51
|
Lizarraga KJ, Al-Shorafat D, Fox S. Update on current and emerging therapies for dystonia. Neurodegener Dis Manag 2019; 9:135-147. [PMID: 31117876 DOI: 10.2217/nmt-2018-0047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Treatment strategies for dystonia depend on the focal, segmental or generalized distribution of symptoms. Chemodenervation with botulinum toxin remains the treatment of choice for focal- or select-body regions in generalized and segmental dystonia. A potentially longer acting formulation of botulinum toxin is being investigated besides the currently available formulations. Electromyography increases toxin injection accuracy and may reduce injection number, frequency, side effects and costs by identifying dystonic muscle activity. Oral anticholinergics, baclofen and clonazepam are used off-label, but novel drugs in development include sodium oxybate, zonisamide and perampanel. Characterizing dystonia as a sensorimotor circuit disorder has prompted the use of noninvasive neuromodulation procedures. These techniques need further study but simultaneous rehabilitation techniques appear to also improve outcomes. Pallidal deep-brain stimulation is beneficial for medication-refractory primary generalized and possibly focal dystonia such as cervical dystonia. Certain genetic conditions are amenable to specific therapies and future gene-targeted therapies could benefit selected dystonia patients.
Collapse
Affiliation(s)
- Karlo J Lizarraga
- The Edmond J Safra Program in Parkinson's Disease & the Morton & Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital, University of Toronto, Toronto, M5T2S8 ON, Canada
| | - Duha Al-Shorafat
- The Edmond J Safra Program in Parkinson's Disease & the Morton & Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital, University of Toronto, Toronto, M5T2S8 ON, Canada
| | - Susan Fox
- The Edmond J Safra Program in Parkinson's Disease & the Morton & Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital, University of Toronto, Toronto, M5T2S8 ON, Canada
| |
Collapse
|
52
|
Tustin K, Elze MC, Lumsden DE, Gimeno H, Kaminska M, Lin JP. Gross motor function outcomes following deep brain stimulation for childhood-onset dystonia: A descriptive report. Eur J Paediatr Neurol 2019; 23:473-483. [PMID: 30846371 DOI: 10.1016/j.ejpn.2019.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/30/2019] [Accepted: 02/17/2019] [Indexed: 12/20/2022]
Abstract
AIM To examine the impact of deep brain stimulation (DBS) on gross motor function in children with dystonic movement disorders. METHOD Prospective audit involving children implanted 2007-2015, followed for up to two years. Outcomes were evaluated across aetiological sub-groups (inherited, acquired, idiopathic) using the GMFM-88 and BFMDRS movement scale (BFM-M). The predictive value of proportion of life lived with dystonia (PLD) and baseline motor capacity were evaluated. RESULTS Data was available for 60 children (median surgery age 10y11mo). Inherited monogenetic dystonias demonstrated a median increase in GMFM-88 scores of 6.9% (p = 0.021) and 14.5% (p = 0.116) at one and two years. Heredodegenerative and idiopathic dystonias showed disparate responses, with non-significant changes seen in GMFM-88 and BFM-M scores, with the exception of improved one-year BFM-M scores in the idiopathic group [median change 5.5, p = 0.021]. Median GMFM-88 and BFM-M change scores were near zero for acquired dystonias, though improvement was noted in 9/18 CP cases with one-year GMFM-88 data. No significant relationship was found between PLD, or baseline GMFM-88, and GMFM-88 change following DBS. CONCLUSION Gross motor response to DBS is similar in profile to literature reporting results using impairment-based dystonia rating scales. Relatively consistent improvements were seen in inherited monogenetic ("primary") dystonias, while highly variable, often disappointing, gross motor responses were found in acquired, heredodegenerative, and idiopathic dystonias. In view of such response variability, alternatives to mean group studies, such as single case experimental designs with multiple replications, are needed to determine the efficacy of DBS in childhood-onset dystonias. Ongoing research is needed to identify factors that predict treatment response.
Collapse
Affiliation(s)
- Kylee Tustin
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2 Beckett House, Lambeth Palace Road, London, SE1 7EU, United Kingdom.
| | | | - Daniel E Lumsden
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2 Beckett House, Lambeth Palace Road, London, SE1 7EU, United Kingdom
| | - Hortensia Gimeno
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2 Beckett House, Lambeth Palace Road, London, SE1 7EU, United Kingdom; King's College London, Institute of Psychiatry, Psychology and Neurosciences, Psychology Department, London, SE5 8AF, United Kingdom
| | - Margaret Kaminska
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2 Beckett House, Lambeth Palace Road, London, SE1 7EU, United Kingdom
| | - Jean-Pierre Lin
- Complex Motor Disorder Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, Floor 2 Beckett House, Lambeth Palace Road, London, SE1 7EU, United Kingdom
| |
Collapse
|
53
|
De Vloo P, Lee DJ, Dallapiazza RF, Rohani M, Fasano A, Munhoz RP, Ibrahim GM, Hodaie M, Lozano AM, Kalia SK. Deep brain stimulation for pantothenate kinase-associated neurodegeneration: A meta-analysis. Mov Disord 2019; 34:264-273. [PMID: 30633810 DOI: 10.1002/mds.27563] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pantothenate kinase-associated neurodegeneration is a rare autosomal-recessive disorder, characterized by progressive neurodegeneration associated with brain iron accumulation. DBS has been trialed to treat related movement disorders, particularly dystonia. The objective of this study was to determine the outcome and safety of DBS for pantothenate kinase-associated neurodegeneration. METHODS We performed a meta-analysis using independent participant data (n = 99) from 38 articles. Primary outcome was change in movement and disability scores of the Burke-Fahn-Marsden Dystonia Rating Scale 1 year postoperatively. Secondary outcomes were response rate and complications. RESULTS Patients with classic-type (n = 58) and atypical-type (n = 15) pantothenate kinase-associated neurodegeneration were operated on at a median age of 11 and 31 years, respectively (P < 0.001). GPi was primarily targeted (n = 87). Mean dystonia movement score improved 1 year following GPi-DBS (-26%; 95% confidence interval, -37% to -15%), particularly in atypical versus classic cases (-45% vs -16%; P < 0.001). At least 30% improvement was observed in 34% of classic versus 73% of atypical cases (P = 0.04). Higher preoperative score and atypical type predicted larger improvement. GPi-DBS improved dystonia disability score in atypical (-31%; 95% confidence interval, -49% to -13%) but not classic (-5%; 95% confidence interval, -17% to 8%) cases. Prevalence of surgical infections (6%) and hardware failure (7%) was similar to other dystonia etiologies. Two patients died within 3 months. There was insufficient data to describe outcome > 1 year following GPi-DBS or with other DBS targets. Overall, small sample sizes limited generalizability. CONCLUSIONS This meta-analysis provides level 4 evidence that GPi-DBS for pantothenate kinase-associated neurodegeneration may improve dystonia movement scores in classic type and atypical type and disability scores in atypical type 1 year postoperatively. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Philippe De Vloo
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Neurosurgery, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Department of Neurosurgery, Great Ormond Street Hospital, London, UK
| | - Darrin J Lee
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Robert F Dallapiazza
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mohammad Rohani
- Division of Neurology, Iran University of Medical Sciences, Tehran, Iran
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, and Division of Neurology, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - Renato P Munhoz
- Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, and Division of Neurology, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Department of Neurosurgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| |
Collapse
|
54
|
Elkaim LM, Alotaibi NM, Sigal A, Alotaibi HM, Lipsman N, Kalia SK, Fehlings DL, Lozano AM, Ibrahim GM. Deep brain stimulation for pediatric dystonia: a meta-analysis with individual participant data. Dev Med Child Neurol 2019; 61:49-56. [PMID: 30320439 DOI: 10.1111/dmcn.14063] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2018] [Indexed: 12/31/2022]
Abstract
AIM We performed a meta-analysis with individual participant data of deep brain stimulation (DBS) for dystonia in children and young people. METHOD Three databases (PubMed, Embase, and Web of Science) were queried from January 1999 to August 2017 with no language restrictions to identify case studies and cohort studies reporting on pediatric patients (age ≤21y) with dystonia. The primary outcomes were changes in Burke-Fahn-Marsden (BFM) or Barry-Albright Dystonia Scale scores. A mixed-effects regression was used to identify associations between clinical covariates and outcomes. RESULTS Of 2509 citations reviewed, 72 articles (321 children) were eligible. At last follow-up (median 12mo, 25th centile=9.0; 75th centile=32.2), 277 (86.3%) patients showed improvement in dystonia, while 66.1 percent showed clinically significant (>20%) BFM Dystonia Rating Scale-motor improvement. On multivariable hierarchical regression, older age at dystonia onset, inherited dystonia without nervous system pathology and idiopathic dystonia (vs inherited with nervous system pathology or acquired dystonia), and truncal involvement indicated a better outcome (p<0.05). INTERPRETATION The data suggest that DBS is effective and should be considered in selected children with inherited or idiopathic dystonia. WHAT THIS PAPER ADDS Deep brain stimulation is effective in selected children with inherited or idiopathic dystonia.
Collapse
Affiliation(s)
- Lior M Elkaim
- Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Naif M Alotaibi
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Alissa Sigal
- Faculty of Medicine, Université de Montréal, Montreal, Canada
| | | | - Nir Lipsman
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Canada
| | - Darcy L Fehlings
- Child Development Program, Holland Bloorview Rehabilitation Hospital, University of Toronto, Toronto, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Surgery, Institute of Biomaterials and Biomedical Engineering, Institute of Medical Science, University of Toronto, Toronto, Canada
| | | |
Collapse
|
55
|
Benam M, Parvaresh M, Fasano A, Rohani M. CSF leak leading to seroma formation. Postgrad Med J 2018; 95:176. [PMID: 30580322 DOI: 10.1136/postgradmedj-2018-136228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/01/2018] [Indexed: 11/04/2022]
Affiliation(s)
- Mohsen Benam
- Department of Neurosurgery, Hazrat Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mansour Parvaresh
- Department of Neurosurgery, Hazrat Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - Mohammad Rohani
- Department of Neurosurgery, Hazrat Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
56
|
Candela S, Vanegas MI, Darling A, Ortigoza-Escobar JD, Alamar M, Muchart J, Climent A, Ferrer E, Rumià J, Pérez-Dueñas B. Frameless robot-assisted pallidal deep brain stimulation surgery in pediatric patients with movement disorders: precision and short-term clinical results. J Neurosurg Pediatr 2018; 22:416-425. [PMID: 30028274 DOI: 10.3171/2018.5.peds1814] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The purpose of this study was to verify the safety and accuracy of the Neuromate stereotactic robot for use in deep brain stimulation (DBS) electrode implantation for the treatment of hyperkinetic movement disorders in childhood and describe the authors' initial clinical results. METHODS A prospective evaluation of pediatric patients with dystonia and other hyperkinetic movement disorders was carried out during the 1st year after the start-up of a pediatric DBS unit in Barcelona. Electrodes were implanted bilaterally in the globus pallidus internus (GPi) using the Neuromate robot without the stereotactic frame. The authors calculated the distances between the electrodes and their respective planned trajectories, merging the postoperative CT with the preoperative plan using VoXim software. Clinical outcome was monitored using validated scales for dystonia and myoclonus preoperatively and at 1 month and 6 months postoperatively and by means of a quality-of-life questionnaire for children, administered before surgery and at 6 months' follow-up. We also recorded complications derived from the implantation technique, "hardware," and stimulation. RESULTS Six patients aged 7 to 16 years and diagnosed with isolated dystonia ( DYT1 negative) (3 patients), choreo-dystonia related to PDE2A mutation (1 patient), or myoclonus-dystonia syndrome SGCE mutations (2 patients) were evaluated during a period of 6 to 19 months. The average accuracy in the placement of the electrodes was 1.24 mm at the target point. At the 6-month follow-up, patients showed an improvement in the motor (65%) and functional (48%) components of the Burke-Fahn-Marsden Dystonia Rating Scale. Patients with myoclonus and SGCE mutations also showed an improvement in action myoclonus (95%-100%) and in functional tests (50%-75%) according to the Unified Motor-Rating Scale. The Neuro-QOL score revealed inconsistent results, with improvement in motor function and social relationships but worsening in anxiety, cognitive function, and pain. The only surgical complication was medial displacement of the first electrode, which limited intensity of stimulation in the lower contacts, in one case. CONCLUSIONS The Neuromate stereotactic robot is an accurate and safe tool for the placement of GPi electrodes in children with hyperkinetic movement disorders.
Collapse
Affiliation(s)
- Santiago Candela
- Departments of1Neurosurgery.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - María Isabel Vanegas
- 2Neuropediatrics, and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona.,7Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Alejandra Darling
- 2Neuropediatrics, and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Juan Darío Ortigoza-Escobar
- 2Neuropediatrics, and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Mariana Alamar
- Departments of1Neurosurgery.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Jordi Muchart
- 3Diagnostic Imaging.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Alejandra Climent
- Departments of1Neurosurgery.,2Neuropediatrics, and.,4Intraoperative Neurophysiology Unit, and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Enrique Ferrer
- Departments of1Neurosurgery.,5Department of Neurosurgery, Hospital Clinic de Barcelona, Universitat de Barcelona; and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Jordi Rumià
- Departments of1Neurosurgery.,5Department of Neurosurgery, Hospital Clinic de Barcelona, Universitat de Barcelona; and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Belén Pérez-Dueñas
- 2Neuropediatrics, and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona.,7Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
57
|
Elkaim LM, De Vloo P, Kalia SK, Lozano AM, Ibrahim GM. Deep brain stimulation for childhood dystonia: current evidence and emerging practice. Expert Rev Neurother 2018; 18:773-784. [DOI: 10.1080/14737175.2018.1523721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Lior M. Elkaim
- Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Phillippe De Vloo
- Department of Neurosurgery, Great Ormond Street Hospital for Children, London, UK
| | - Suneil K. Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Canada
| | - Andres M. Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Canada
| | - George M. Ibrahim
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Canada
| |
Collapse
|
58
|
Fehlings D, Brown L, Harvey A, Himmelmann K, Lin JP, Macintosh A, Mink JW, Monbaliu E, Rice J, Silver J, Switzer L, Walters I. Pharmacological and neurosurgical interventions for managing dystonia in cerebral palsy: a systematic review. Dev Med Child Neurol 2018; 60:356-366. [PMID: 29405267 DOI: 10.1111/dmcn.13652] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 12/22/2022]
Abstract
AIM To systematically review evidence for pharmacological/neurosurgical interventions for managing dystonia in individuals with cerebral palsy (CP) to inform a care pathway. METHOD Searches included studies with a minimum of five participants with dystonia in CP receiving oral baclofen, benzodiazepines (clonazepam, diazepam, lorazepam), clonidine, gabapentin, levodopa, trihexyphenidyl, botulinum toxin, intrathecal baclofen (ITB), or deep brain stimulation (DBS). Evidence was classified according to American Academy of Neurology guidelines. RESULTS Twenty-eight articles underwent data extraction: one levodopa, five trihexyphenidyl, three botulinum toxin, six ITB, and 13 DBS studies. No articles for oral baclofen, benzodiazepines, clonidine, or gabapentin met the inclusion criteria. Evidence for reducing dystonia was level C (possibly effective) for ITB and DBS; level C (possibly ineffective) for trihexyphenidyl; and level U (inadequate data) for botulinum toxin. INTERPRETATION For dystonia reduction, ITB and DBS are possibly effective, whereas trihexyphenidyl was possibly ineffective. There is insufficient evidence to support oral medications or botulinum toxin to reduce dystonia. There is insufficient evidence for pharmacological and neurosurgical interventions to improve motor function, decrease pain, and ease caregiving. The majority of the pharmacological and neurosurgical management of dystonia in CP is based on clinical expert opinion. WHAT THIS PAPER ADDS Intrathecal baclofen and deep brain stimulation are possibly effective in reducing dystonia. Current evidence does not support effectiveness of oral medications or botulinum toxin to reduce dystonia. Evidence is inadequate for pharmacological/neurosurgical interventions impact on improving motor function, pain/comfort, and easing caregiving. The majority of the care pathway rests on expert opinion.
Collapse
Affiliation(s)
- Darcy Fehlings
- Department of Paediatrics, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, ON, Canada
| | - Leah Brown
- Department of Paediatrics, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, ON, Canada
| | - Adrienne Harvey
- Developmental Disability and Rehabilitation Research, Murdoch Childrens Research Institute, Parkville, Vic, Australia
| | - Kate Himmelmann
- Department of Pediatrics, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jean-Pierre Lin
- Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's and St Thomas', NHS Foundation Trust, Kings' Health Partners, London, UK
| | - Alexander Macintosh
- Department of Paediatrics, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, ON, Canada
| | - Jonathan W Mink
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Elegast Monbaliu
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - James Rice
- Paediatric Rehabilitation Department, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Jessica Silver
- Department of Paediatrics, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, ON, Canada
| | - Lauren Switzer
- Department of Paediatrics, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, ON, Canada
| | - Ilana Walters
- Department of Paediatrics, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
59
|
Abstract
PURPOSE OF REVIEW Dystonia is a common paediatric neurological condition. At its most severe, dystonia may lead to life-threatening complications, a state termed status dystonicus. This review provides an update on the definition, causes, management and outcome of childhood status dystonicus. RECENT FINDINGS High-quality studies in childhood status dystonicus are lacking, though an increasing number of case series have been published. Status dystonicus appears to occur more frequently in children compared with adults, with a clear precipitant identified in around two-thirds of cases. Although febrile illness remains the commonest trigger for status dystonicus, unplanned interruption to deep brain stimulation (DBS) is increasingly reported as a precipitant. In parallel with this, neurosurgical intervention for status dystonicus appears to have become more widely used, though optimum timing and patient selection remains unclear. In most cases, a multistaged approach is required; we propose an 'ABCD' approach - Addressing precipitants, Beginning supportive measures, Calibrating sedation and Dystonia specific medications. Outcomes following status dystonicus appear to have slightly improved in recent years, potentially as a consequence of increasing use of DBS, though mortality has remained around 10%. SUMMARY Future work is needed to inform evidence-based guidelines for the management of status dystonicus. One of many pressing questions is the precise indication, and timing of interventions such as DBS.
Collapse
|
60
|
Somatosensory Evoked Potentials and Central Motor Conduction Times in children with dystonia and their correlation with outcomes from Deep Brain Stimulation of the Globus pallidus internus. Clin Neurophysiol 2017; 129:473-486. [PMID: 29254860 PMCID: PMC5786451 DOI: 10.1016/j.clinph.2017.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022]
Abstract
A high proportion (47%) of children with dystonia have evidence of abnormal sensory pathway function. Central motor conduction times (CMCTs) and somatosensory evoked potentials (SEPs) show a significant relationship with deep brain stimulation (DBS) outcome, independent of aetiology or cranial MRI. CMCTs and SEPs can guide patient selection and help counsel families about potential benefit of DBS.
Objectives To report Somatosensory Evoked Potentials (SEPs) and Central Motor Conduction Times (CMCT) in children with dystonia and to test the hypothesis that these parameters predict outcome from Deep Brain Stimulation (DBS). Methods 180 children with dystonia underwent assessment for Globus pallidus internus (GPi) DBS, mean age 10 years (range 2.5–19). CMCT to each limb was calculated using Transcranial Magnetic Stimulation. Median and posterior tibial nerve SEPs were recorded over contralateral and midline centro-parietal scalp. Structural abnormalities were assessed with cranial MRI. One-year outcome from DBS was assessed as percentage improvement in Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS-m). Results Abnormal CMCTs and SEPs were found in 19% and 47% of children respectively and were observed more frequently in secondary than primary dystonia. Of children proceeding to DBS, better outcome was seen in those with normal (n = 78/89) versus abnormal CMCT (n = 11/89) (p = 0.002) and those with normal (n = 35/51) versus abnormal SEPs (n = 16/51) (p = 0.001). These relationships were independent of dystonia aetiology and cranial MRI findings. Conclusions CMCTs and SEPs provide objective evidence of motor and sensory pathway dysfunction in children with dystonia and relate to DBS outcome. Significance CMCTs and SEPs can contribute to patient selection and counselling of families about potential benefit from neuromodulation for dystonia.
Collapse
|
61
|
Monbaliu E, Himmelmann K, Lin JP, Ortibus E, Bonouvrié L, Feys H, Vermeulen RJ, Dan B. Clinical presentation and management of dyskinetic cerebral palsy. Lancet Neurol 2017; 16:741-749. [PMID: 28816119 DOI: 10.1016/s1474-4422(17)30252-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 06/02/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022]
Abstract
Cerebral palsy is the most frequent cause of severe physical disability in childhood. Dyskinetic cerebral palsy (DCP) is the second most common type of cerebral palsy after spastic forms. DCP is typically caused by non-progressive lesions to the basal ganglia or thalamus, or both, and is characterised by abnormal postures or movements associated with impaired tone regulation or movement coordination. In DCP, two major movement disorders, dystonia and choreoathetosis, are present together most of the time. Dystonia is often more pronounced and severe than choreoathetosis, with a major effect on daily activity, quality of life, and societal participation. The pathophysiology of both movement disorders is largely unknown. Some emerging hypotheses are an imbalance between indirect and direct basal ganglia pathways, disturbed sensory processing, and impaired plasticity in the basal ganglia. Rehabilitation strategies are typically multidisciplinary. Use of oral drugs to provide symptomatic relief of the movement disorders is limited by adverse effects and the scarcity of evidence that the drugs are effective. Neuromodulation interventions, such as intrathecal baclofen and deep brain stimulation, are promising options.
Collapse
Affiliation(s)
- Elegast Monbaliu
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium; Dominiek Savio Instituut, Gits, Belgium
| | - Kate Himmelmann
- Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jean-Pierre Lin
- Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London, UK
| | - Els Ortibus
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Laura Bonouvrié
- Department of Rehabilitation Medicine, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Hilde Feys
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - R Jeroen Vermeulen
- Department of Neurology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Bernard Dan
- Department of Neurology, Université Libre de Bruxelles, Brussels, Belgium; Inkendaal Rehabilitation Hospital, Vlezenbeek, Belgium.
| |
Collapse
|
62
|
Jitkritsadakul O, Bhidayasiri R, Kalia SK, Hodaie M, Lozano AM, Fasano A. Systematic review of hardware-related complications of Deep Brain Stimulation: Do new indications pose an increased risk? Brain Stimul 2017; 10:967-976. [DOI: 10.1016/j.brs.2017.07.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
|
63
|
Bilateral globus pallidus internus deep brain stimulation for dyskinetic cerebral palsy supports success of cochlear implantation in a 5-year old ex-24 week preterm twin with absent cerebellar hemispheres. Eur J Paediatr Neurol 2017; 21:202-213. [PMID: 28017556 DOI: 10.1016/j.ejpn.2016.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Early onset dystonia (dyskinesia) and deafness in childhood pose significant challenges for children and carers and are the cause of multiple disability. It is particularly tragic when the child cannot make use of early cochlear implantation (CI) technology to relieve deafness and improve language and communication, because severe cervical and truncal dystonia brushes off the magnetic amplifier behind the ears. Bilateral globus pallidus internus (GPi) deep brain stimulation (DBS) neuromodulation can reduce dyskinesia, thus supporting CI neuromodulation success. METHODS We describe the importance of the order of dual neuromodulation surgery for dystonia and deafness. First with bilateral GPi DBS using a rechargeable ACTIVA-RC neurostimulator followed 5 months later by unilateral CI with a Harmony (BTE) Advanced Bionics Hi Res 90 K cochlear device. This double neuromodulation was performed in series in a 12.5 kg 5 year-old ex-24 week gestation-born twin without a cerebellum. RESULTS Relief of dyskinesia enabled continuous use of the CI amplifier. Language understanding and communication improved. Dystonic storms abated. Tolerance of sitting increased with emergence of manual function. Status dystonicus ensued 10 days after ACTIVA-RC removal for infection-erosion at 3 years and 10 months. He required intensive care and DBS re-implantation 3 weeks later together with 8 months of hospital care. Today he is virtually back to the level of functioning before the DBS removal in 2012 and background medication continues to be slowly weaned. CONCLUSION This case illustrates that early neuromodulation with DBS for dystonic cerebral palsy followed by CI for deafness is beneficial. Both should be considered early i.e. under the age of five years. The DBS should precede the CI to maximise dystonia reduction and thus benefits from CI. This requires close working between the paediatric DBS and CI services.
Collapse
|
64
|
Hudson VE, Elniel A, Ughratdar I, Zebian B, Selway R, Lin JP. A comparative historical and demographic study of the neuromodulation management techniques of deep brain stimulation for dystonia and cochlear implantation for sensorineural deafness in children. Eur J Paediatr Neurol 2017; 21:122-135. [PMID: 27562095 DOI: 10.1016/j.ejpn.2016.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED Cochlear implants for sensorineural deafness in children is one of the most successful neuromodulation techniques known to relieve early chronic neurodisability, improving activity and participation. In 2012 there were 324,000 recipients of cochlear implants globally. AIM To compare cochlear implant (CI) neuromodulation with deep brain stimulation (DBS) for dystonia in childhood and explore relations between age and duration of symptoms at implantation and outcome. METHODS Comparison of published annual UK CI figures for 1985-2009 with a retrospective cohort of the first 9 years of DBS for dystonia in children at a single-site Functional Neurosurgery unit from 2006 to 14. RESULTS From 2006 to 14, DBS neuromodulation of childhood dystonia increased by a factor of 3.8 to a total of 126 cases over the first 9 years, similar to the growth in cochlear implants which increased by a factor of 4.1 over a similar period in the 1980s rising to 527 children in 2009. The CI saw a dramatic shift in practice from implantation at >5 years of age at the start of the programme towards earlier implantation by the mid-1990s. Best language results were seen for implantation <5 years of age and duration of cochlear neuromodulation >4 years, hence implantation <1 year of age, indicating that severely deaf, pre-lingual children could benefit from cochlear neuromodulation if implanted early. Similar to initial CI use, the majority of children receiving DBS for dystonia in the first 9 years were 5-15 years of age, when the proportion of life lived with dystonia exceeds 90% thus limiting benefits. CONCLUSION Early DBS neuromodulation for acquired motor disorders should be explored to maximise the benefits of dystonia reduction in a period of maximal developmental plasticity before the onset of disability. Learning from cochlear implantation, DBS can become an accepted management option in children under the age of 5 years who have a reduced proportion of life lived with dystonia, and not viewed as a last resort reserved for only the most severe cases where benefits may be at their most limited.
Collapse
Affiliation(s)
- V E Hudson
- Guys', King's and St Thomas' School of Medical Education, United Kingdom.
| | - A Elniel
- Guys', King's and St Thomas' School of Medical Education, United Kingdom
| | | | - B Zebian
- King's College Hospital, United Kingdom
| | - R Selway
- King's College Hospital, United Kingdom
| | - J P Lin
- Evelina London Children's Hospital, United Kingdom.
| |
Collapse
|
65
|
The International Classification of Functioning (ICF) to evaluate deep brain stimulation neuromodulation in childhood dystonia-hyperkinesia informs future clinical & research priorities in a multidisciplinary model of care. Eur J Paediatr Neurol 2017; 21:147-167. [PMID: 27707656 DOI: 10.1016/j.ejpn.2016.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/11/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022]
Abstract
The multidisciplinary team (MDT) approach illustrates how motor classification systems, assessments and outcome measures currently available have been applied to a national cohort of children and young people with dystonia and other hyperkinetic movement disorders (HMD) particularly with a focus on dyskinetic cerebral palsy (CP). The paper is divided in 3 sections. Firstly, we describe the service model adopted by the Complex Motor Disorders Service (CMDS) at Evelina London Children's Hospital and King's College Hospital (ELCH-KCH) for deep brain stimulation. We describe lessons learnt from available dystonia studies and discuss/propose ways to measure DBS and other dystonia-related intervention outcomes. We aim to report on current available functional outcome measures as well as some impairment-based assessments that can encourage and generate discussion among movement disorders specialists of different backgrounds regarding choice of the most important areas to be measured after DBS and other interventions for dystonia management. Finally, some recommendations for multi-centre collaboration in regards to functional clinical outcomes and research methodologies for dystonia-related interventions are proposed.
Collapse
|
66
|
A Canadian Winter Indirectly Inactivates a Deep Brain Stimulation System. Can J Neurol Sci 2016; 44:332-333. [PMID: 27993176 DOI: 10.1017/cjn.2016.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
67
|
Lin JP, Nardocci N. Recognizing the Common Origins of Dystonia and the Development of Human Movement: A Manifesto of Unmet Needs in Isolated Childhood Dystonias. Front Neurol 2016; 7:226. [PMID: 28066314 PMCID: PMC5165260 DOI: 10.3389/fneur.2016.00226] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022] Open
Abstract
Dystonia in childhood may be severely disabling and often unremitting and unrecognized. Considered a rare disorder, dystonic symptoms in childhood are pervasive in many conditions including disorders of developmental delay, cerebral palsy (CP), autism, neurometabolic, neuroinflammatory, and neurogenetic disorders. Collectively, there is a need to recognize the role of early postures and movements which characterize phases of normal fetal, infant, and child development as a backdrop to the many facets of dystonia in early childhood neurological disorders and to be aware of the developmental context of dystonic symptoms. The role of cocontraction is explored throughout infancy, childhood, young adulthood, and in the elderly. Under-recognition of pervasive dystonic disorders of childhood, including within CP is reviewed. Original descriptions of CP by Gowers are reviewed and contemporary physiological demonstrations are used to illustrate support for an interpretation of the tonic labyrinthine response as a manifestation of dystonia. Early recognition and molecular diagnosis of childhood dystonia where possible are desirable for appropriate clinical stratification and future precision medicine and functional neurosurgery where appropriate. A developmental neurobiological perspective could also be useful in exploring new clinical strategies for adult-onset dystonia disorders focusing on environmental and molecular interactions and systems behaviors.
Collapse
Affiliation(s)
| | - Nardo Nardocci
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta , Milano , Italy
| |
Collapse
|