anti-seizure effect of levetiracetam and display procognitive properties in preclinical models. More broadly, dysfunction of SV2A may also be involved in Alzheimer's disease and other types of cognitive impairment, suggesting potential novel therapies for levetiracetam and its congeners. Furthermore, emerging data indicate that there may be important roles for two other SV2 isoforms (SV2B and SV2C) in the pathogenesis of epilepsy, as well as other neurodegenerative diseases. Utilization of recently developed SV2A positron emission tomography ligands will strengthen and reinforce the pharmacological evidence that SV2A is a druggable target, and will provide a better understanding of its role in epilepsy and other neurological diseases, aiding in further defining the full therapeutic potential of SV2A modulation.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| | | | | | | | | |
Collapse
|
53
|
Fan HC, Lee HS, Chang KP, Lee YY, Lai HC, Hung PL, Lee HF, Chi CS. The Impact of Anti-Epileptic Drugs on Growth and Bone Metabolism. Int J Mol Sci 2016; 17:E1242. [PMID: 27490534 PMCID: PMC5000640 DOI: 10.3390/ijms17081242] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a common neurological disorder worldwide and anti-epileptic drugs (AEDs) are always the first choice for treatment. However, more than 50% of patients with epilepsy who take AEDs have reported bone abnormalities. Cytochrome P450 (CYP450) isoenzymes are induced by AEDs, especially the classical AEDs, such as benzodiazepines (BZDs), carbamazepine (CBZ), phenytoin (PT), phenobarbital (PB), and valproic acid (VPA). The induction of CYP450 isoenzymes may cause vitamin D deficiency, hypocalcemia, increased fracture risks, and altered bone turnover, leading to impaired bone mineral density (BMD). Newer AEDs, such as levetiracetam (LEV), oxcarbazepine (OXC), lamotrigine (LTG), topiramate (TPM), gabapentin (GP), and vigabatrin (VB) have broader spectra, and are safer and better tolerated than the classical AEDs. The effects of AEDs on bone health are controversial. This review focuses on the impact of AEDs on growth and bone metabolism and emphasizes the need for caution and timely withdrawal of these medications to avoid serious disabilities.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, Wuchi, 435 Taichung, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, 356 Miaoli, Taiwan.
| | - Herng-Shen Lee
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, 813 Kaohsiung, Taiwan.
| | - Kai-Ping Chang
- Department of Pediatrics, Taipei Veterans General Hospital, 112 Taipei, Taiwan.
| | - Yi-Yen Lee
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, 112 Taipei, Taiwan.
- Faculty of Medicine, National Yang-Ming University, 112 Taipei, Taiwan.
| | - Hsin-Chuan Lai
- Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, Wuchi, 435 Taichung, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, 356 Miaoli, Taiwan.
| | - Pi-Lien Hung
- Department of Pediatrics, Kaohsiung Chang Gung Medical Center, 833 Kaohsiung, Taiwan.
| | - Hsiu-Fen Lee
- Department of Pediatrics, Taichung Veterans General Hospital, 407 Taichung, Taiwan.
| | - Ching-Shiang Chi
- Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, Wuchi, 435 Taichung, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, 356 Miaoli, Taiwan.
| |
Collapse
|
54
|
Levetiracetam prophylaxis ameliorates seizure epileptogenesis after fluid percussion injury. Brain Res 2016; 1642:581-589. [DOI: 10.1016/j.brainres.2016.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 11/20/2022]
|
55
|
Estrada S, Lubberink M, Thibblin A, Sprycha M, Buchanan T, Mestdagh N, Kenda B, Mercier J, Provins L, Gillard M, Tytgat D, Antoni G. [(11)C]UCB-A, a novel PET tracer for synaptic vesicle protein 2A. Nucl Med Biol 2016; 43:325-32. [PMID: 27260773 DOI: 10.1016/j.nucmedbio.2016.03.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/19/2016] [Accepted: 03/15/2016] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Development of a selective and specific high affinity PET tracer, [(11)C]UCB-A, for the in vivo study of SV2A expression in humans. Radiochemistry and preclinical studies in rats and pigs including development of a tracer kinetic model to determine VT. A method for the measurement of percent intact tracer in plasma was developed and the radiation dosimetry was determined in rats. RESULTS 3-5GBq of [(11)C]UCB-A could be produced with radiochemical purity exceeding 98% with a specific radioactivity of around 65GBq/μmol. In vitro binding showed high selective binding towards SV2A. [(11)C]UCB-A displayed a dose-dependent and reversible binding to SV2A as measured with PET in rats and pigs and the VT could be determined by Logan analysis. The dosimetry was favorable and low enough to allow multiple administrations of [(11)C]UCB-A to healthy volunteers, and the metabolite analysis showed no sign of labeled metabolites in brain. CONCLUSIONS We have developed the novel PET tracer, [(11)C]UCB-A, that can be used to measure SV2A expression in vivo. The dosimetry allows up to 5 administrations of 400MBq of [(11)C]UCB-A in humans. Apart from measuring drug occupancy, as we have shown, the tracer can potentially be used to compare SV2A expression between individuals because of the rather narrow range of baseline VT values. This will have to be further validated in human studies.
Collapse
Affiliation(s)
- Sergio Estrada
- Preclinical PET platform, Uppsala University, Uppsala, Sweden
| | - Mark Lubberink
- Nuclear Medicine & PET, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Alf Thibblin
- Nuclear Medicine & PET, Uppsala University, Uppsala, Sweden; PET Centre, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | - Gunnar Antoni
- Preclinical PET platform, Uppsala University, Uppsala, Sweden; PET Centre, Uppsala University Hospital, Uppsala, Sweden.
| |
Collapse
|
56
|
Klitgaard H, Matagne A, Nicolas JM, Gillard M, Lamberty Y, De Ryck M, Kaminski RM, Leclercq K, Niespodziany I, Wolff C, Wood M, Hannestad J, Kervyn S, Kenda B. Brivaracetam: Rationale for discovery and preclinical profile of a selective SV2A ligand for epilepsy treatment. Epilepsia 2016; 57:538-48. [PMID: 26920914 DOI: 10.1111/epi.13340] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2016] [Indexed: 12/13/2022]
Abstract
Despite availability of effective antiepileptic drugs (AEDs), many patients with epilepsy continue to experience refractory seizures and adverse events. Achievement of better seizure control and fewer side effects is key to improving quality of life. This review describes the rationale for the discovery and preclinical profile of brivaracetam (BRV), currently under regulatory review as adjunctive therapy for adults with partial-onset seizures. The discovery of BRV was triggered by the novel mechanism of action and atypical properties of levetiracetam (LEV) in preclinical seizure and epilepsy models. LEV is associated with several mechanisms that may contribute to its antiepileptic properties and adverse effect profile. Early findings observed a moderate affinity for a unique brain-specific LEV binding site (LBS) that correlated with anticonvulsant effects in animal models of epilepsy. This provided a promising molecular target and rationale for identifying selective, high-affinity ligands for LBS with potential for improved antiepileptic properties. The later discovery that synaptic vesicle protein 2A (SV2A) was the molecular correlate of LBS confirmed the novelty of the target. A drug discovery program resulted in the identification of anticonvulsants, comprising two distinct families of high-affinity SV2A ligands possessing different pharmacologic properties. Among these, BRV differed significantly from LEV by its selective, high affinity and differential interaction with SV2A as well as a higher lipophilicity, correlating with more potent and complete seizure suppression, as well as a more rapid brain penetration in preclinical models. Initial studies in animal models also revealed BRV had a greater antiepileptogenic potential than LEV. These properties of BRV highlight its promising potential as an AED that might provide broad-spectrum efficacy, associated with a promising tolerability profile and a fast onset of action. BRV represents the first selective SV2A ligand for epilepsy treatment and may add a significant contribution to the existing armamentarium of AEDs.
Collapse
|
57
|
Nabulsi NB, Mercier J, Holden D, Carré S, Najafzadeh S, Vandergeten MC, Lin SF, Deo A, Price N, Wood M, Lara-Jaime T, Montel F, Laruelle M, Carson RE, Hannestad J, Huang Y. Synthesis and Preclinical Evaluation of 11C-UCB-J as a PET Tracer for Imaging the Synaptic Vesicle Glycoprotein 2A in the Brain. J Nucl Med 2016; 57:777-84. [PMID: 26848175 DOI: 10.2967/jnumed.115.168179] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/25/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The synaptic vesicle glycoprotein 2A (SV2A) is found in secretory vesicles in neurons and endocrine cells. PET with a selective SV2A radiotracer will allow characterization of drugs that modulate SV2A (e.g., antiepileptic drugs) and potentially could be a biomarker of synaptic density (e.g., in neurodegenerative disorders). Here we describe the synthesis and characterization of the SV2A PET radiotracer (11)C-UCB-J ((R)-1-((3-((11)C-methyl-(11)C)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one) in nonhuman primates, including whole-body biodistribution. METHODS (11)C-UCB-J was prepared by C-(11)C-methylation of the 3-pyridyl trifluoroborate precursor with (11)C-methyl iodide via the Suzuki-Miyaura cross-coupling method. Rhesus macaques underwent multiple scans including coinjection with unlabeled UCB-J (17, 50, and 150 μg/kg) or preblocking with the antiepileptic drug levetiracetam at 10 and 30 mg/kg. Scans were acquired for 2 h with arterial sampling and metabolite analysis to measure the input function. Regional volume of distribution (VT) was estimated using the 1-tissue-compartment model. Target occupancy was assessed using the occupancy plot; the dissociation constant (Kd) was determined by fitting self-blocking occupancies to a 1-site model, and the maximum number of receptor binding sites (Bmax) values were derived from baseline VT and from the estimated Kd and the nondisplaceable distribution volume (VND). RESULTS (11)C-UCB-J was synthesized with greater than 98% purity. (11)C-UCB-J exhibited high free fraction (0.46 ± 0.02) and metabolized at a moderate rate (39% ± 5% and 24% ± 3% parent remaining at 30 and 90 min) in plasma. In the monkey brain, (11)C-UCB-J displayed high uptake and fast kinetics. VT was high (∼25-55 mL/cm(3)) in all gray matter regions, consistent with the ubiquitous expression of SV2A. Preblocking with 10 and 30 mg/kg of levetiracetam resulted in approximately 60% and 90% occupancy, respectively. Analysis of the self-blocking scans yielded a Kd estimate of 3.4 nM and Bmax of 125-350 nM, in good agreement with the in vitro inhibition constant (Ki) of 6.3 nM and regional Bmax in humans. Whole-body biodistribution revealed that the liver and the brain are the dose-limiting organs for males and females, respectively. CONCLUSION (11)C-UCB-J exhibited excellent characteristics as an SV2A PET radiotracer in nonhuman primates. The radiotracer is currently undergoing first-in-human evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anand Deo
- UCB Biopharma, Braine-l'Alleud, Belgium; and
| | | | - Martyn Wood
- UCB Biopharma, Braine-l'Alleud, Belgium; and
| | | | | | | | | | | | | |
Collapse
|
58
|
Robitsek J, Ratner MH, Stewart T, Eichenbaum H, Farb DH. Combined administration of levetiracetam and valproic acid attenuates age-related hyperactivity of CA3 place cells, reduces place field area, and increases spatial information content in aged rat hippocampus. Hippocampus 2015; 25:1541-55. [PMID: 25941121 PMCID: PMC4633399 DOI: 10.1002/hipo.22474] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2015] [Indexed: 01/15/2023]
Abstract
Learning and memory deficits associated with age-related mild cognitive impairment have long been attributed to impaired processing within the hippocampus. Hyperactivity within the hippocampal CA3 region that is associated with aging is mediated in part by a loss of functional inhibitory interneurons and thought to underlie impaired performance in spatial memory tasks, including the abnormal tendency in aged animals to pattern complete spatial representations. Here, we asked whether the spatial firing patterns of simultaneously recorded CA3 and CA1 neurons in young and aged rats could be manipulated pharmacologically to selectively reduce CA3 hyperactivity and thus, according to hypothesis, the associated abnormality in spatial representations. We used chronically implanted high-density tetrodes to record the spatial firing properties of CA3 and CA1 units during animal exploration for food in familiar and novel environments. Aged CA3 place cells have higher firing rates, larger place fields, less spatial information content, and respond less to a change from a familiar to a novel environment than young CA3 cells. We also find that the combination of levetiracetam (LEV) + valproic acid (VPA), previously shown to act as a cognitive enhancer in tests of spatial memory, attenuate CA3 place cell firing rates, reduce place field area, and increase spatial information content in aged but not young adult rats. This is consistent with drug enhancing the specificity of neuronal firing with respect to spatial location. Contrary to expectation, however, LEV + VPA reduces place cell discrimination between novel and familiar environments, i.e., spatial correlations increase, independent of age even though drug enhances performance in cognitive tasks. The results demonstrate that spatial information content, or the number of bits of information encoded per action potential, may be the key correlate for enhancement of spatial memory by LEV + VPA.
Collapse
Affiliation(s)
- Jonathan Robitsek
- Laboratory of Molecular Neurobiology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Marcia H Ratner
- Laboratory of Molecular Neurobiology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Tara Stewart
- Laboratory of Molecular Neurobiology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Howard Eichenbaum
- Department of Psychology, Center for Memory and Brain, Boston University, Boston, Massachusetts
| | - David H Farb
- Laboratory of Molecular Neurobiology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
59
|
Synaptic vesicle protein2A decreases in amygdaloid-kindling pharmcoresistant epileptic rats. ACTA ACUST UNITED AC 2015; 35:716-722. [PMID: 26489628 DOI: 10.1007/s11596-015-1496-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 07/01/2015] [Indexed: 10/22/2022]
Abstract
Synaptic vesicle protein 2A (SV2A) involvement has been reported in the animal models of epilepsy and in human intractable epilepsy. The difference between pharmacosensitive epilepsy and pharmacoresistant epilepsy remains poorly understood. The present study aimed to observe the hippocampus SV2A protein expression in amygdale-kindling pharmacoresistant epileptic rats. The pharmacosensitive epileptic rats served as control. Amygdaloid-kindling model of epilepsy was established in 100 healthy adult male Sprague-Dawley rats. The kindled rat model of epilepsy was used to select pharmacoresistance by testing their seizure response to phenytoin and phenobarbital. The selected pharmacoresistant rats were assigned to a pharmacoresistant epileptic group (PRE group). Another 12 pharmacosensitive epileptic rats (PSE group) served as control. Immunohistochemistry, real-time PCR and Western blotting were used to determine SV2A expression in the hippocampus tissue samples from both the PRE and the PSE rats. Immunohistochemistry staining showed that SV2A was mainly accumulated in the cytoplasm of the neurons, as well as along their dendrites throughout all subfields of the hippocampus. Immunoreactive staining level of SV2A-positive cells was 0.483 ± 0.304 in the PRE group and 0.866 ± 0.090 in the PSE group (P < 0.05). Real-time PCR analysis demonstrated that 2(-ΔΔCt) value of SV2A mRNA was 0.30 ± 0.43 in the PRE group and 0.76 ± 0.18 in the PSE group (P < 0.05). Western blotting analysis obtained the similar findings (0.27 ± 0.21 versus 1.12 ± 0.21, P < 0.05). PRE rats displayed a significant decrease of SV2A in the brain. SV2A may be associated with the pathogenesis of intractable epilepsy of the amygdaloid-kindling rats.
Collapse
|
60
|
Misra UK, Kalita J. A comparison of four antiepileptic drugs in status epilepticus: experience from India. Int J Neurosci 2015; 126:1013-9. [DOI: 10.3109/00207454.2015.1095743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
61
|
Dhande P, Gonarkar S, Sanghavi D, Pandit V. Add-on Effect of Levetiracetam on Cognitive Activity of Carbamazepine and Topiramate Treated Healthy Rats. J Clin Diagn Res 2015; 9:FF01-4. [PMID: 26266137 DOI: 10.7860/jcdr/2015/12654.6110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/10/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Many antiseizure drugs are used for non-epileptic indications like bipolar disorder, anxiety, neuropathic pain, prophylaxis of migraine, etc. Cognitive problems are known with many of these agents in epileptic situations but not to that extent in other situations. The antiepileptic Levetiracetam has been shown to improve a range of cognitive abilities. OBJECTIVE To study the effect of levetiracetam, carbamazepine, topiramate and co-administration of levetiracetam with carbamazepine and topiramate on cognition in healthy rats. MATERIALS AND METHODS Wistar albino rats of either sex were randomly assigned to 6 groups (n=6). Treatment groups: I - Normal saline; II, III & IV- Levetiracetam (180mg/kg), Carbamazepine (50mg/kg) and Topiramate (20mg/kg) respectively; V & VI- Levetiracetam + Carbamazepine and VI- Levetiracetam + Topiramate respectively orally for 21 days. Morris Water Maze was used to study the spatial learning and memory in rats and the change in Escape transfer latency (ETL) was recorded to see the effect of drugs on it. Data analyzed by ANOVA followed by Dunnett's post-hoc test. RESULTS Twenty one days drug treatment significantly increased the ETL in rats treated with Topiramate (p=0.0001) and combination of Levetiracetam and Topiramate (p<0.0001) from their baseline values. At the same time, there was significant reduction in the time spent in target quadrant in Topiramate group (p= 0.033) and the combination group of Topiramate + Levetiracetam (p=0.026). No significant change was observed in the other groups when tested for both these parameters. CONCLUSION Topiramate causes impairment of spatial memory in healthy rats after 21 days exposure and its combination with Levetiracetam could not overcome this cognitive deficit.
Collapse
Affiliation(s)
- Priti Dhande
- Associate Professor, Department of Pharmacology, Bharati Vidyapeeth Deemed University Medical College , Pune, Maharashtra, India
| | - Satish Gonarkar
- Student, Department of Pharmacology, Bharati Vidyapeeth Deemed University Medical College , Pune, Maharashtra, India
| | - Dhara Sanghavi
- Medical Advisor, Cadila Pharmaceuticals, Bhat , Ahmedabad, Gujarat, India
| | - Vijaya Pandit
- Professor and Head, Department of Pharmacology, Bharati Vidyapeeth Deemed University Medical College , Pune, Maharashtra, India
| |
Collapse
|
62
|
Daniels V, Wood M, Leclercq K, Kaminski RM, Gillard M. Modulation of the conformational state of the SV2A protein by an allosteric mechanism as evidenced by ligand binding assays. Br J Pharmacol 2015; 169:1091-101. [PMID: 23530581 DOI: 10.1111/bph.12192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/05/2013] [Accepted: 03/15/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Synaptic vesicle protein 2A (SV2A) is the specific binding site of the anti-epileptic drug levetiracetam (LEV) and its higher affinity analogue UCB30889. Moreover, the protein has been well validated as a target for anticonvulsant therapy. Here, we report the identification of UCB1244283 acting as a SV2A positive allosteric modulator of UCB30889. EXPERIMENTAL APPROACH UCB1244283 was characterized in vitro using radioligand binding assays with [(3)H]UCB30889 on recombinant SV2A expressed in HEK cells and on rat cortex. In vivo, the compound was tested in sound-sensitive mice. KEY RESULTS Saturation binding experiments in the presence of UCB1244283 demonstrated a fivefold increase in the affinity of [(3)H]UCB30889 for human recombinant SV2A, combined with a twofold increase of the total number of binding sites. Similar results were obtained on rat cortex. In competition binding experiments, UCB1244283 potentiated the affinity of UCB30889 while the affinity of LEV remained unchanged. UCB1244283 significantly slowed down both the association and dissociation kinetics of [(3)H]UCB30889. Following i.c.v. administration in sound-sensitive mice, UCB1244283 showed a clear protective effect against both tonic and clonic convulsions. CONCLUSIONS AND IMPLICATIONS These results indicate that UCB1244283 can modulate the conformation of SV2A, thereby inducing a higher affinity state for UCB30889. Our results also suggest that the conformation of SV2A per se might be an important determinant of its functioning, especially during epileptic seizures. Therefore, agents that act on the conformation of SV2A might hold great potential in the search for new SV2A-based anticonvulsant therapies.
Collapse
Affiliation(s)
- V Daniels
- NewMedicines, CNS Discovery Research, UCB Pharma, Braine-l'Alleud, Belgium
| | | | | | | | | |
Collapse
|
63
|
Packer RMA, Nye G, Porter SE, Volk HA. Assessment into the usage of levetiracetam in a canine epilepsy clinic. BMC Vet Res 2015; 11:25. [PMID: 25889090 PMCID: PMC4328478 DOI: 10.1186/s12917-015-0340-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/22/2015] [Indexed: 11/23/2022] Open
Abstract
Background Retrospective studies can complement information derived from double-blinded randomized trials. There are multiple retrospective studies reporting good efficacy and tolerability of the anti-epileptic drug levetiracetam (LEV) in human patients with epilepsy; however, reports of LEV's tolerability and efficacy in dogs with epilepsy remain limited. The purpose of this retrospective study was to describe the use of LEV in a canine epilepsy clinic and determine the long-term efficacy and tolerability of LEV in veterinary clinical practice. The electronic database of a UK based referral hospital was searched for LEV usage in dogs with seizures. Information and data necessary for the evaluation were obtained from a combination of electronic and written hospital records, the referring veterinary surgeons’ records and telephone interviews with dog owners. Only dogs that were reportedly diagnosed with idiopathic epilepsy were included in the study. Results Fifty-two dogs were included in this retrospective study. Two treatment protocols were recognised; 29 dogs were treated continuously with LEV and 23 dogs received interval or pulse treatment for cluster seizures. LEV treatment resulted in 69% of dogs having a 50% or greater reduction of seizure frequency whilst 15% of all the dogs were completely free from seizures. Seizure frequency reduced significantly in the whole population. No dog was reported to experience life-threatening side effects. Mild side effects were experienced by 46% of dogs and a significantly higher number of these dogs were in the pulse treatment group. The most common side-effects reported were sedation and ataxia. Conclusions LEV appears to be effective and well tolerated for reduction of seizures.
Collapse
Affiliation(s)
- Rowena M A Packer
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, AL97TA, UK.
| | - George Nye
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, AL97TA, UK.
| | - Sian Elizabeth Porter
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, AL97TA, UK.
| | - Holger A Volk
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, AL97TA, UK.
| |
Collapse
|
64
|
Vogl C, Tanifuji S, Danis B, Daniels V, Foerch P, Wolff C, Whalley BJ, Mochida S, Stephens GJ. Synaptic vesicle glycoprotein 2A modulates vesicular release and calcium channel function at peripheral sympathetic synapses. Eur J Neurosci 2014; 41:398-409. [PMID: 25484265 DOI: 10.1111/ejn.12799] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 12/01/2022]
Abstract
Synaptic vesicle glycoprotein (SV)2A is a transmembrane protein found in secretory vesicles and is critical for Ca(2+) -dependent exocytosis in central neurons, although its mechanism of action remains uncertain. Previous studies have proposed, variously, a role of SV2 in the maintenance and formation of the readily releasable pool (RRP) or in the regulation of Ca(2+) responsiveness of primed vesicles. Such previous studies have typically used genetic approaches to ablate SV2 levels; here, we used a strategy involving small interference RNA (siRNA) injection to knockdown solely presynaptic SV2A levels in rat superior cervical ganglion (SCG) neuron synapses. Moreover, we investigated the effects of SV2A knockdown on voltage-dependent Ca(2+) channel (VDCC) function in SCG neurons. Thus, we extended the studies of SV2A mechanisms by investigating the effects on vesicular transmitter release and VDCC function in peripheral sympathetic neurons. We first demonstrated an siRNA-mediated SV2A knockdown. We showed that this SV2A knockdown markedly affected presynaptic function, causing an attenuated RRP size, increased paired-pulse depression and delayed RRP recovery after stimulus-dependent depletion. We further demonstrated that the SV2A-siRNA-mediated effects on vesicular release were accompanied by a reduction in VDCC current density in isolated SCG neurons. Together, our data showed that SV2A is required for correct transmitter release at sympathetic neurons. Mechanistically, we demonstrated that presynaptic SV2A: (i) acted to direct normal synaptic transmission by maintaining RRP size, (ii) had a facilitatory role in recovery from synaptic depression, and that (iii) SV2A deficits were associated with aberrant Ca(2+) current density, which may contribute to the secretory phenotype in sympathetic peripheral neurons.
Collapse
|
65
|
Hippocampal low-frequency stimulation increased SV2A expression and inhibited the seizure degree in pharmacoresistant amygdala-kindling epileptic rats. Epilepsy Res 2014; 108:1483-91. [DOI: 10.1016/j.eplepsyres.2014.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/21/2014] [Accepted: 07/27/2014] [Indexed: 11/19/2022]
|
66
|
Behavioral side-effects of levetiracetam in children with epilepsy: A systematic review. Seizure 2014; 23:685-91. [DOI: 10.1016/j.seizure.2014.06.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/24/2014] [Accepted: 06/04/2014] [Indexed: 11/18/2022] Open
|
67
|
Effectiveness of intravenous levetiracetam as an adjunctive treatment in pediatric refractory status epilepticus. Pediatr Emerg Care 2014; 30:525-8. [PMID: 25062293 DOI: 10.1097/pec.0000000000000183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Intravenous levetiracetam (LEV) has been shown to be effective and safe in treating adults with refractory status epilepticus (SE). We sought to investigate the efficacy and safety of intravenous LEV for pediatric patients with refractory SE. METHODS We performed a retrospective medical-record review of pediatric patients who were treated with intravenous LEV for refractory SE. Clinical information regarding age, sex, seizure type, and underlying neurological status was collected. We evaluated other anticonvulsants that were used prior to administration of intravenous LEV and assessed loading dose, response to treatment, and any adverse events from intravenous LEV administration. RESULTS Fourteen patients (8 boys and 6 girls) received intravenous LEV for the treatment of refractory SE. The mean age of the patients was 4.4 ± 5.5 years (range, 4 days to 14.6 years). Ten of the patients were neurologically healthy prior to the refractory SE, and the other 4 had been previously diagnosed with epilepsy. The mean loading dose of intravenous LEV was 26 ± 4.6 mg/kg (range, 20-30 mg/kg). Seizure termination occurred in 6 (43%) of the 14 patients. In particular, 4 (57%) of the 7 patients younger than 2 years showed seizure termination. No immediate adverse events occurred during or after infusions. CONCLUSIONS The current study demonstrated that the adjunctive use of intravenous LEV was effective and well tolerated in pediatric patients with refractory SE, even in patients younger than 2 years. Intravenous LEV should be considered as an effective and safe treatment option for refractory SE in pediatric patients.
Collapse
|
68
|
Deshpande LS, Delorenzo RJ. Mechanisms of levetiracetam in the control of status epilepticus and epilepsy. Front Neurol 2014; 5:11. [PMID: 24550884 PMCID: PMC3907711 DOI: 10.3389/fneur.2014.00011] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/17/2014] [Indexed: 11/27/2022] Open
Abstract
Status epilepticus (SE) is a major clinical emergency that is associated with high mortality and morbidity. SE causes significant neuronal injury and survivors are at a greater risk of developing acquired epilepsy and other neurological morbidities, including depression and cognitive deficits. Benzodiazepines and some anticonvulsant agents are drugs of choice for initial SE management. Despite their effectiveness, over 40% of SE cases are refractory to the initial treatment with two or more medications. Thus, there is an unmet need of developing newer anti-SE drugs. Levetiracetam (LEV) is a widely prescribed anti-epileptic drug that has been reported to be used in SE cases, especially in benzodiazepine-resistant SE or where phenytoin cannot be used due to allergic side-effects. Levetiracetam’s non-classical anti-epileptic mechanisms of action, favorable pharmacokinetic profile, general lack of central depressant effects, and lower incidence of drug interactions contribute to its use in SE management. This review will focus on LEV’s unique mechanism of action that makes it a viable candidate for SE treatment.
Collapse
Affiliation(s)
| | - Robert J Delorenzo
- Department of Neurology, Virginia Commonwealth University , Richmond, VA , USA ; Department of Pharmacology and Toxicology, Virginia Commonwealth University , Richmond, VA , USA ; Department of Biochemistry, Virginia Commonwealth University , Richmond, VA , USA
| |
Collapse
|
69
|
Müller CA, Geisel O, Banas R, Heinz A. Current pharmacological treatment approaches for alcohol dependence. Expert Opin Pharmacother 2014; 15:471-81. [PMID: 24456374 DOI: 10.1517/14656566.2014.876008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION At present, the substances acamprosate, naltrexone and disulfiram are available for pharmacotherapy in alcohol dependence, but clinical studies found only modest effect sizes of these treatment options. AREAS COVERED This article focuses on current pharmacological treatment approaches for alcohol dependence, which have been evaluated in randomized, placebo-controlled trials (RCTs). EXPERT OPINION Besides the opioid system modulator nalmefene, which has recently been approved as a medication for the reduction of alcohol consumption, several compounds have been investigated in patients with alcohol dependence using a randomized, placebo-controlled design. In these studies, the antiepileptic drugs topiramate and gabapentin were found to be effective in improving several drinking-related outcomes, whereas levetiracetam failed to show efficacy in the treatment of alcohol dependence. Clinical studies using (low-dose) baclofen, a selective GABA-B receptor agonist, produced conflicting results, so that results of further trials are needed. Varenicline has also shown mixed results in two RCTs, but might possibly be useful in patients with comorbid nicotine dependence. The α1 adrenergic antagonist prazosin is currently under investigation in alcohol dependence with and without comorbid posttraumatic stress disorder (PTSD). Finally, first clinical evidence suggests that the 5-HT3 antagonist ondansetron might possibly be used in future within a pharmacogenetic treatment approach in alcohol dependence.
Collapse
Affiliation(s)
- Christian A Müller
- Charité - Universitätsmedizin Berlin, Department of Psychiatry, Campus Charité Mitte , Charitéplatz 1, 10117 Berlin , Germany
| | | | | | | |
Collapse
|
70
|
Crèvecœur J, Kaminski RM, Rogister B, Foerch P, Vandenplas C, Neveux M, Mazzuferi M, Kroonen J, Poulet C, Martin D, Sadzot B, Rikir E, Klitgaard H, Moonen G, Deprez M. Expression pattern of synaptic vesicle protein 2 (SV2) isoforms in patients with temporal lobe epilepsy and hippocampal sclerosis. Neuropathol Appl Neurobiol 2014; 40:191-204. [DOI: 10.1111/nan.12054] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/17/2013] [Indexed: 11/29/2022]
Affiliation(s)
- J. Crèvecœur
- Laboratory of Neuropathology; GIGA-Neurosciences; University of Liege; Liege Belgium
- Laboratory of Developmental Neurobiology; GIGA-Neurosciences; University of Liege; Liege Belgium
| | | | - B. Rogister
- Laboratory of Developmental Neurobiology; GIGA-Neurosciences; University of Liege; Liege Belgium
- Laboratory of Developmental Neurobiology; GIGA-Development; Stem Cells and Regenerative Medicine; University of Liege; Liege Belgium
- Departement of Neurology; CHU; University of Liege; Liege Belgium
| | - P. Foerch
- UCB Pharma; CNS Research; Braine-l'Alleud Belgium
| | | | - M. Neveux
- UCB Pharma; CNS Research; Braine-l'Alleud Belgium
| | - M. Mazzuferi
- UCB Pharma; CNS Research; Braine-l'Alleud Belgium
| | - J. Kroonen
- Unit of Human Genetics; GIGA Research Center; University of Liege; Liege Belgium
| | - C. Poulet
- Unit of Human Genetics; GIGA Research Center; University of Liege; Liege Belgium
| | - D. Martin
- Department of Neurosurgery; CHU; University of Liege; Liege Belgium
| | - B. Sadzot
- Departement of Neurology; CHU; University of Liege; Liege Belgium
| | - E. Rikir
- Departement of Neurology; CHU; University of Liege; Liege Belgium
| | - H. Klitgaard
- UCB Pharma; CNS Research; Braine-l'Alleud Belgium
| | - G. Moonen
- Laboratory of Developmental Neurobiology; GIGA-Neurosciences; University of Liege; Liege Belgium
- Departement of Neurology; CHU; University of Liege; Liege Belgium
| | - M. Deprez
- Laboratory of Neuropathology; GIGA-Neurosciences; University of Liege; Liege Belgium
- Laboratory of Developmental Neurobiology; GIGA-Neurosciences; University of Liege; Liege Belgium
| |
Collapse
|
71
|
Mercier J, Archen L, Bollu V, Carré S, Evrard Y, Jnoff E, Kenda B, Lallemand B, Michel P, Montel F, Moureau F, Price N, Quesnel Y, Sauvage X, Valade A, Provins L. Discovery of heterocyclic nonacetamide synaptic vesicle protein 2A (SV2A) ligands with single-digit nanomolar potency: opening avenues towards the first SV2A positron emission tomography (PET) ligands. ChemMedChem 2014; 9:693-8. [PMID: 24446373 DOI: 10.1002/cmdc.201300482] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Indexed: 11/10/2022]
Abstract
The role of the synaptic vesicle protein 2A (SV2A) protein, target of the antiepileptic drug levetiracetam, is still mostly unknown. Considering its potential to provide in vivo functional insights into the role of SV2A in epileptic patients, the development of an SV2A positron emission tomography (PET) tracer has been undertaken. Using a 3D pharmacophore model based on close analogues of levetiracetam, we report the rationale design of three heterocyclic non-acetamide lead compounds, UCB-A, UCB-H and UCB-J, the first single-digit nanomolar SV2A ligands with suitable properties for development as PET tracers.
Collapse
Affiliation(s)
- Joël Mercier
- Global Chemistry, UCB NewMedicines, UCB Pharma, Chemin du Foriest, B-1420 Braine-L'Alleud (Belgium).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
|
73
|
Harada S, Tanaka S, Takahashi Y, Matsumura H, Shimamoto C, Nakano T, Kuwabara H, Sawabe Y, Nakahari T. Inhibition of Ca(2+)-regulated exocytosis by levetiracetam, a ligand for SV2A, in antral mucous cells of guinea pigs. Eur J Pharmacol 2013; 721:185-92. [PMID: 24076180 DOI: 10.1016/j.ejphar.2013.09.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/14/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022]
Abstract
Levtiracetam (Lev), an inhibitor of SV2A (synaptic vesicle protein A2), affected the ATP-dependent priming of Ca(2+)-regulated exocytosis in antral mucous cells of guinea pig. In antral mucous cells, the Ca(2+)-regulated exocytosis, which is activated by acetylcholine (ACh), consists of an initial peak that declines rapidly (initial phase) followed by a second slower decline (late phase). Dinitrophenol (DNP), which depletes ATP, inhibits the ATP-dependent priming. DNP abolished the initial phase by reducing the number of primed granules, Lev decreased the frequency of initial phase, but not in the presence of DNP. Moreover, 8-bromoguanosine 3'5'-cyclic monophosphate (8BrcGMP) accelerates the ATP-dependent priming. 8BrcGMP enhances the frequency of initial phase by increasing the number of primed granule. Lev added prior to 8BrcGMP addition decreased the frequency of initial phase, but Lev added after 8BrcGMP addition did not. Thus, Lev affected the granules in the process of priming, but it did not affect the granules already primed. Lev did not affect [Ca(2+)]i in unstimulated or ACh-stimulated antral mucous cells. Immunohistochemistry and western blotting demonstrated that SV2A exists in antral mucous cells. The results suggest that SV2A plays an essential role in maintaining the process of ATP-dependent priming in antral mucous cells. In conclusion, Lev decreases the frequency of Ca(2+)-regulated exocytosis the number of primed granules by inhibiting SV2A functions, leading to a decrease in antral mucous cells.
Collapse
Affiliation(s)
- Saeko Harada
- Nakahari Project of Central Research Laboratory, Osaka Medical College, Takatsuki 569-8686, Japan; Laboratory of Pharmacotherapy, Osaka University of Pharmaceutical Sciences, Takatsuki 569-1094, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Mendoza-Torreblanca JG, Vanoye-Carlo A, Phillips-Farfán BV, Carmona-Aparicio L, Gómez-Lira G. Synaptic vesicle protein 2A: basic facts and role in synaptic function. Eur J Neurosci 2013; 38:3529-39. [DOI: 10.1111/ejn.12360] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/09/2013] [Accepted: 08/17/2013] [Indexed: 10/26/2022]
Affiliation(s)
| | | | | | | | - Gisela Gómez-Lira
- Department of Pharmacobiology; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; Calzada de los Tenorios 235 Col. Granjas Coapa C.P. 14330 D. F., Mexico
| |
Collapse
|
75
|
A simple assay for determination of levetiracetam in rat dried blood spots by LC-MS/MS. Bioanalysis 2013; 5:1843-51. [PMID: 23905858 DOI: 10.4155/bio.13.143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND A simple LC-MS/MS method was developed and validated for the quantification of levetiracetam (LEV, Keppra®), a broad-spectrum antiepileptic drug (AED) in rat dried blood spots (DBS). LEV was simply extracted with methanol spiked with adenosine (ADE) as IS before LC-MS/MS analysis. The correlation between the DBS and plasma concentrations of LEV was also determined. RESULTS Linearity was from 0.067-60 µg/ml for LEV in DBS samples. The intra- and inter-day accuracy and precision of the assay met validation acceptance criteria. The developed assay was applied to monitor levetiracetam DBS levels in Sprague-Dawley rats after intravenous administration. DBS concentrations were well correlated to the plasma concentrations (R² = 0.9399), as fraction of LEV bound to blood cells remains very constant (0.466 ± 0.041) over a wide concentration range. CONCLUSION The study illustrated that DBS could be used as alternative matrix for monitoring LEV in preclinical studies.
Collapse
|
76
|
Levetiracetam has opposite effects on alcohol- and cocaine-related behaviors in C57BL/6J mice. Neuropsychopharmacology 2013; 38:1322-33. [PMID: 23353709 PMCID: PMC3656375 DOI: 10.1038/npp.2013.30] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The antiepileptic drug levetiracetam (LEV) is a potential treatment for alcohol use disorders, yet few preclinical studies exist on its effects in animal models relevant to drug or alcohol abuse. We investigated the effects of LEV on locomotor stimulation following acute and repeated administration of alcohol or cocaine and on alcohol- and cocaine-mediated changes in responding for brain stimulation reward (BSR) in C57BL/6J mice. LEV alone (10.0-100.0 mg/kg intraperitoneally) had no significant effect on locomotor activity or intracranial self-stimulation. Pretreatment with LEV reduced acute locomotor stimulation by 2.0 g/kg alcohol, attenuated the development of locomotor sensitization to alcohol with repeated exposure, and produced a shift in the dose-response curve for alcohol on BSR threshold without affecting maximum operant response rate (MAX). Conversely, LEV pretreatment enhanced both acute locomotor stimulation by 15 mg/kg cocaine and development of locomotor sensitization following repeated exposure and produced a leftward shift in the dose-response curve for cocaine on BSR threshold without affecting MAX. Electrophysiological recordings in vitro showed that LEV reduced excitatory currents in both ventral tegmental area (VTA) dopamine neurons and nucleus accumbens (NAc) medium spiny neurons, consistent with a presynaptic effect. The opposite effects of LEV pretreatment on alcohol- and cocaine-related behaviors may predict its clinical utility in the treatment of patients with alcohol, but not psychostimulant abuse disorders.
Collapse
|
77
|
Mbizvo GK, Dixon P, Hutton JL, Marson AG. Levetiracetam add-on for drug-resistant focal epilepsy: an updated Cochrane Review. Cochrane Database Syst Rev 2012; 2012:CD001901. [PMID: 22972056 PMCID: PMC7061650 DOI: 10.1002/14651858.cd001901.pub2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Epilepsy is an important neurological condition and drug resistance in epilepsy is particularly common in individuals with focal seizures. In this review, we summarise the current evidence regarding a new antiepileptic drug, levetiracetam, when used as add-on treatment for controlling drug-resistant focal epilepsy. This is an update to a Cochrane Review that was originally published in 2001. OBJECTIVES To evaluate the effectiveness of levetiracetam, added on to usual care, in treating drug-resistant focal epilepsy. SEARCH METHODS We searched the Cochrane Epilepsy Group's Specialized Register (August 2012), the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library Issue 7, 2012), and MEDLINE (1946 to August week 1, 2012). We also contacted the manufacturers of levetiracetam and researchers in the field to seek any ongoing or unpublished trials. SELECTION CRITERIA Randomised, placebo-controlled trials of add-on levetiracetam treatment in people with drug-resistant focal epilepsy. DATA COLLECTION AND ANALYSIS Two review authors independently selected trials for inclusion, assessed trials for bias, extracted data, and evaluated the overall quality of evidence. Outcomes investigated included 50% or greater reduction in focal seizure frequency (response); less than 50% reduction in focal seizure frequency (non-response); treatment withdrawal; adverse effects (including a specific analysis of changes in behaviour); cognitive effects and quality of life (QoL). Risk ratios (RR) with 95% confidence intervals (CIs) were used as measures of effect (99% CIs for adverse effects). Primary analyses were Intention-to-Treat (ITT). Dose response and inter-trial heterogeneity were evaluated in regression models. MAIN RESULTS Eleven trials (1861 participants) were included. They predominantly possessed low risks of bias. Participants were adults in nine trials (1565 participants) and children in the remaining two trials (296 participants). The dose of levetiracetam tested was 1000 to 4000 mg/day in adults, and 60 mg/kg/day in children. Treatment ranged from 12 to 24 weeks. For the 50% or greater reduction in focal seizure frequency outcome, the RR was significantly in favour of levetiracetam at all doses. The naive estimates, ignoring dose, showed children (52% responded) as better responders than adults (39% responded) on levetiracetam. 25% of children and 16% of adults responded to placebo. The Number Needed to Treat for an additional beneficial outcome for children and adults was four (95% CI three to seven) and five (95% CI four to six), respectively. The significant levels of statistical heterogeneity between trials on adults precluded valid provision of an overall RR (ignoring dose). Results for the two trials that tested levetiracetam 2000 mg on adults were sufficiently similar to be combined to give an RR for 50% or greater reduction in focal seizure frequency of 4.91 (95% CI 2.75 to 8.77), with an RR of 0.68 (95% CI 0.60 to 0.77) for non-response. At this dose, 37% and 8% of adults were responders in the levetiracetam and placebo groups, respectively. Regression analysis demonstrated that much of the heterogeneity between adult trials was likely to be explained by different doses of levetiracetam tested and different years of trial publication. There was no evidence of statistical heterogeneity between trials on children. For these trials, the RR for 50% or greater reduction in focal seizure frequency was 1.91 (95% CI 1.38 to 2.63), with an RR of 0.68 (95% CI 0.56 to 0.81) for non-response. 27% of children responded. Participants were not significantly more likely to have levetiracetam withdrawn (RR 0.98; 95% CI 0.73 to 1.32 and RR 0.80; 95% CI 0.43 to 1.46 for adults and children, respectively). For adults, somnolence (RR 1.51; 99% CI 1.06 to 2.17) and infection (RR 1.76; 99% CI 1.03 to 3.02) were significantly associated with levetiracetam. Accidental injury was significantly associated with placebo (RR 0.60; 99% CI 0.39 to 0.92). No individual adverse effect was significantly associated with levetiracetam in children. Changes in behaviour were negligible in adults (1% affected; RR 1.79; 99% CI 0.59 to 5.41) but significant in children (23% affected; RR 1.90; 99% CI 1.16 to 3.11). Cognitive effect and QoL outcomes suggested that levetiracetam had a positive effect on cognition and some aspects of QoL in adults. In children, levetiracetam did not appear to alter cognitive function but there was evidence of worsening in certain aspects of child behaviour. The overall quality of evidence used was high. AUTHORS' CONCLUSIONS This update adds seven more trials to the original review, which contained four trials. At every dose analysed, levetiracetam significantly reduced focal seizure frequency relative to placebo. This indicates that levetiracetam can significantly reduce focal seizure frequency when it is used as an add-on treatment for both adults and children with drug-resistant focal epilepsy. As there was evidence of significant levels of statistical heterogeneity within this positive effect it is difficult to be precise about the relative magnitude of the effect. At a dose of 2000 mg, levetiracetam may be expected to be 3.9 times more effective than placebo; with 30% of adults being responders at this dose. At a dose of 60 mg/kg/day, levetiracetam may be expected to be 0.9 times more effective than placebo; with 25% of children being responders at this dose. When dose was ignored, children were better responders than adults by around 4% to 13%. The results grossly suggest that one child or adult may respond to levetiracetam for every four or five children or adults, respectively, that have received levetiracetam rather than placebo. The drug seems to be well tolerated in both adults and children although non-specific changes in behaviour may be experienced in as high as 20% of children. This aspect of the adverse-effect profile of levetiracetam was analysed crudely and requires further investigation and validation. It seems reasonable to continue the use of levetiracetam in both adults and children with drug-resistant focal epilepsy. The results cannot be used to confirm longer-term or monotherapy effects of levetiracetam or its effects on generalised seizures. The conclusions are largely unchanged from those in the original review. The most significant contribution of this update is the addition of paediatric data into the analysis.
Collapse
Affiliation(s)
- Gashirai K Mbizvo
- Institute for Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
| | | | | | | |
Collapse
|
78
|
Vogl C, Mochida S, Wolff C, Whalley BJ, Stephens GJ. The synaptic vesicle glycoprotein 2A ligand levetiracetam inhibits presynaptic Ca2+ channels through an intracellular pathway. Mol Pharmacol 2012; 82:199-208. [PMID: 22554805 DOI: 10.1124/mol.111.076687] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Levetiracetam (LEV) is a prominent antiepileptic drug that binds to neuronal synaptic vesicle glycoprotein 2A protein and has reported effects on ion channels, but with a poorly defined mechanism of action. We investigated inhibition of voltage-dependent Ca(2+) (Ca(V)) channels as a potential mechanism through which LEV exerts effects on neuronal activity. We used electrophysiological methods to investigate the effects of LEV on cholinergic synaptic transmission and Ca(V) channel activity in superior cervical ganglion neurons (SCGNs). In parallel, we investigated the effects of the inactive LEV R-enantiomer, (R)-α-ethyl-2-oxo-1-pyrrolidine acetamide (UCB L060). LEV but not UCB L060 (each at 100 μM) inhibited synaptic transmission between SCGNs in long-term culture in a time-dependent manner, significantly reducing excitatory postsynaptic potentials after a ≥30-min application. In isolated SCGNs, LEV pretreatment (≥1 h) but not short-term application (5 min) significantly inhibited whole-cell Ba(2+) current (I(Ba)) amplitude. In current-clamp recordings, LEV reduced the amplitude of the afterhyperpolarizing potential in a Ca(2+)-dependent manner but also increased the action potential latency in a Ca(2+)-independent manner, which suggests additional mechanisms associated with reduced excitability. Intracellular LEV application (4-5 min) caused rapid inhibition of I(Ba) amplitude, to an extent comparable to that seen with extracellular LEV pretreatment (≥1 h). Neither pretreatment nor intracellular application of UCB L060 produced any inhibitory effects on I(Ba) amplitude. These results identify a stereospecific intracellular pathway through which LEV inhibits presynaptic Ca(V) channels; resultant reductions in neuronal excitability are proposed to contribute to the anticonvulsant effects of LEV.
Collapse
Affiliation(s)
- Christian Vogl
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK
| | | | | | | | | |
Collapse
|
79
|
Venkatesan K, Alix P, Marquet A, Doupagne M, Niespodziany I, Rogister B, Seutin V. Altered balance between excitatory and inhibitory inputs onto CA1 pyramidal neurons from SV2A-deficient but not SV2B-deficient mice. J Neurosci Res 2012; 90:2317-27. [DOI: 10.1002/jnr.23111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 11/07/2022]
|
80
|
Luszczki JJ, Filip D, Florek-Luszczki M. Interactions of pregabalin with gabapentin, levetiracetam, tiagabine and vigabatrin in the mouse maximal electroshock-induced seizure model: A type II isobolographic analysis. Epilepsy Res 2012; 98:148-56. [DOI: 10.1016/j.eplepsyres.2011.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/30/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
|
81
|
You G, Sha Z, Jiang T. The pathogenesis of tumor-related epilepsy and its implications for clinical treatment. Seizure 2012; 21:153-9. [PMID: 22300623 DOI: 10.1016/j.seizure.2011.12.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/28/2011] [Accepted: 12/29/2011] [Indexed: 01/12/2023] Open
Abstract
Approximately 30-50% of patients with brain tumors present with seizures as the initial symptom. Seizures play a very important role in the quality of life, particularly in patients with slow-growing primary brain tumors. Tumor-related seizures are often refractory to antiepileptic treatment. Despite the importance of this subject to the fields of neurology, neurosurgery and neurooncology, the pathogenesis of tumor-related epilepsy remains poorly understood. This review summarizes possible mechanisms underlying the pathogenesis of tumor-related epilepsy, including both tumoral and peri-tumoral aspects. Tumor cells themselves may create intrinsic epileptogenicity, and inadequate homeostasis in the peri-tumoral tissues may lead to seizure susceptibility. Other local changes in electrolytes, perfusion, metabolism, and enzymes could also contribute. It is generally accepted that changes in amino acid neurotransmission are the most important mechanism underlying tumor-related seizures, and changes in extracellular ions also play an important role. Hypoxia, acidosis, and metabolic, immunological, and inflammatory changes may also be involved in the occurrence of seizures. Knowledge of these mechanisms may provide guidance in the search for new strategies for the surgical and medical treatment of tumor-related epilepsy.
Collapse
Affiliation(s)
- Gan You
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | | | | |
Collapse
|
82
|
Combining modelling and mutagenesis studies of synaptic vesicle protein 2A to identify a series of residues involved in racetam binding. Biochem Soc Trans 2012; 39:1341-7. [PMID: 21936812 DOI: 10.1042/bst0391341] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LEV (levetiracetam), an antiepileptic drug which possesses a unique profile in animal models of seizure and epilepsy, has as its unique binding site in brain, SV2A (synaptic vesicle protein 2A). Previous studies have used a chimaeric and site-specific mutagenesis approach to identify three residues in the putative tenth transmembrane helix of SV2A that, when mutated, alter binding of LEV and related racetam derivatives to SV2A. In the present paper, we report a combined modelling and mutagenesis study that successfully identifies another 11 residues in SV2A that appear to be involved in ligand binding. Sequence analysis and modelling of SV2A suggested residues equivalent to critical functional residues of other MFS (major facilitator superfamily) transporters. Alanine scanning of these and other SV2A residues resulted in the identification of residues affecting racetam binding, including Ile273 which differentiated between racetam analogues, when mutated to alanine. Integrating mutagenesis results with docking analysis led to the construction of a mutant in which six SV2A residues were replaced with corresponding SV2B residues. This mutant showed racetam ligand-binding affinity intermediate to the affinities observed for SV2A and SV2B.
Collapse
|
83
|
Abstract
Levetiracetam (Keppra®, E Keppra®) is an established second-generation antiepileptic drug (AED). Worldwide, levetiracetam is most commonly approved as adjunctive treatment of partial-onset seizures with or without secondary generalization; other approved indications include monotherapy treatment of partial-onset seizures with or without secondary generalization, and adjunctive treatment of myoclonic seizures associated with juvenile myoclonic epilepsy and primary generalized tonic-clonic (GTC) seizures associated with idiopathic generalized epilepsy. Levetiracetam has a novel structure and unique mechanisms of action. Unlike other AEDs, the mechanisms of action of levetiracetam appear to involve neuronal binding to synaptic vesicle protein 2A, inhibiting calcium release from intraneuronal stores, opposing the activity of negative modulators of GABA- and glycin-gated currents and inhibiting excessive synchronized activity between neurons. In addition, levetiracetam inhibits N-type calcium channels. Levetiracetam is associated with rapid and complete absorption, high oral bioavailability, minimal metabolism that consists of hydrolysis of the acetamide group and primarily renal elimination. It lacks cytochrome P450 isoenzyme-inducing potential and is not associated with clinically significant pharmacokinetic interactions with other drugs, including other AEDs. The efficacy of oral immediate-release levetiracetam in controlling seizures has been established in numerous randomized, double-blind, controlled, multicentre trials in patients with epilepsy. Adjunctive levetiracetam reduced the frequency of seizures in paediatric and adult patients with refractory partial-onset seizures to a significantly greater extent than placebo. Monotherapy with levetiracetam was noninferior to that with carbamazepine controlled release in controlling seizures in patients with newly diagnosed partial-onset seizures. Levetiracetam also provided seizure control relative to placebo as adjunctive therapy in patients with idiopathic generalized epilepsy with myoclonic seizures or GTC seizures. In addition, patients receiving oral levetiracetam showed improvements in measures of health-related quality of life relative to those receiving placebo. Although treatment-emergent adverse events were commonly reported in the clinical trials of levetiracetam, the overall proportion of patients who experienced at least one treatment-emergent adverse event was broadly similar in the levetiracetam and placebo treatment groups, with most events being mild to moderate in severity. Levetiracetam is not associated with cognitive impairment or drug-induced weight gain, but has been associated with behavioural adverse effects in some patients.
Collapse
|
84
|
Meehan AL, Yang X, McAdams BD, Yuan L, Rothman SM. A new mechanism for antiepileptic drug action: vesicular entry may mediate the effects of levetiracetam. J Neurophysiol 2011; 106:1227-39. [PMID: 21653714 PMCID: PMC3174821 DOI: 10.1152/jn.00279.2011] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/03/2011] [Indexed: 11/22/2022] Open
Abstract
Levetiracetam (LEV) is one of the most commonly prescribed antiepileptic drugs, but its mechanism of action is uncertain. Based on prior information that LEV binds to the vesicular protein synaptic vesicle protein 2A and reduces presynaptic neurotransmitter release, we wanted to more rigorously characterize its effect on transmitter release and explain the requirement for a prolonged incubation period for its full effect to manifest. During whole cell patch recordings from rat hippocampal pyramidal neurons in vitro, we found that LEV decreased synaptic currents in a frequency-dependent manner and reduced the readily releasable pool of vesicles. When we manipulated spontaneous activity and stimulation paradigms, we found that synaptic activity during LEV incubation alters the time at which LEV's effect appears, as well as its magnitude. We believe that synaptic activity and concomitant vesicular release allow LEV to enter recycling vesicles to reach its binding site, synaptic vesicle protein 2A. In support of this hypothesis, a vesicular "load-unload" protocol using hypertonic sucrose in the presence of LEV quickly induced LEV's effect. The effect rapidly disappeared after unloading in the absence of LEV. These findings are compatible with LEV acting at an intravesicular binding site to modulate the release of transmitter and with its most marked effect on rapidly discharging neurons. Our results identify a unique neurobiological explanation for LEV's highly selective antiepileptic effect and suggest that synaptic vesicle proteins might be appropriate targets for the development of other neuroactive drugs.
Collapse
Affiliation(s)
- Anna L Meehan
- Department of Neurology, University of Minnesota Medical School, 420 Delaware St., MMC 295, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
85
|
Gillard M, Fuks B, Leclercq K, Matagne A. Binding characteristics of brivaracetam, a selective, high affinity SV2A ligand in rat, mouse and human brain: Relationship to anti-convulsant properties. Eur J Pharmacol 2011; 664:36-44. [DOI: 10.1016/j.ejphar.2011.04.064] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 11/26/2022]
|
86
|
Abstract
Levetiracetam (Keppra®, E Keppra®) is an established second-generation antiepileptic drug (AED). Worldwide, levetiracetam is most commonly approved as adjunctive treatment of partial onset seizures with or without secondary generalization; other approved indications include monotherapy treatment of partial onset seizures with or without secondary generalization, and adjunctive treatment of myoclonic seizures associated with juvenile myoclonic epilepsy and primary generalized tonic-clonic (GTC) seizures associated with idiopathic generalized epilepsy. Levetiracetam has a novel structure and unique mechanisms of action. Unlike other AEDs, the mechanisms of action of levetiracetam appear to involve neuronal binding to synaptic vesicle protein 2A, inhibiting calcium release from intraneuronal stores, opposing the activity of negative modulators of GABA- and glycin-gated currents and inhibiting excessive synchronized activity between neurons. In addition, levetiracetam inhibits N-type calcium channels. Levetiracetam is associated with rapid and complete absorption, high oral bioavailability, minimal metabolism that consists of hydrolysis of the acetamide group, and primarily renal elimination. It lacks cytochrome P450 isoenzyme-inducing potential and is not associated with clinically significant pharmacokinetic interactions with other drugs, including other AEDs. The efficacy of oral immediate-release levetiracetam in controlling seizures has been established in numerous randomized, double-blind, controlled, multicentre trials in patients with epilepsy. Adjunctive levetiracetam reduced the frequency of seizures in paediatric and adult patients with refractory partial onset seizures to a significantly greater extent than placebo. Monotherapy with levetiracetam was noninferior to that with carbamazepine controlled release in controlling seizures in patients with newly diagnosed partial onset seizures. Levetiracetam also provided seizure control relative to placebo as adjunctive therapy in patients with idiopathic generalized epilepsy with myoclonic seizures or GTC seizures. In addition, patients receiving oral levetiracetam showed improvements in measures of health-related quality of life relative to those receiving placebo. Although treatment-emergent adverse events were commonly reported in the clinical trials of levetiracetam, the overall proportion of patients who experienced at least one treatment-emergent adverse event was broadly similar in the levetiracetam and placebo treatment groups, with most events being mild to moderate in severity. Levetiracetam is not associated with cognitive impairment or drug-induced weight gain, but has been associated with behavioural adverse effects in some patients.
Collapse
|
87
|
Müller CA, Schäfer M, Banas R, Heimann HM, Volkmar K, Förg A, Heinz A, Hein J. A Combination of Levetiracetam and Tiapride for Outpatient Alcohol Detoxification: A Case Series. J Addict Med 2011; 5:153-6. [DOI: 10.1097/adm.0b013e3181ec5f81] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
88
|
Nowack A, Yao J, Custer KL, Bajjalieh SM. SV2 regulates neurotransmitter release via multiple mechanisms. Am J Physiol Cell Physiol 2010; 299:C960-7. [PMID: 20702688 DOI: 10.1152/ajpcell.00259.2010] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Among the proteins that mediate calcium-stimulated transmitter release, the synaptic vesicle protein 2 (SV2) stands out as a unique modulator specific to the neurons and endocrine cells of vertebrates. In synapses, SV2 regulates the expression and trafficking of the calcium sensor protein synaptotagmin, an action consistent with the reduced calcium-mediated exocytosis observed in neurons lacking SV2. Yet SV2 contains amino acid motifs consistent with it performing other actions that could regulate presynaptic functioning and that might underlie the mechanism of drug action. To test the role of these functional motifs, we performed a mutagenic analysis of SV2A and assessed the ability of mutant SV2A proteins to restore normal synaptic transmission in neurons from SV2A/B knockout mice. We report that SV2A-R231Q, harboring a mutation in a canonical transporter motif, restored normal synaptic depression (a measure of release probability and signature deficit of neurons lacking SV2). In contrast, normal synaptic depression was not restored by SV2A-W300A and SV2A-W666A, harboring mutations of conserved tryptophans in the 5th and 10th transmembrane domains. Although they did not rescue normal neurotransmission, SV2A-W300A and SV2A-W666A did restore normal levels of synaptotagmin expression and internalization. This indicates that tryptophans 300 and 666 support an essential action of SV2 that is unrelated to its role in synaptotagmin expression or trafficking. These results indicate that SV2 performs at least two actions at the synapse that contribute to neurotransmitter release.
Collapse
Affiliation(s)
- Amy Nowack
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
89
|
Blonk MI, van der Nagel BC, Smit LS, Mathot RA. Quantification of levetiracetam in plasma of neonates by ultra performance liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:675-81. [DOI: 10.1016/j.jchromb.2010.01.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 01/15/2010] [Accepted: 01/24/2010] [Indexed: 10/19/2022]
|
90
|
Bialer M, White HS. Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov 2010; 9:68-82. [PMID: 20043029 DOI: 10.1038/nrd2997] [Citation(s) in RCA: 388] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the early 1990s, many new antiepileptic drugs (AEDs) that offer appreciable advantages in terms of their favourable pharmacokinetics, improved tolerability and lower potential for drug-drug interactions have entered the market. However, despite the therapeutic arsenal of old and new AEDs, approximately 30% of patients with epilepsy still suffer from seizures. Thus, there remains a substantial need for the development of more efficacious AEDs for patients with refractory seizures. Here, we briefly review the emerging knowledge on the pathological basis of epilepsy and how it might best be used in the design of new therapeutics. We also discuss the current approach to AED discovery and highlight some of the unique features of newer models of pharmacoresistance and epileptogenesis that have emerged in recent years.
Collapse
Affiliation(s)
- Meir Bialer
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, and the David R. Bloom Centre for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | | |
Collapse
|
91
|
de Groot M, Toering ST, Boer K, Spliet WGM, Heimans JJ, Aronica E, Reijneveld JC. Expression of synaptic vesicle protein 2A in epilepsy-associated brain tumors and in the peritumoral cortex. Neuro Oncol 2010; 12:265-73. [PMID: 20167814 DOI: 10.1093/neuonc/nop028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Synaptic vesicle protein 2A (SV2A) has been identified as the binding site for the antiepileptic drug levetiracetam and is thought to decrease neuronal excitability. Since knockout of SV2A in mice leads to seizures, we hypothesized that a reduction in SV2A expression promotes seizure generation in epilepsy-associated brain tumors. We compared the SV2A expression and distribution in surgically removed tumor tissue (n = 63) and peritumoral cortex (n = 31) of patients with glial and glioneuronal tumors to normal control cortex obtained at autopsy in nonbrain tumor patients (n = 6). Additionally, we compared the SV2A expression and distribution in tumor patients with epilepsy (n = 39) with SV2A expression in tumor patients without epilepsy (n = 24). Immunohistochemistry in control cortex demonstrated strong and diffuse SV2A immunoreactivity (IR) throughout all cortical layers. Similar strong SV2A IR (with the same diffuse distribution pattern) was observed in the peritumoral cortical specimens in both patients with and without epilepsy. Modest SV2A IR was observed within the tumor area. The SV2A-positive cells detected within the tumor area were mainly entrapped neurons. Oligodendrogliomas and glioneuronal tumors displayed variable SV2A neuropil staining. In ganglioglioma (GG), strong SV2A IR was present along the dysplastic neuronal cell borders and processes. In both GG and dysembryoplastic neuroepithelial tumors, SV2A IR was occasionally observed within the neuronal perikarya. We found no differences in SV2A expression in the peritumoral cortex between the patients with and without epilepsy, which suggests that the role of SV2A in epileptogenesis in patients with glial tumors is questionable. The distinct pattern of SV2A IR in glioneuronal tumors suggests a redistribution of SV2A.
Collapse
Affiliation(s)
- Marjolein de Groot
- Department Of Neurology, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
92
|
Verrotti A, Coppola G, Parisi P, Mohn A, Chiarelli F. Bone and calcium metabolism and antiepileptic drugs. Clin Neurol Neurosurg 2010; 112:1-10. [DOI: 10.1016/j.clineuro.2009.10.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/21/2009] [Accepted: 10/10/2009] [Indexed: 12/20/2022]
|
93
|
Utility of levetiracetam in patients with subarachnoid hemorrhage. Seizure 2009; 18:676-9. [DOI: 10.1016/j.seizure.2009.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 09/11/2009] [Accepted: 09/17/2009] [Indexed: 11/19/2022] Open
|
94
|
Down-regulation Synaptic Vesicle Protein 2A in the Anterior Temporal Neocortex of Patients with Intractable Epilepsy. J Mol Neurosci 2009; 39:354-9. [DOI: 10.1007/s12031-009-9288-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 08/17/2009] [Indexed: 11/25/2022]
|
95
|
Farooq MU, Bhatt A, Majid A, Gupta R, Khasnis A, Kassab MY. Levetiracetam for managing neurologic and psychiatric disorders. Am J Health Syst Pharm 2009; 66:541-61. [PMID: 19265183 DOI: 10.2146/ajhp070607] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The role of levetiracetam in different epileptic, nonepileptic, neurologic, and psychiatric disorders is discussed. SUMMARY Levetiracetam, an antiepileptic drug (AED), was first approved as an adjunctive therapy for the treatment of partial epilepsy in adults. It is currently being used in the treatment of multiple seizure disorders, including generalized tonic-clonic; absence; myoclonic, especially juvenile myoclonic; Lennox-Gastaut syndrome; and refractory epilepsy in children and adults. Data are emerging on possible uses of levetiracetam outside the realm of epilepsy because of its unique mechanisms of action. There is preliminary evidence about the efficacy of levetiracetam in the treatment of different psychiatric disorders, including anxiety, panic, stress, mood and bipolar, autism, and Tourette's syndrome. The most serious adverse effects associated with levetiracetam use are behavioral in nature and might be more common in patients with a history of psychiatric and neurobehavioral problems. CONCLUSION Levetiracetam is an effective AED with potential benefits in other neurologic and psychiatric disorders. The benefit-risk ratio in an individual patient with a specific condition should be used to determine its optimal use. Levetiracetam's use in nonepileptic conditions is not recommended until more data become available from larger trials.
Collapse
Affiliation(s)
- Muhammad U Farooq
- Department of Neurology and Ophthalmology, Michigan State University, 138 Service Road, East Lansing, MI 48824, USA.
| | | | | | | | | | | |
Collapse
|
96
|
Giroux PC, Salas-Prato M, Théorêt Y, Carmant L. Levetiracetam in children with refractory epilepsy: lack of correlation between plasma concentration and efficacy. Seizure 2009; 18:559-63. [PMID: 19546014 DOI: 10.1016/j.seizure.2009.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 05/11/2009] [Accepted: 05/15/2009] [Indexed: 10/20/2022] Open
Abstract
PURPOSE The goals of this study are to evaluate the efficacy and tolerability of levetiracetam (LEV) as add-on therapy in children with refractory epilepsies and to determine the value of LEV blood level monitoring in this population. METHODS Sixty-nine children (39 males and 30 females) treated with LEV between 2006 and 2007 were selected. Their medical files were reviewed for LEV efficacy and tolerability. In a subgroup of children currently taking LEV, plasma concentrations were determined by high performance liquid chromatography by ultraviolet detection (HPLC-UV) method and correlated with the given dose per kilo as well as clinical response. RESULTS Fifty-one patients (74%) had a more than 50% reduction in seizure frequency with 16 patients (23%) becoming seizure free on LEV. Eighteen (26%) patients had a less than 50% reduction in seizure frequency. Adverse events due to LEV ranged from mild to moderate in only 18 patients (26%). The most frequently observed were drowsiness, behavioral difficulties, increase in seizure frequency and headaches. The majority (60.5%) of the responders received doses between 10 and 50mg/kg/day and had a plasma concentration (PC) between 5 and 40microg/ml. However, we found no clear correlation between PC and efficacy. CONCLUSION Levetiracetam given twice a day in children with refractory epilepsy reduces seizure frequency in all types of epilepsy. In children, LEV is a broad spectrum anticonvulsant with a favourable safety profile.
Collapse
Affiliation(s)
- Patricia C Giroux
- Department of Physiology, University of Montreal, C.P. 6128, succursale Centre-ville, Montréal, Québec, Canada.
| | | | | | | |
Collapse
|
97
|
Abstract
PRACTICAL RELEVANCE Although seizures occur less commonly in cats compared with dogs, they are one of the most common forms of neurological disease in the feline patient. Cats may experience both focal (partial) and generalized seizures and causes are divided into primary disorders, in which there is no underlying cause (ie, idiopathic epilepsy), and secondary disorders. Cats with secondary seizure disorders have either an underlying structural lesion or metabolic disease. PATIENT GROUP Seizures affect cats of all ages. Cats with idiopathic epilepsy tend to be younger (approximately 3.5 years) than cats with secondary seizure disorders (approximately 8 years). AUDIENCE This review of feline seizures is directed at all veterinarians who treat cats, both in an emergency setting as well as in general practice. CLINICAL CHALLENGES Refractory seizures are often a diagnostic and therapeutic challenge. A systematic approach to the seizuring cat is described, easing the task of diagnosing the cause of the seizures. In addition, novel antiepileptics are discussed, which can be used as add-on drugs in challenging feline seizure cases. EVIDENCE BASE Compared with the canine counterpart, the literature regarding treatment of feline seizures is less established. Recent clinical trials and studies are focusing on new treatment options for feline seizures. Specifically, these studies, some of which are ongoing, have led to the use of levetiracetam, zonisamide and pregabalin as add-on antiepileptics in cases that are refractory to phenobarbital.
Collapse
Affiliation(s)
- Kerry Smith Bailey
- Department of Neurology, Oradell Animal Hospital, 580 Winters Avenue, Paramus, NJ 07652, USA.
| | | |
Collapse
|
98
|
Abstract
Background Synaptic Vesicle Protein 2 (SV2) and SV2-related protein (SVOP) are transporter-like proteins that localize to neurotransmitter-containing vesicles. Both proteins share structural similarity with the major facilitator (MF) family of small molecule transporters. We recently reported that SV2 binds nucleotides, a feature that has also been reported for another MF family member, the human glucose transporter 1 (Glut1). In the case of Glut1, nucleotide binding affects transport activity. In this study, we determined if SVOP also binds nucleotides and assessed its nucleotide binding properties. Methodology/Principal Findings We performed in vitro photoaffinity labeling experiments with the photoreactive ATP analogue, 8-azido-ATP[γ] biotin and purified recombinant SVOP-FLAG fusion protein. We found that SVOP is a nucleotide-binding protein, although both its substrate specificity and binding site differ from that of SV2. Within the nucleotides tested, ATP, GTP and NAD show same level of inhibition on SVOP-FLAG labeling. Dose dependent studies indicated that SVOP demonstrates the highest affinity for NAD, in contrast to SV2, which binds both NAD and ATP with equal affinity. Mapping of the binding site revealed a single region spanning transmembrane domains 9–12, which contrasts to the two binding sites in the large cytoplasmic domains in SV2A. Conclusions/Significance SVOP is the third MF family member to be found to bind nucleotides. Given that the binding sites are unique in SVOP, SV2 and Glut1, this feature appears to have arisen separately.
Collapse
Affiliation(s)
- Jia Yao
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Sandra M. Bajjalieh
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
99
|
Davis GP, McCarthy JT, Magill DB, Coffey B. Behavioral effects of levetiracetam mitigated by pyridoxine. J Child Adolesc Psychopharmacol 2009; 19:209-11. [PMID: 19364300 DOI: 10.1089/cap.2009.19202] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Glen P Davis
- Department of Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|
100
|
van Vliet EA, Aronica E, Redeker S, Boer K, Gorter JA. Decreased expression of synaptic vesicle protein 2A, the binding site for levetiracetam, during epileptogenesis and chronic epilepsy. Epilepsia 2009; 50:422-33. [DOI: 10.1111/j.1528-1167.2008.01727.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|