51
|
Abbate MTA, Ramöller IK, Sabri AH, Paredes AJ, Hutton AJ, McKenna PE, Peng K, Hollett JA, McCarthy HO, Donnelly RF. Formulation of antiretroviral nanocrystals and development into a microneedle delivery system for potential treatment of HIV-associated neurocognitive disorder (HAND). Int J Pharm 2023; 640:123005. [PMID: 37142137 DOI: 10.1016/j.ijpharm.2023.123005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
HIV/AIDS remains a major global public health issue. While antiretroviral therapy is effective at reducing the viral load in the blood, up to 50% of those with HIV suffer from some degree of HIV-associated neurocognitive disorder, due to the presence of the blood-brain barrier restricting drugs from crossing into the central nervous system and treating the viral reservoir there. One way to circumvent this is the nose-to-brain pathway. This pathway can also be accessed via a facial intradermal injection. Certain parameters can increase delivery via this route, including using nanoparticles with a positive zeta potential and an effective diameter of 200 nm or less. Microneedle arrays offer a minimally invasive, pain-free alternative to traditional hypodermic injections. This study shows the formulation of nanocrystals of both rilpivirine (RPV) and cabotegravir, followed by incorporation into separate microneedle delivery systems for application to either side of the face. Following an in vivo study in rats, delivery to the brain was seen for both drugs. For RPV, a Cmax was seen at 21 days of 619.17 ± 73.32 ng/g, above that of recognised plasma IC90 levels, and potentially therapeutically relevant levels were maintained for 28 days. For CAB, a Cmax was seen at 28 days of 478.31 ± 320.86 ng/g, and while below recognised 4IC90 levels, does indicate that therapeutically relevant levels could be achieved by manipulating final microaaray patch size in humans.
Collapse
Affiliation(s)
- Marco T A Abbate
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL
| | - Inken K Ramöller
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL
| | - Akmal H Sabri
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL
| | | | - Aaron J Hutton
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL
| | - Peter E McKenna
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL
| | - Ke Peng
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL
| | - Jessica A Hollett
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL
| |
Collapse
|
52
|
Manimaran R, Dinesh Patel K, Maurice Lobo V, Suresh Kumbhar S, Vamsi Krishna Venuganti V. Buccal mucosal application of dissolvable microneedle patch containing photosensitizer provides effective localized delivery and phototherapy against oral carcinoma. Int J Pharm 2023; 640:122991. [PMID: 37120122 DOI: 10.1016/j.ijpharm.2023.122991] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
The effectiveness of phototherapy using photosensitizers is limited by the challenges in their delivery at the site of irradiation. Here, we demonstrate the localized application of a photosensitizer-loaded microneedle patch for effective photodynamic and photothermal therapy in oral carcinoma. Indocyanine green (ICG) was studied as a photosensitizer for its effect on oral carcinoma, FaDu cells. Different parameters including concentration, near-infrared (NIR) laser irradiation intensity and irradiation time were optimized while measuring temperature increase and reactive oxygen species (ROS) generation in FaDu cells. A dissolvable microneedle (DMN) patch made of sodium carboxymethyl cellulose and sodium alginate was fabricated by the micromolding technique. DMN showed sufficient mechanical strength for insertion in the excised porcine buccal mucosa. DMN dissolved within 30 s in phosphate buffer and 30 min in the excised buccal mucosa. Confocal microscopy studies revealed DMN penetration up to a depth of 300 µm within the buccal mucosa. ICG-DMN applied on the back of the rat was found to be localized at the application site before and after irradiation using an 808 nm NIR laser. ICG-DMN was applied on the FaDu xenografted tumor model in athymic nude mice. The localized temperature increase and ROS generation significantly (P<0.05) decreased the tumor volume after ICG-DMN application compared with the control group. In conclusion, DMN can be developed for the localized administration of photosensitizers for phototherapy in oral carcinoma.
Collapse
Affiliation(s)
- Raghuraman Manimaran
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, Telangana, India
| | - Kinnari Dinesh Patel
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, Telangana, India
| | - Venessa Maurice Lobo
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, Telangana, India
| | - Shubham Suresh Kumbhar
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, Telangana, India
| | - Venkata Vamsi Krishna Venuganti
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, Telangana, India.
| |
Collapse
|
53
|
He YT, Hao YY, Yu RX, Zhang C, Chen BZ, Cui Y, Guo XD. Hydroquinone cream-based polymer microneedle roller for the combined treatment of large-area chloasma. Eur J Pharm Biopharm 2023; 185:5-12. [PMID: 36739099 DOI: 10.1016/j.ejpb.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/03/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Melasma is a common hyperpigmented skin condition that occurs on the face and other areas prone to light exposure, seriously affecting people's quality of life. Microneedle, a new type of transdermal drug delivery device, can significantly improve skin permeability. In this study, we designed and fabricated a polymer microneedle roller (PMR) using a mold hot pressing method, and established a mouse model of melasma induced by ultraviolet radiation. The dynamometer and insertion test of MNs into parafilm and skin of mice indicates that the MNs have sufficient mechanical properties to insert parafilm and skin of mice. The two methods (apply hydroquinone cream (HQC) directly and pre-treat with PMR before applying HQC) were used to treat melasma. From the results of skin surface observation, determination of superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in skin and liver tissues, histological observation, and skin Optical coherence tomography (OCT), we confirmed both the two methods had a therapeutic effect while the PMR pretreatment group exhibited a better therapeutic effect. In addition, there were statistical differences between the UV group (P < 0.05). Together these results indicated that the MNs may be promising in future clinical applications in improving the UV irradiation-induced pigmentation like melisma.
Collapse
Affiliation(s)
- Yu Ting He
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yu Ying Hao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Rui Xing Yu
- Department of Dermatology, China-Japan Friendship Hospital, East Street Cherry Park, Chaoyang District, Beijing 100029, PR China
| | - Chao Zhang
- Beijing Mainy Biotech. Co., Ltd, Wangjing West Rd #A50, Chaoyang District, Beijing, 100020, PR China
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, East Street Cherry Park, Chaoyang District, Beijing 100029, PR China.
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029 China.
| |
Collapse
|
54
|
Ziesmer J, Larsson JV, Sotiriou GA. Hybrid microneedle arrays for antibiotic and near-IR photothermal synergistic antimicrobial effect against Methicillin-Resistant Staphylococcus aureus. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 462:142127. [PMID: 37719675 PMCID: PMC7615096 DOI: 10.1016/j.cej.2023.142127] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The rise of antibiotic-resistant skin and soft tissue infections (SSTIs) necessitates the development of novel treatments to improve the efficiency and delivery of antibiotics. The incorporation of photothermal agents such as plasmonic nanoparticles (NPs) improves the antibacterial efficiency of antibiotics through synergism with elevated temperatures. Hybrid microneedle (MN) arrays are promising local delivery platforms that enable co-therapy with therapeutic and photothermal agents. However, to-date, the majority of hybrid MNs have focused on the potential treatment of skin cancers, while suffering from the shortcoming of the intradermal release of photothermal agents. Here, we developed hybrid, two-layered MN arrays consisting of an outer water-soluble layer loaded with vancomycin (VAN) and an inner water-insoluble near-IR photothermal core. The photothermal core consists of flame-made plasmonic Au/SiO2 nanoaggregates and polymethylmethacrylate (PMMA). We analyzed the effect of the outer layer polymer, polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), on MN morphology and performance. Hybrid MNs produced with 30 wt% PVA contain a highly drug-loaded outer shell allowing for the incorporation of VAN concentrations up to 100 mg g-1 and temperature increases up to 60 °C under near-IR irradiation while showing sufficient mechanical strength for skin insertion. Furthermore, we studied the combinatorial effect of VAN and heat on the growth inhibition of methicillin-resistant Staphylococcus aureus (MRSA) showing synergistic inhibition between VAN and heat above 55 °C for 10 min. Finally, we show that treatment with hybrid MN arrays can inhibit the growth of MRSA due to the synergistic interaction of heat with VAN reducing the bacterial survival by up to 80%. This proof-of-concept study demonstrates the potential of hybrid, two-layered MN arrays as a novel treatment option for MRSA-associated skin infections.
Collapse
Affiliation(s)
- Jill Ziesmer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Justina Venckute Larsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Georgios A. Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
55
|
Geoghegan N, O'Loughlin M, Delaney C, Rochfort KD, Kennedy M, Kolagatla S, Podhorska L, Rodriguez BJ, Florea L, Kelleher SM. Controlled degradation of polycaprolactone-based micropillar arrays. Biomater Sci 2023; 11:3077-3091. [PMID: 36876330 PMCID: PMC10152922 DOI: 10.1039/d3bm00165b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Herein we demonstrate the fabrication of arrays of micropillars, achieved through the combination of direct laser writing and nanoimprint lithography. By combining two diacrylate monomers, polycaprolactone dimethacrylate (PCLDMA) and 1,6-hexanediol diacrylate (HDDA), two copolymer formulations that, owing to the varying ratios of the hydrolysable ester functionalities present in the polycaprolactone moiety, can be degraded in the presence of base in a controllable manner. As such, the degradation of the micropillars can be tuned over several days as a function of PCLDMA concentration within the copolymer formulations, and the topography greatly varied over a short space of time, as visualised using scanning electron microscopy and atomic force microscopy. Crosslinked neat HDDA was used as a control material, demonstrating that the presence of the PCL was responsible for the ability of the microstructures to degrade in the controlled manner. In addition, the mass loss of the crosslinked materials was minimal, demonstrating the degradation of microstructured surfaces without loss of bulk properties was possible. Moreover, the compatibility of these crosslinked materials with mammalian cells was explored. The influence of both indirect and direct contact of the materials with A549 cells was assessed by profiling indices reflective of cytotoxicity such as morphology, adhesion, metabolic activity, oxidative balance, and release of injury markers. No significant changes in the aforementioned profile were observed in the cells cultured under these conditions for up to 72 h, with the cell-material interaction suggesting these materials may have potential in microfabrication contexts towards biomedical application purposes.
Collapse
Affiliation(s)
- Niamh Geoghegan
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland. .,CURAM, Science Foundation Ireland Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Mark O'Loughlin
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Colm Delaney
- School of Chemistry and AMBER, the SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, the University of Dublin, College Green, Dublin 2, Ireland
| | - Keith D Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Meabh Kennedy
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Srikanth Kolagatla
- School of Chemistry and AMBER, the SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, the University of Dublin, College Green, Dublin 2, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lucia Podhorska
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Brian J Rodriguez
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Larisa Florea
- School of Chemistry and AMBER, the SFI Research Centre for Advanced Materials and BioEngineering Research, Trinity College Dublin, the University of Dublin, College Green, Dublin 2, Ireland
| | - Susan M Kelleher
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland. .,CURAM, Science Foundation Ireland Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.,School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
56
|
Žigrayová D, Mikušová V, Mikuš P. Advances in Antiviral Delivery Systems and Chitosan-Based Polymeric and Nanoparticulate Antivirals and Antiviral Carriers. Viruses 2023; 15:647. [PMID: 36992356 PMCID: PMC10054433 DOI: 10.3390/v15030647] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Current antiviral therapy research is focused on developing dosage forms that enable highly effective drug delivery, providing a selective effect in the organism, lower risk of adverse effects, a lower dose of active pharmaceutical ingredients, and minimal toxicity. In this article, antiviral drugs and the mechanisms of their action are summarized at the beginning as a prerequisite background to develop relevant drug delivery/carrier systems for them, classified and briefly discussed subsequently. Many of the recent studies aim at different types of synthetic, semisynthetic, and natural polymers serving as a favorable matrix for the antiviral drug carrier. Besides a wider view of different antiviral delivery systems, this review focuses on advances in antiviral drug delivery systems based on chitosan (CS) and derivatized CS carriers. CS and its derivatives are evaluated concerning methods of their preparation, their basic characteristics and properties, approaches to the incorporation of an antiviral drug in the CS polymer as well as CS nanoparticulate systems, and their recent biomedical applications in the context of actual antiviral therapy. The degree of development (i.e., research study, in vitro/ex vivo/in vivo preclinical testing), as well as benefits and limitations of CS polymer and CS nanoparticulate drug delivery systems, are reported for particular viral diseases and corresponding antivirotics.
Collapse
Affiliation(s)
- Dominika Žigrayová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Veronika Mikušová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
57
|
Nguyen HX, Nguyen CN. Microneedle-Mediated Transdermal Delivery of Biopharmaceuticals. Pharmaceutics 2023; 15:277. [PMID: 36678906 PMCID: PMC9864466 DOI: 10.3390/pharmaceutics15010277] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Transdermal delivery provides numerous benefits over conventional routes of administration. However, this strategy is generally limited to a few molecules with specific physicochemical properties (low molecular weight, high potency, and moderate lipophilicity) due to the barrier function of the stratum corneum layer. Researchers have developed several physical enhancement techniques to expand the applications of the transdermal field; among these, microneedle technology has recently emerged as a promising platform to deliver therapeutic agents of any size into and across the skin. Typically, hydrophilic biomolecules cannot penetrate the skin by passive diffusion. Microneedle insertion disrupts skin integrity and compromises its protective function, thus creating pathways (microchannels) for enhanced permeation of macromolecules. Microneedles not only improve stability but also enhance skin delivery of various biomolecules. Academic institutions and industrial companies have invested substantial resources in the development of microneedle systems for biopharmaceutical delivery. This review article summarizes the most recent research to provide a comprehensive discussion about microneedle-mediated delivery of macromolecules, covering various topics from the introduction of the skin, transdermal delivery, microneedles, and biopharmaceuticals (current status, conventional administration, and stability issues), to different microneedle types, clinical trials, safety and acceptability of microneedles, manufacturing and regulatory issues, and the future of microneedle technology.
Collapse
Affiliation(s)
- Hiep X. Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Chien N. Nguyen
- National Institute of Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
- Faculty of Pharmaceutics and Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
| |
Collapse
|
58
|
Formulation Development of Fast Dissolving Microneedles Loaded with Cubosomes of Febuxostat: In Vitro and In Vivo Evaluation. Pharmaceutics 2023; 15:pharmaceutics15010224. [PMID: 36678853 PMCID: PMC9863705 DOI: 10.3390/pharmaceutics15010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Febuxostat is a widely prescribed drug for the treatment of gout, which is a highly prevalent disease worldwide and is a major cause of disability in mankind. Febuxostat suffers from several limitations such as gastrointestinal disturbances and low oral bioavailability. Thus, to improve patient compliance and bioavailability, transdermal drug delivery systems of Febuxostat were developed for obtaining enhanced permeation. Cubosomes of Febuxostat were prepared using a bottom-up approach and loaded into a microneedle using a micromolding technique to achieve better permeation through the skin. Optimization of the process and formulation parameters were achieved using our design of experiments. The optimized cubosomes of Febuxostat were characterized for various parameters such as % entrapment efficiency, vesicle size, Polydispersity index, Transmission electron microscopy, in vitro drug release, Small angle X-ray scattering, etc. After loading it in the microneedle it was characterized for dissolution time, axial fracture force, scanning electron microscopy, in vitro drug release, pore closure kinetics, etc. It was also evaluated for various ex vivo characterizations such as in vitro cell viability, ex vivo permeation, ex vivo fluorescence microscopy and histopathology which indicates its safety and better permeation. In vivo pharmacokinetic studies proved enhanced bioavailability compared with the marketed formulation. Pharmacodynamic study indicated its effectiveness in a disease-induced rat model. The developed formulations were then subjected to the stability study, which proved its stability.
Collapse
|
59
|
Singh P, Youden B, Carrier A, Oakes K, Servos M, Jiang R, Lin S, Nguyen TD, Zhang X. Photoresponsive polymeric microneedles: An innovative way to monitor and treat diseases. J Control Release 2023; 353:1050-1067. [PMID: 36549390 DOI: 10.1016/j.jconrel.2022.12.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Microneedles (MN) technology is an emerging technology for the transdermal delivery of therapeutics. When combined with photoresponsive (PR) materials, MNs can deliver therapeutics precisely and effectively with enhanced efficacy or synergistic effects. This review systematically summarizes the therapeutic applications of PRMNs in cancer therapy, wound healing, diabetes treatment, and diagnostics. Different PR approaches to activate and control the release of therapeutic agents from MNs are also discussed. Overall, PRMNs are a powerful tool for stimuli-responsive controlled-release therapeutic delivery to treat various diseases.
Collapse
Affiliation(s)
- Parbeen Singh
- Department of Mechanical Engineering, University of Connecticut, United States; School of Food and Drug, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Brian Youden
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada; Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Andrew Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Ken Oakes
- Department of Biology, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Sujing Lin
- School of Food and Drug, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Thanh D Nguyen
- Department of Mechanical Engineering, University of Connecticut, United States.
| | - Xu Zhang
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada.
| |
Collapse
|
60
|
Choo JJY, McMillan CLD, Young PR, Muller DA. Microarray patches: scratching the surface of vaccine delivery. Expert Rev Vaccines 2023; 22:937-955. [PMID: 37846657 DOI: 10.1080/14760584.2023.2270598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Microneedles are emerging as a promising technology for vaccine delivery, with numerous advantages over traditional needle and syringe methods. Preclinical studies have demonstrated the effectiveness of MAPs in inducing robust immune responses over traditional needle and syringe methods, with extensive studies using vaccines targeted against different pathogens in various animal models. Critically, the clinical trials have demonstrated safety, immunogenicity, and patient acceptance for MAP-based vaccines against influenza, measles, rubella, and SARS-CoV-2. AREAS COVERED This review provides a comprehensive overview of the different types of microarray patches (MAPs) and analyses of their applications in preclinical and clinical vaccine delivery settings. This review also covers additional considerations for microneedle-based vaccination, including adjuvants that are compatible with MAPs, patient safety and factors for global vaccination campaigns. EXPERT OPINION MAP vaccine delivery can potentially be a game-changer for vaccine distribution and coverage in both high-income and low- and middle-income countries. For MAPs to reach this full potential, many critical hurdles must be overcome, such as large-scale production, regulatory compliance, and adoption by global health authorities. However, given the considerable strides made in recent years by MAP developers, it may be possible to see the first MAP-based vaccines in use within the next 5 years.
Collapse
Affiliation(s)
- Jovin J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
61
|
Pan P, Liu Q, Wang L, Wang C, Hu L, Jiang Y, Deng Y, Li G, Chen J. Recent Advances in Multifunctional Microneedle Patches for Wound Healing and Health Monitoring. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Panpan Pan
- Marine College Shandong University Weihai 264209 China
| | - Qing Liu
- Marine College Shandong University Weihai 264209 China
| | - Lin Wang
- Marine College Shandong University Weihai 264209 China
| | - Chunxiao Wang
- Marine College Shandong University Weihai 264209 China
| | - Le Hu
- Marine College Shandong University Weihai 264209 China
| | - Yongjian Jiang
- Department of Pancreatic Surgery, Nephrology and Radiology Huashan Hospital Fudan University Shanghai 200040 China
| | - Yonghui Deng
- Department of Chemistry Department of Gastroenterology Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fudan University Shanghai 200433 China
- School of Materials Science and Engineering Nanchang Hangkong University Nanchang 330063 China
| | - Guisheng Li
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jingdi Chen
- Marine College Shandong University Weihai 264209 China
| |
Collapse
|
62
|
Mangang KN, Thakran P, Halder J, Yadav KS, Ghosh G, Pradhan D, Rath G, Rai VK. PVP-microneedle array for drug delivery: mechanical insight, biodegradation, and recent advances. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 34:986-1017. [PMID: 36541167 DOI: 10.1080/09205063.2022.2155778] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microneedle arrays are micron-sized needles usually attached to a supporting base or patch facilitated drug delivery for systemic effects. Polyvinylpyrrolidone (PVP) is a lactam polymer containing an internal amide linkage. Because of its versatility and biocompatibility, it has been widely utilized to treat several skin, bone and eye problems. Due to its specific and unique properties, the researchers realize its utility as a polymer of tremendous potential. PVP-based dissolvable microneedles have widely been utilized as a carrier for delivering DNAs, proteins, vitamins, and several biological macromolecules transdermally. However, it does not get biodegraded into the body. Therefore, the presence of its fragments in the body post-treatment needs proper justification. The adequate justification for the fate of the fragment's end products in the body will allow even better utilization of PVP. This review analyses and illustrates various experimental findings to highlight the most recent advancements and applications of PVP microneedles in drug delivery systems and cosmetology and the potential for PVP microneedles in treating dermal and systemic disorders. This review presents the expected mode of PVP biodegradation in aqueous and soil environments as a waste material, its inertness, biocompatibility, and the importance of PVP as a fabricating material, pharmaceutical uses, and non-toxic profile.
Collapse
Affiliation(s)
- Keisham Nelson Mangang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India.,Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, UP, India
| | - Pragati Thakran
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Jitu Halder
- School of Pharmaceutical Science, Siksa 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | | | - Goutam Ghosh
- School of Pharmaceutical Science, Siksa 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Deepak Pradhan
- School of Pharmaceutical Science, Siksa 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Science, Siksa 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Science, Siksa 'O' Anusandhan University, Bhubaneswar, Odisha, India
| |
Collapse
|
63
|
Sargioti N, Levingstone TJ, O’Cearbhaill ED, McCarthy HO, Dunne NJ. Metallic Microneedles for Transdermal Drug Delivery: Applications, Fabrication Techniques and the Effect of Geometrical Characteristics. Bioengineering (Basel) 2022; 10:24. [PMID: 36671595 PMCID: PMC9855189 DOI: 10.3390/bioengineering10010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Current procedures for transdermal drug delivery (TDD) have associated limitations including poor administration of nucleic acid, small or large drug molecules, pain and stress for needle phobic people. A painless micro-sized device capable of delivering drugs easily and efficiently, eliminating the disadvantages of traditional systems, has yet to be developed. While polymeric-based microneedle (MN) arrays have been used successfully and clinically as TDD systems, these devices lack mechanical integrity, piercing capacity and the ability to achieve tailored drug release into the systemic circulation. Recent advances in micro/nano fabrication techniques using Additive Manufacturing (AM), also known as 3D printing, have enabled the fabrication of metallic MN arrays, which offer the potential to overcome the limitations of existing systems. This review summarizes the different types of MNs used in TDD and their mode of drug delivery. The application of MNs in the treatment of a range of diseases including diabetes and cancer is discussed. The potential role of solid metallic MNs in TDD, the various techniques used for their fabrication, and the influence of their geometrical characteristics (e.g., shape, size, base diameter, thickness, and tip sharpness) on effective TDD are explored. Finally, the potential and the future directions relating to the optimization of metallic MN arrays for TDD are highlighted.
Collapse
Affiliation(s)
- Nikoletta Sargioti
- School of Mechanical and Manufacturing Engineering, Dublin City University, Collins Avenue, D09 Y074 Dublin, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, D09 Y074 Dublin, Ireland
- UCD Centre for Biomedical Engineering, School of Mechanical and Materials Engineering, University College Dublin, D04 R7R0 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland
| | - Tanya J. Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Collins Avenue, D09 Y074 Dublin, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, D09 Y074 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 Y074 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 Y074 Dublin, Ireland
| | - Eoin D. O’Cearbhaill
- UCD Centre for Biomedical Engineering, School of Mechanical and Materials Engineering, University College Dublin, D04 R7R0 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland
| | - Helen O. McCarthy
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
- School of Chemical Science, Dublin City University, D09 Y074 Dublin, Ireland
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Collins Avenue, D09 Y074 Dublin, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, D09 Y074 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 Y074 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 Y074 Dublin, Ireland
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
- School of Chemical Science, Dublin City University, D09 Y074 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
64
|
Bayoumi SA, Dawaba AM, Mansour A, Zalat ZA, Ammar AA. Ectoine gel transdermal formulation as a novel therapeutic approach in melanoma using 3D printed microneedles. Pharm Dev Technol 2022; 27:1110-1124. [PMID: 36458575 DOI: 10.1080/10837450.2022.2154789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
A 7%w/w ectoine formula, from natural source, is formulated to reduce melanomagenesis, enhance penetration by 3D printed microneedles (MNs), with specified length, diameter and tip to ensure painless effect. Ectoine gel formulations were prepared using Carbopol 940 and Pluronic (F127). The effect of the polymers on pH, viscosity, spreadability, and the in vitro, ex vivo release profiles was obtained. The physiochemical investigation showed uniform gel formulations. The formulations' in vitro and ex vivo drug release displayed a controllable drug release pattern, reaching 63.7-96% and 73-94.7% after 24 h. The permeation study of the in vitro and ex vivo release revealed that the drug release from gels followed diffusion mechanism. The selected formula was used, 3D printed MN array was applied to treat melanoma. Male rats were used for induction of melanoma using 0.5% of 7,12-dimethylbenz[a]anthracene three times weekly for 12 weeks, histopathology was applied to ensure development of carcinoma then rats were treated using the selected formula. Following treatment for continuous 6 weeks, histopathology showed a change in anatomy of skin, which started to return to its normal structure. The anti-melanogenesis activity of optimum formula of ectoine gel, enhanced by 3D printed MN, was found to be effective in reducing the severity of skin cancer reinforcing the efficacy of the promising treatment.
Collapse
Affiliation(s)
- Sammar A Bayoumi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Aya M Dawaba
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Girls), Al Azhar University, Cairo, Egypt
| | - Ahmed Mansour
- Department of Pharmacology, Faculty of Pharmacy (Boys), Al Azhar University, Cairo, Egypt
| | - Zeinab AlKasaby Zalat
- Department of Clinical Pharmacy, Faculty of Pharmacy (Girls), Al Azhar University, Cairo, Egypt
| | - Amal A Ammar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Girls), Al Azhar University, Cairo, Egypt
| |
Collapse
|
65
|
Flexible polymeric patch based nanotherapeutics against non-cancer therapy. Bioact Mater 2022; 18:471-491. [PMID: 35415299 PMCID: PMC8971585 DOI: 10.1016/j.bioactmat.2022.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Flexible polymeric patches find widespread applications in biomedicine because of their biological and tunable features including excellent patient compliance, superior biocompatibility and biodegradation, as well as high loading capability and permeability of drug. Such polymeric patches are classified into microneedles (MNs), hydrogel, microcapsule, microsphere and fiber depending on the formed morphology. The combination of nanomaterials with polymeric patches allows for improved advantages of increased curative efficacy and lowered systemic toxicity, promoting on-demand and regulated drug administration, thus providing the great potential to their clinic translation. In this review, the category of flexible polymeric patches that are utilized to integrate with nanomaterials is briefly presented and their advantages in bioapplications are further discussed. The applications of nanomaterials embedded polymeric patches in non-cancerous diseases were also systematically reviewed, including diabetes therapy, wound healing, dermatological disease therapy, bone regeneration, cardiac repair, hair repair, obesity therapy and some immune disease therapy. Alternatively, the limitations, latest challenges and future perspectives of such biomedical therapeutic devices are addressed. The most explored polymeric patches, such as microneedle, hydrogel, microsphere, microcapsule, and fiber are summarized. Polymeric patches integrated with a diversity of nanomaterials are systematically overviewed in non-cancer therapy. The future prospective for the development of polymeric patch based nanotherapeutics is discussed.
Collapse
|
66
|
Microneedle arrays for cutaneous and transcutaneous drug delivery, disease diagnosis, and cosmetic aid. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
67
|
Matadh AV, Jakka D, Pragathi SG, Rangappa S, Shivakumar HN, Maibach H, Reena NM, Murthy SN. Polymer-Coated Polymeric (PCP) Microneedles for Controlled Dermal Delivery of 5-Fluorouracil. AAPS PharmSciTech 2022; 24:9. [PMID: 36450897 DOI: 10.1208/s12249-022-02471-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Polymeric microneedles were prepared with Polyvinyl Pyrrolidone (PVP) K-30 using the mold casting technique. The core microneedles were coated with Eudragit E-100 by dip and spin method. The amount of 5-fluorouracil (FU) loaded in the core microneedles was 604 ± 35.4 µg. The coating thickness was 24.12 ± 1.12 µm. The objective was to deliver the 5-FU gradually in a controlled release manner at the target site in the sub-stratum corneum layer. This approach is anticipated to improve the safety and efficacy of topical melanoma treatment. The release of the drug was prolonged for up to 3 h from the polymer-coated polymeric (PCP) microneedles. The entire amount was found to release within 15 min in uncoated MNs. Likewise, the permeation of the drug from the uncoated microneedles was rapid, whereas the PCP microneedles were able to prolong the permeation up to 420 min. The PCP microneedles were subjected to stability studies at 25°C ± 2°C/60%RH, and 40°C ± 2°C/75%RH condition for 3 months. The formulations were found intact, and the release rate was not significantly different form the fresh formulation. The drug content was found to meet the acceptability criteria as well (98.12 ± 1.8% and 97.8 ± 2.1% at 25 and 40°C respectively after 3 months). Overall, this study demonstrated the feasibility of fabrication of PCP microneedles using Eudragit E100 for intraregional controlled delivery of drugs.
Collapse
Affiliation(s)
- Anusha V Matadh
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India
| | | | - S G Pragathi
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India
| | | | - H N Shivakumar
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India.,KLE College of Pharmacy, Bengaluru, India
| | - Howard Maibach
- University of California, San Francisco, California, USA
| | - N M Reena
- Topical Products Testing LLC, Oxford, Mississippi, USA
| | - S Narasimha Murthy
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India. .,Topical Products Testing LLC, Oxford, Mississippi, USA.
| |
Collapse
|
68
|
Permana AD, Elim D, Ananda PWR, Zaman HS, Muslimin W, Tunggeng MGR. Enhanced and sustained transdermal delivery of primaquine from polymeric thermoresponsive hydrogels in combination with Dermarollers®. Colloids Surf B Biointerfaces 2022; 219:112805. [PMID: 36063720 DOI: 10.1016/j.colsurfb.2022.112805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
Primaquine (PMQ) is an effective antimalaria drug with several limitations. We report the combinatorial approach of thermoresponsive hydrogels and Dermarollers® for transdermal delivery of PMQ to overcome these limitations. The hydrogels were prepared using Pluronic F127 (PF127) and F68 (PF68). Specifically, HPMC was added into the formulation to improve the bioadhesive properties. Numerous formulations were prepared, showing that formulation comprising 15 % PF127, 3 % PF68 and 0.4 % HPMC with 1 % PMQ was selected as the optimum formulation. The formulation showed the gelation temperature around 35 °C with bioadhesive strength of 26.43 ± 2.31 dyne.cm2. Importantly, the pH of the formulation was suitable for skin application with the percentage of PMQ recovery of 99.57 ± 3.23 %. Moreover, the hydrogels exhibited free-flow liquid at storage and room temperature and high viscosities in the skin temperature. In vitro release experiments showed that the release of PMQ was sustained for 24 h. Evaluated in extensive ex vivo studies, the treatment with Dermarollers® improved the skin permeation and retention of PMQ for 3 days. In combination with Dermarollers®, the ex vivo permeation of PMQ was sustained and the localization of PMQ in the skin was improved over 72 h.
Collapse
Affiliation(s)
- Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| | - Diany Elim
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | | | | |
Collapse
|
69
|
Agrahari V, Anderson SM, Peet MM, Wong AP, Singh ON, Doncel GF, Clark MR. Long-acting HIV Pre-exposure Prophylaxis (PrEP) approaches: Recent advances, emerging technologies and development challenges. Expert Opin Drug Deliv 2022; 19:1365-1380. [PMID: 36252277 PMCID: PMC9639748 DOI: 10.1080/17425247.2022.2135699] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Introduction: Poor or inconsistent adherence to daily oral pre-exposure prophylaxis (PrEP) has emerged as a key barrier to effective HIV prevention. The advent of potent long-acting (LA) antiretrovirals (ARVs) in conjunction with advances in controlled release technologies has enabled LA ARV drug delivery systems (DDS) capable of providing extended dosing intervals and overcome the challenge of suboptimal drug adherence with daily oral dosing. Areas covered: This review discusses the current state of the LA PrEP field, recent advances, and emerging technologies, including ARV prodrug modifications and new DDS. Technological challenges, knowledge gaps, preclinical testing considerations, and future directions important in the context of clinical translation and implementation of LA HIV PrEP are discussed. Expert opinion: The HIV prevention field is evolving faster than ever and the bar for developing next-generation LA HIV prevention options continues to rise. The requirements for viable LA PrEP products to be implemented in resource-limited settings are challenging, necessitating proactive consideration and product modifications during the design and testing of promising new candidates. If successfully translated, next-generation LA PrEP that are safe, affordable, highly effective, and accepted by both end-users and key stakeholders will offer significant potential to curb the HIV pandemic.
Collapse
Affiliation(s)
- Vivek Agrahari
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | | | | | - Andrew P. Wong
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Onkar N. Singh
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | | | | |
Collapse
|
70
|
Naveen NR, Girirajasekhar D, Goudanavar PS, Kumar CB, Narasimha GL. Prospection of Microfluidics for Local Drug Delivery. Curr Drug Targets 2022; 23:1239-1251. [PMID: 35379132 DOI: 10.2174/1389450123666220404154710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/03/2022] [Accepted: 02/10/2022] [Indexed: 01/25/2023]
Abstract
Significant endeavors can be made to develop effective drug delivery systems. Nowadays, many of these novel systems have gained attention as they focus primarily on increasing the bioavailability and bioaccessibility of several drugs to finally minimize the side effects, thus improving the treatment's efficacy. Microfluidics systems are unquestionably a superior technology, which is currently revolutionizing the current chemical and biological studies, providing diminutive chip-scale devices that offer precise dosage, target-precise delivery, and controlled release. Microfluidic systems have emerged as a promising delivery vehicle owing to their potential for defined handling and transporting of small liquid quantities. The latest microfabrication developments have been made for application to several biological systems. Here, we review the fundamentals of microfluidics and their application for local drug delivery.
Collapse
Affiliation(s)
- Nimbagal R Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka 571448, India
| | | | - Prakash S Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka 571448, India
| | - Chagaleti B Kumar
- Department of Pharmaceutical Chemistry, Akshaya Institute of Pharmacy, Lingapura, Tumkur, Karnataka 572106, India
| | - Gunturu L Narasimha
- Department of Pharmacy Practice, Annamacharya College of Pharmacy, New Boyanapalli, Rajampet, India
| |
Collapse
|
71
|
Liu X, Sun S, Wang N, Kang R, Xie L, Liu X. Therapeutic application of hydrogels for bone-related diseases. Front Bioeng Biotechnol 2022; 10:998988. [PMID: 36172014 PMCID: PMC9510597 DOI: 10.3389/fbioe.2022.998988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 01/15/2023] Open
Abstract
Bone-related diseases caused by trauma, infection, and aging affect people’s health and quality of life. The prevalence of bone-related diseases has been increasing yearly in recent years. Mild bone diseases can still be treated with conservative drugs and can be cured confidently. However, serious bone injuries caused by large-scale trauma, fractures, bone tumors, and other diseases are challenging to heal on their own. Open surgery must be used for intervention. The treatment method also faces the problems of a long cycle, high cost, and serious side effects. Studies have found that hydrogels have attracted much attention due to their good biocompatibility and biodegradability and show great potential in treating bone-related diseases. This paper mainly introduces the properties and preparation methods of hydrogels, reviews the application of hydrogels in bone-related diseases (including bone defects, bone fracture, cartilage injuries, and osteosarcoma) in recent years. We also put forward suggestions according to the current development status, pointing out a new direction for developing high-performance hydrogels more suitable for bone-related diseases.
Collapse
Affiliation(s)
- Xiyu Liu
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Shuoshuo Sun
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Nan Wang
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Ran Kang
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Ran Kang, ; Lin Xie, ; Xin Liu,
| | - Lin Xie
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Ran Kang, ; Lin Xie, ; Xin Liu,
| | - Xin Liu
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Ran Kang, ; Lin Xie, ; Xin Liu,
| |
Collapse
|
72
|
Karim Z, Karwa P, Hiremath SRR. Polymeric microneedles for transdermal drug delivery- a review of recent studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
73
|
Yu Y, Wang H, Guo B, Wang B, Wan Z, Zhang Y, Sun L, Yang F. Microneedle-based two-step transdermal delivery of Langerhans cell-targeting immunoliposomes induces a Th1-biased immune response. Eur J Pharm Biopharm 2022; 177:68-80. [PMID: 35716853 PMCID: PMC9197786 DOI: 10.1016/j.ejpb.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/04/2022] [Accepted: 06/12/2022] [Indexed: 11/04/2022]
Abstract
Novel Coronavirus is affecting human's life globally and vaccines are one of the most effective ways to combat the epidemic. Transcutaneous immunization based on microneedle (MN) has attracted much attention because of its painlessness, rapidity, high efficiency and good compliance. In this study, CD11c monoclonal antibody-immunoliposomes (OVA@CD11c-ILP) actively targeting to Langerhans cells (LCs) were successfully prepared and were delivered by the microchannels of skin produced by MN to induce an immune response in vivo. OVA@CD11c-ILP could be targeted to LCs by conjugating CD11c monoclonal antibody to the surface of the ILP. OVA@CD11c-ILP promoted the maturation of dendritic cells (DCs) and the uptake and endocytosis of antigen by LCs. Moreover, OVA@CD11c-ILP immunization can significantly inhibit tumor growth and prolong overall survival. Furthermore, a higher antibody's titer ratio of IgG1/IgG2a indicated that the immune response stimulated by this immunization method was Th1-biased and the liposomes showed Th1-type adjuvant effect. In conclusion, the combination delivery system of immunoliposomes and microneedle can significantly improve the efficiency of antigen presentation and effectively activate cellular immune responses in the body, which is expected to be a promising transdermal immune strategy.
Collapse
Affiliation(s)
- Yingjie Yu
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Huan Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Beibei Guo
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Bingkai Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Zhan Wan
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Yunchang Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Linhong Sun
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Feng Yang
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
74
|
Recent advances in microneedle designs and their applications in drug and cosmeceutical delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
75
|
Cao J, Liu Y, Qi Z, Tao X, Kundu SC, Lu S. Sustained release of insulin from silk microneedles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103611] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
76
|
Jiang D, Jiang Y, Wang K, Wang Z, Pei Y, Wu J, He C, Mo X, Wang H. Binary ethosomes-based transdermal patches assisted by metal microneedles significantly improve the bioavailability of carvedilol. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
77
|
Khan S, Minhas MU, Singh Thakur RR, Aqeel MT. Microneedles Assisted Controlled and Improved Transdermal Delivery of High Molecular Drugs via Insitu Forming Depot Thermoresponsive Poloxamers Gels in Skin Microchannels. Drug Dev Ind Pharm 2022; 48:265-278. [PMID: 35899871 DOI: 10.1080/03639045.2022.2107662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Skin considered as an attractive route for variety of drug molecules administration. However it proved to be the main physical barrier for drug flux owing to their poor permeability and low bioavailability across stratum corneum layer. In current study novel approach has been used to enhance transdermal delivery via microporation through combination of poloxamers gels and microneedles arrays. The phase transition of poloxamers at various concentrations from sol-gel was evaluated using AR2000 rheometer to confirm microneedles-assisted insitu forming depots. Temperature test confirmed gelation between 32-37 °C. Curcumin was loaded in poloxamer formulations at variable concentrations and its effect showed reduction in critical gelation temperature (CGT) owing to its hydrophobic nature. Microneedles (MNs) arrays (600 µm) prepared from Gantrez S-97, PEG 10000 and Gelatin B using (19 × 19) laser-engineered silicone micromoulds showed high mechanical stability investigated via Texture analyzer. From insitu dissolution profile Gelatin 15% w/w based MNs displayed quicker dissolution rate in comparison to PG10000. VivoSight® OCT scanner and dye tracking confirmed that PG10000 MNs arrays pierced SC layer, infiltrate the epidermis and goes to dermis layer. From invitro permeation, it was concluded that 20% w/w PF127® gel formulations containing (0.1% and 0.3%) curcumin displayed high curcumin permeation for comparatively longer time through microporated skin samples in comparison to non-microporated skin. The curcumin distribution in skin tissues with higher florescence intensity was noted in MNs treated skin samples by confocal microscopy. FTIR confirmed the structure formation of fabricated MNs, while TGA showed dry, brittle and rigid nature of Gelatin MNs.
Collapse
Affiliation(s)
- Samiullah Khan
- Margalla College of Pharmacy, Margalla Institute of Health Sciences, Rawalpindi, Pakistan
| | | | | | - Muhammad Tahir Aqeel
- Margalla College of Pharmacy, Margalla Institute of Health Sciences, Rawalpindi, Pakistan
| |
Collapse
|
78
|
Chandran R, Mohd Tohit ER, Stanslas J, Salim N, Tuan Mahmood TM. Investigation and Optimization of Hydrogel Microneedles for Transdermal Delivery of Caffeine. Tissue Eng Part C Methods 2022; 28:545-556. [PMID: 35485888 DOI: 10.1089/ten.tec.2022.0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Caffeine is therapeutically effective for treating apnea, cellulite formation, and pain management. It also exhibits neuroprotective and antioxidant activities in different models of Parkinson's disease and Alzheimer's disease. However, caffeine administration in a minimally invasive and sustainable manner through the transdermal route is challenging owing to its hydrophilic nature. Therefore, this study demonstrated a transdermal delivery approach for caffeine by utilizing hydrogel microneedle (MN) as a permeation enhancer. The influence of formulation parameters such as molecular weight (MW) of PMVE/MA (polymethyl vinyl ether/maleic anhydride) copolymer and sodium bicarbonate (NaHCO3) concentration on the swelling kinetics and mechanical integrity of the hydrogel MNs was investigated. In addition, the effect of different MN application methods and needle densities of hydrogel MN on the skin insertion efficiency and penetration depth was also evaluated. The swelling degree at equilibrium percentage (% Seq) recorded for hydrogels fabricated with Gantrez S-97 (MW = 1,500,000 Da) was significantly higher than formulation with Gantrez AN-139 (MW = 1,080,000 Da). Increasing the concentration of NaHCO3 also significantly increased the % Seq. Moreover, a 100% penetration was recorded for both the applicator and combination of applicator and thumb pressure compared with only 11% for thumb pressure alone. The average diameter of micropores created by the applicator method was 62.94 μm, which was significantly lower than the combination of both applicator and thumb pressure MN application (100.53 μm). Based on histological imaging, the penetration depth of hydrogel MN increased as the MN density per array decreased. The hydrogel MN with the optimized formulation and skin insertion parameters was tested for caffeine delivery in an in vitro Franz diffusion cell setup. Approximately 2.9 mg of caffeine was delivered within 24 h, and the drug release profile was best fitted to the Korsmeyer-Peppas model, displaying Super Case II kinetics. In conclusion, a combination of thumb and impact application methods and reduced needle density improved the skin penetration efficiency of hydrogel MNs. The results also show that hydrogel MNs fabricated from 3% w/w NaHCO3 and high MW of copolymer exhibit optimum physical and swelling properties for enhanced transdermal delivery.
Collapse
Affiliation(s)
- Rubhan Chandran
- Haematology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Eusni Rahayu Mohd Tohit
- Haematology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Norazlinaliza Salim
- Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia.,Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Tuan Mazlelaa Tuan Mahmood
- Faculty of Pharmacy, The National University of Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| |
Collapse
|
79
|
Aykaç K, Başaran E. Formulation and Characterization of Lacosamide-loaded Polymeric Microneedles. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2022; 7:61-75. [DOI: 10.14218/jerp.2021.00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
80
|
Holman M, Tijani A, Klein J, Frempong D, Dinh S, Puri A. Penetration Enhancement Strategies for Intradermal Delivery of Cromolyn Sodium. AAPS PharmSciTech 2022; 23:171. [PMID: 35739411 DOI: 10.1208/s12249-022-02328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
This study aimed to explore the use of chemical and physical enhancement strategies for the intradermal delivery of cromolyn sodium (CS) for treatment of atopic dermatitis. CS gels were formulated to individually contain 2.5 and 9% salcaprozate sodium (SNAC) as a potential chemical enhancer. The effect of microneedles, alone and in combination with SNAC, was investigated via in vitro permeation studies. Skin impedance and FTIR evaluation of SNAC-treated stratum corneum (SC) was done and compared to the control. The amount of drug delivered in the dermis after 24 h by the 2.5% and 9% SNAC gels was 23.29 ± 1.89 µg/cm2 and 35.87 ± 2.23 µg/cm2, respectively, which were significantly higher than the control (p < 0.05) but were not remarkably different from each other (p > 0.05). Microneedles enhanced permeation in both the control and 2.5% SNAC groups (p < 0.05); however, no synergistic enhancement was observed when microneedle and SNAC treatments were combined (p > 0.05). Over 24 h of treating the SC with 2.5% SNAC, FTIR evaluation showed stretches on the CH2 asymmetric and symmetric stretching vibrations observed at 2920.23 cm-1 and 2850.79 cm-1 respectively in untreated SC, which shifted to higher wavenumbers and indicated some lipid fluidizing effect. However, no significant drop in skin impedance was seen with SNAC as compared to the control (p > 0.05). SNAC was concluded to have skin permeation enhancement effect on CS, while microneedles effectively enhanced CS permeation even in the absence of SNAC.
Collapse
Affiliation(s)
- Miranda Holman
- Department of Biological Sciences, College of Arts and Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Akeemat Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| | - Jeffrey Klein
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| | - Dorcas Frempong
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA
| | - Steven Dinh
- College of Arts, Sciences, and Education, Florida International University, Miami, FL, USA
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN, USA.
| |
Collapse
|
81
|
Babaie S, Taghvimi A, Hong JH, Hamishehkar H, An S, Kim KH. Recent advances in pain management based on nanoparticle technologies. J Nanobiotechnology 2022; 20:290. [PMID: 35717383 PMCID: PMC9206757 DOI: 10.1186/s12951-022-01473-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pain is a vital sense that indicates the risk of injury at a particular body part. Successful control of pain is the principal aspect in medical treatment. In recent years, the advances of nanotechnology in pain management have been remarkable. In this review, we focus on literature and published data that reveal various applications of nanotechnology in acute and chronic pain management. METHODS The presented content is based on information collected through pain management publications (227 articles up to April 2021) provided by Web of Science, PubMed, Scopus and Google Scholar services. RESULTS A comprehensive study of the articles revealed that nanotechnology-based drug delivery has provided acceptable results in pain control, limiting the side effects and increasing the efficacy of analgesic drugs. Besides the ability of nanotechnology to deliver drugs, sophisticated nanosystems have been designed to enhance imaging and diagnostics, which help in rapid diagnosis of diseases and have a significant impact on controlling pain. Furthermore, with the development of various tools, nanotechnology can accurately measure pain and use these measurements to display the efficiency of different interventions. CONCLUSIONS Nanotechnology has started a new era in the pain management and many promising results have been achieved in this regard. Nevertheless, there is still no substantial and adequate act of nanotechnology in this field. Therefore, efforts should be directed to broad investigations.
Collapse
Affiliation(s)
- Soraya Babaie
- Physical Medicine and Rehabilitation Research Center and Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Taghvimi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Joo-Hyun Hong
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seongpil An
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| |
Collapse
|
82
|
Vecchi CF, Said dos Santos R, Bassi da Silva J, Bruschi ML. Design and characterization of polymeric microneedles containing extracts of Brazilian green propolis. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:503-516. [PMID: 35800135 PMCID: PMC9194495 DOI: 10.3762/bjnano.13.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Microneedles (MNs) are a means to break the protective skin barrier in a minimally invasive way. By creating temporary micropores, they make biologically active agents available in the skin layers. Propolis (PRP) is a gum resin with a complex chemical composition, produced by bees Apis mellifera L. and showing several therapeutic properties (i.e., antibacterial, antiviral, antifungal, anti-inflammatory, healing, and immunomodulatory properties). The administration of PRP extracts by conventional routes has some disadvantages, such as running off over the skin in liquid or emulsion form. When taken orally, the extracts have a strong and unpleasant taste. The aim of this work was to fabricate and characterize microneedles containing polyvinyl alcohol, polyvinylpyrrolidone, poloxamer P407, and an ethanolic or glycolic extract of PRP. Also, the obtained structures were microscopically and mechanically characterized. The results of the mechanical analysis showed that formulations containing 3% of P407 presented the highest compression values in a hard surface, which was also confirmed by the height and base values of the morphological analysis and by the microscopy images. It was possible to design MNs and select the best formulations for future tests. MNs containing an ethanolic extract of PRP showed to be better structured than MNs containing a glycolic extract of PRP. The MNs obtained in these studies proved to be a promising platform for the topical application of PRP.
Collapse
Affiliation(s)
- Camila Felix Vecchi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| | - Rafaela Said dos Santos
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| | - Jéssica Bassi da Silva
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| |
Collapse
|
83
|
Ahmed T, Liu FCF, Lu B, Lip H, Park E, Alradwan I, Liu JF, He C, Zetrini A, Zhang T, Ghavaminejad A, Rauth AM, Henderson JT, Wu XY. Advances in Nanomedicine Design: Multidisciplinary Strategies for Unmet Medical Needs. Mol Pharm 2022; 19:1722-1765. [PMID: 35587783 DOI: 10.1021/acs.molpharmaceut.2c00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Globally, a rising burden of complex diseases takes a heavy toll on human lives and poses substantial clinical and economic challenges. This review covers nanomedicine and nanotechnology-enabled advanced drug delivery systems (DDS) designed to address various unmet medical needs. Key nanomedicine and DDSs, currently employed in the clinic to tackle some of these diseases, are discussed focusing on their versatility in diagnostics, anticancer therapy, and diabetes management. First-hand experiences from our own laboratory and the work of others are presented to provide insights into strategies to design and optimize nanomedicine- and nanotechnology-enabled DDS for enhancing therapeutic outcomes. Computational analysis is also briefly reviewed as a technology for rational design of controlled release DDS. Further explorations of DDS have illuminated the interplay of physiological barriers and their impact on DDS. It is demonstrated how such delivery systems can overcome these barriers for enhanced therapeutic efficacy and how new perspectives of next-generation DDS can be applied clinically.
Collapse
Affiliation(s)
- Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Fuh-Ching Franky Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - HoYin Lip
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Elliya Park
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Ibrahim Alradwan
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Jackie Fule Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Abdulmottaleb Zetrini
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tian Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Amin Ghavaminejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Jeffrey T Henderson
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
84
|
Detamornrat U, McAlister E, Hutton ARJ, Larrañeta E, Donnelly RF. The Role of 3D Printing Technology in Microengineering of Microneedles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106392. [PMID: 35362226 DOI: 10.1002/smll.202106392] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Microneedles (MNs) are minimally invasive devices, which have gained extensive interest over the past decades in various fields including drug delivery, disease diagnosis, monitoring, and cosmetics. MN geometry and shape are key parameters that dictate performance and therapeutic efficacy, however, traditional fabrication methods, such as molding, may not be able to offer rapid design modifications. In this regard, the fabrication of MNs using 3D printing technology enables the rapid creation of complex MN prototypes with high accuracy and offers customizable MN devices with a desired shape and dimension. Moreover, 3D printing shows great potential in producing advanced transdermal drug delivery systems and medical devices by integrating MNs with a variety of technologies. This review aims to demonstrate the advantages of exploiting 3D printing technology as a new tool to microengineer MNs. Various 3D printing methods are introduced, and representative MNs manufactured by such approaches are highlighted in detail. The development of advanced MN devices is also included. Finally, clinical translation and future perspectives for the development of MNs using 3D printing are discussed.
Collapse
Affiliation(s)
- Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Emma McAlister
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
85
|
Kim MJ, Seong KY, Kim DS, Jeong JS, Kim SY, Lee S, Yang SY, An BS. Minoxidil-loaded hyaluronic acid dissolving microneedles to alleviate hair loss in an alopecia animal model. Acta Biomater 2022; 143:189-202. [PMID: 35202857 DOI: 10.1016/j.actbio.2022.02.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
Abstract
Alopecia is defined as hair loss in a part of the head due to various causes, such as drugs, stress and autoimmune disorders. Various therapeutic agents have been suggested depending on the cause of the condition and patient sex, and age. Minoxidil (MXD) is commonly used topically to treat alopecia, but its low absorption rate limits widespread use. To overcome the low absorption, we suggest microneedles (MNs) as controlled drug delivery systems that release MXD. We used hyaluronic acid (HA) to construct MN, as it is biocompatible and safe. We examined the effect of HA on the hair dermal papilla (HDP) cells that control the development of hair follicles. HA enhanced proliferation, migration, and aggregation of HDP cell by increasing cell-cell adhesion and decreasing cell substratum. These effects were mediated by the cluster of differentiation (CD)-44 and phosphorylation of serine‑threonine kinase (Akt). In chemotherapy-induced alopecia mice, topical application of HA tended to decrease chemotherapy-induced hair loss. Although the amount of MXD administered by HA-MNs was 10% of topical treatment, the MXD-containing HA-MNs (MXD-HA-MNs) showed better effects on the growth of hair than topical application of MXD. In summary, our results demonstrated that HA reduces hair loss in alopecia mice, and that delivery of MXD and HA using MXD-HA-MNs maximizes therapeutic effects and minimize the side effects of MXD for the treatment of alopecia. STATEMENT OF SIGNIFICANCE: (1) Significance, This work reports a new approach for treatment of alopecia using a dissolving microneedle (MN) prepared with hyaluronic acid (HA). The HA provided a better environment for cellular functions in the hair dermal papilla cells. The HA-MNs containing minoxidil (MXD) exhibited a significant reduction of hair loss, although amount of MXD contained in them was only 10% of topically applied MXD., (2) Scientific impact, This is the first report demonstrating the direct anti-alopecia effects of HA administrated in a transdermal route and the feasibility of novel therapeutics using MXD-containing HA-MNs. We believe that our work will excite interdisciplinary readers of Acta Biomaterialia, those who are interested in the natural polymers, drug delivery, and alopecia.
Collapse
|
86
|
Jin X, Zhang X, Li Y, Xu M, Yao Y, Wu Z, He Y, Gao J, Li B. Long-acting microneedle patch loaded with adipose collagen fragment for preventing the skin photoaging in mice. BIOMATERIALS ADVANCES 2022; 135:212744. [PMID: 35929203 DOI: 10.1016/j.bioadv.2022.212744] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022]
Abstract
Skin photoaging is one of the most serious public health problems in the 21st century that may lead to thin, saggy, and structurally weakened skin. Adipokine therapy toward skin photoaging is always associated with poor permeability, biologic stability and the short in vivo release duration. Our laboratory previously extracted an extracellular matrix component of adipose tissue by purely physical methods, namely "adipose collagen fragment (ACF)", which holds promise for preventing skin photoaging. However, the injection treatment of ACF requires repeated preparation processes and injection procedures, which may be time-consuming and painful. Therefore, we describe the fabrication and assessment of a detachable ACF-microneedle (ACF-MN) patch that creates minimally invasive dermal microtrauma upon application. And we evaluated the morphology characterization, mechanical properties and puncture performance in vitro. The delivery efficiency of ACF from the patches was estimated in vitro and vivo. Then, the therapeutic efficacy was identified through applying ACF-MN patches into the dermis of UVA-induced photoaging mice and the related detection of skin photoaging was estimated. Our results demonstrated that ACF-MN exhibited well skin puncture performance and could release ACF component slowly. Meanwhile, this microneedle device loaded with ACF exhibited the treatment efficiency on skin photoaging in a mouse model. Therefore, implantation of the microtrauma-mediated, long-acting ACF-MN system can be utilized as a potential candidate for preventing skin photoaging in the clinic.
Collapse
Affiliation(s)
- Xiaoxuan Jin
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, China
| | - Xiangdong Zhang
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, China
| | - Yibao Li
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, China
| | - Mimi Xu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, China
| | - Yao Yao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, China
| | - Zongjian Wu
- College of Chemistry and Bio-Engineering, Yichun University, 576 Xuefu Road, Yichun, JiangXi 336000, China
| | - Yunfan He
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, China.
| | - Jianhua Gao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, China.
| | - Bin Li
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
87
|
Chen YH, Wang FY, Chan YS, Huang C, Huang YY. Biofabricating hollow microneedle array with controllable microstructure for cell transplantation. J Biomed Mater Res B Appl Biomater 2022; 110:1997-2005. [PMID: 35294097 DOI: 10.1002/jbm.b.35054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/04/2021] [Accepted: 11/13/2021] [Indexed: 11/11/2022]
Abstract
Microneedles improve upon the direct injection method by piercing the epidermis to create microchannels for drug delivery in a painless and minimally invasive way. With these microchannels, large macromolecules can penetrate the skin barrier to reach the underlying target tissue. In this study, poly(methyl methacrylate) (PMMA) hollow microneedles (HMN) arrays were fabricated to transplant cells. The result showed that HMN arrays have good biocompatibility. Human epidermal melanocytes and follicle dermal papilla cells were shown to be successfully delivered to acellular porcine skin tissue. Similarly, human corneal keratocytes and corneal epithelial cells were shown to be successfully delivered to acellular porcine corneal tissue. The delivered cells proliferated and penetrated into the tissue. This system may have the potential in the application of cell delivery or cell transplantation.
Collapse
Affiliation(s)
- Ying-Hou Chen
- Department of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fang-Ying Wang
- Department of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yong-Shi Chan
- Department of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Yi-You Huang
- Department of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Biomedical Engineering, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
88
|
Junaid MSA, Banga AK. Transdermal Delivery of Baclofen Using Iontophoresis and Microneedles. AAPS PharmSciTech 2022; 23:84. [PMID: 35288825 DOI: 10.1208/s12249-022-02232-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
Baclofen, a GABAb agonist, is used in the treatment of multiple sclerosis, a neurodegenerative disease. Currently available dosage forms to deliver baclofen are through the oral and the intrathecal routes. The disadvantage of oral baclofen is that it requires administering the drug multiple times a day, owing to baclofen's short half-life. On the other hand, intrathecal baclofen pumps are invasive and cannot be an alternative to oral baclofen. Hence, there is a need to develop a dosage form that can deliver baclofen non-invasively and for an extended period at a steady rate, increasing the dosing interval. A transdermal baclofen delivery system might be the solution to this problem. Hence, this research focuses on evaluating microneedles, iontophoresis, and a combination of microneedles-iontophoresis as transdermal delivery enhancement strategies for baclofen. In vitro permeation studies were conducted on dermatomed porcine ear skin using vertical Franz diffusion cells to evaluate transdermal baclofen delivery. Anodal iontophoresis was applied at a current density of 0.5 mA/cm2, and transdermal delivery was assessed from pH 4.5 (45.51±0.76 μg/cm2) and pH 7.4 (68.84±10.13 μg/cm2) baclofen solutions. Iontophoresis enhanced baclofen delivery but failed to reach target delivery. Maltose microneedles were used to create hydrophilic microchannels on the skin, and this technique enhanced baclofen delivery by 89-fold. Both microneedles (447.88±68.06 μg/cm2) and combination of microneedles - iontophoresis (428.56±84.33 μg/cm2) reached the target delivery range (222-1184 μg/cm2) for baclofen. The findings of this research suggest that skin could be a viable route for delivery of baclofen. Graphical Abstract.
Collapse
|
89
|
Gowda BHJ, Ahmed MG, Sahebkar A, Riadi Y, Shukla R, Kesharwani P. Stimuli-Responsive Microneedles as a Transdermal Drug Delivery System: A Demand-Supply Strategy. Biomacromolecules 2022; 23:1519-1544. [PMID: 35274937 DOI: 10.1021/acs.biomac.1c01691] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Microneedles are one of the most prominent approaches capable of physically disrupting the stratum corneum without devastating the deeper tissues to deliver both small molecules and macromolecules into the viable epidermis/dermis for local/systemic effects. Over the past two decades, microneedles have caught the attention of many researchers because of their outstanding advantages over oral and parenteral drug delivery systems such as self-administration, pain-free, steady-plasma concentration maintenance, avoidance of first-pass hepatic biotransformation, and so on. So far, scientists have reported various types of microneedle patches to deliver the loaded therapeutics as soon as the microneedles are inserted into the skin, regardless of the demand for therapeutics to treat a specific condition. This way of drug delivery can lead to potential risks such as poor therapeutic efficacy or drug overdose. The stimuli-responsive microneedles are the most predominant tool to achieve the on-demand/need-based drug delivery, leading to safe and effective treatment. Various natural and synthetic polymers that can undergo significant transitions such as swelling, shrinking, dissolution, or disintegration play a pivotal role in the development of stimuli-responsive microneedles. The current Review provides brief information about the history, emergence, type, and working principles of microneedles. Furthermore, it selectively discusses various exogenous and endogenous stimuli-responsive microneedles along with their mechanism of action involved in treating different disease conditions. Collaterally, the emergence of "closed-loop" combinatorial stimuli-responsive microneedle patches for precise delivery of therapeutics is meticulously canvassed. Subsequently, it covers the patents of different stimuli-responsive microneedles and further highlights the existing challenges and future perspectives concerning clinical application and large-scale production.
Collapse
Affiliation(s)
- B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 1696700, Iran.,School of Medicine, The University of Western Australia, Perth 6009, Australia
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
90
|
McGuckin MB, Wang J, Ghanma R, Qin N, Palma SD, Donnelly RF, Paredes AJ. Nanocrystals as a master key to deliver hydrophobic drugs via multiple administration routes. J Control Release 2022; 345:334-353. [DOI: 10.1016/j.jconrel.2022.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 12/14/2022]
|
91
|
Manasa G, Mascarenhas RJ, Shetti NP, Malode SJ, Mishra A, Basu S, Aminabhavi TM. Skin Patchable Sensor Surveillance for Continuous Glucose Monitoring. ACS APPLIED BIO MATERIALS 2022; 5:945-970. [PMID: 35170319 DOI: 10.1021/acsabm.1c01289] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus is a physiological and metabolic disorder affecting millions of people worldwide, associated with global morbidity, mortality, and financial expenses. Long-term complications can be avoided by frequent, continuous self-monitoring of blood glucose. Therefore, this review summarizes the current state-of-art glycemic control regimes involving measurement approaches and basic concepts. Following an introduction to the significance of continuous glucose sensing, we have tracked the evolution of glucose monitoring devices from minimally invasive to non-invasive methods to present an overview of the spectrum of continuous glucose monitoring (CGM) technologies. The conveniences, accuracy, and cost-effectiveness of the real-time CGM systems (rt-CGMs) are the factors considered for discussion. Transdermal biosensing and drug delivery routes have recently emerged as an innovative approach to substitute hypodermal needles. This work reviews skin-patchable glucose monitoring sensors for the first time, providing specifics of all the major findings in the past 6 years. Skin patch sensors and their progressive form, i.e., microneedle (MN) array sensory and delivery systems, are elaborated, covering self-powered, enzymatic, and non-enzymatic devices. The critical aspects reviewed are material design and assembly techniques focusing on flexibility, sensitivity, selectivity, biocompatibility, and user-end comfort. The review highlights the advantages of patchable MNs' multi-sensor technology designed to maintain precise blood glucose levels and administer diabetes drugs or insulin through a "sense and act" feedback loop. Subsequently, the limitations and potential challenges encountered from the MN array as rt-CGMs are listed. Furthermore, the current statuses of working prototype glucose-responsive "closed-loop" insulin delivery systems are discussed. Finally, the expected future developments and outlooks in clinical applications are discussed.
Collapse
Affiliation(s)
- G Manasa
- Electrochemistry Research Group, Department of Chemistry, St. Joseph's College (Autonomous), Lalbagh Road, Bangalore, Karnataka 560027, India
| | - Ronald J Mascarenhas
- Electrochemistry Research Group, Department of Chemistry, St. Joseph's College (Autonomous), Lalbagh Road, Bangalore, Karnataka 560027, India
| | - Nagaraj P Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, Karnataka 580031, India
| | - Shweta J Malode
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, Karnataka 580031, India
| | - Amit Mishra
- Department of Chemical Engineering, Inha University, Incheon 22212, South Korea
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India
| | - Tejraj M Aminabhavi
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, Karnataka 580031, India
| |
Collapse
|
92
|
Damiri F, Kommineni N, Ebhodaghe SO, Bulusu R, Jyothi VGSS, Sayed AA, Awaji AA, Germoush MO, Al-malky HS, Nasrullah MZ, Rahman MH, Abdel-Daim MM, Berrada M. Microneedle-Based Natural Polysaccharide for Drug Delivery Systems (DDS): Progress and Challenges. Pharmaceuticals (Basel) 2022; 15:190. [PMID: 35215302 PMCID: PMC8875238 DOI: 10.3390/ph15020190] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
In this focused progress review, the most widely accepted methods of transdermal drug delivery are hypodermic needles, transdermal patches and topical creams. However, microneedles (MNs) (or microneedle arrays) are low-invasive 3D biomedical constructs that bypass the skin barrier and produce systemic and localized pharmacological effects. In the past, biomaterials such as carbohydrates, due to their physicochemical properties, have been extensively used to manufacture microneedles (MNs). Due to their wide range of functional groups, carbohydrates enable the design and development of tunable properties and functionalities. In recent years, numerous microneedle products have emerged on the market, although much research needs to be undertaken to overcome the various challenges before the successful introduction of microneedles into the market. As a result, carbohydrate-based microarrays have a high potential to achieve a future step in sensing, drug delivery, and biologics restitution. In this review, a comprehensive overview of carbohydrates such as hyaluronic acid, chitin, chitosan, chondroitin sulfate, cellulose and starch is discussed systematically. It also discusses the various drug delivery strategies and mechanical properties of biomaterial-based MNs, the progress made so far in the clinical translation of carbohydrate-based MNs, and the promotional opportunities for their commercialization. In conclusion, the article summarizes the future perspectives of carbohydrate-based MNs, which are considered as the new class of topical drug delivery systems.
Collapse
Affiliation(s)
- Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco;
| | | | | | - Raviteja Bulusu
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Vaskuri G. S. Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India;
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Mousa O. Germoush
- Biology Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia;
| | - Hamdan S. Al-malky
- Regional Drug Information Center, Ministry of Health, Jeddah 21589, Saudi Arabia;
| | - Mohammed Z. Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco;
| |
Collapse
|
93
|
Bhadale RS, Londhe VY. Inclusion complexed iloperidone loaded dissolving microneedles: Characterization, in-vitro study, and dermatopharmacokinetics. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
94
|
Amarnani R, Shende P. Microneedles in diagnostic, treatment and theranostics: An advancement in minimally-invasive delivery system. Biomed Microdevices 2021; 24:4. [PMID: 34878589 PMCID: PMC8651504 DOI: 10.1007/s10544-021-00604-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/31/2022]
Abstract
Microneedle (MN) technology plays an important role in biomedical engineering for their less intrusive access to the skin due to minimally or painless penetration, enhancement of drug permeability, improvement of detectability of biomolecules in the epidermal and dermal layers with therapeutic efficacy and safety. Furthermore, MNs possess some major disadvantages like difficulty in scale-up technique, variation in drug delivery pattern with respect to external environment of skin, blockage of arrays due to dermal tissues, induction of inflammation or allergy at the site of administration and restriction of dosing range based on the size of active. Additionally, microneedle acts as a transdermal theranostic device for monitoring the physiological parameters in clinical studies. The investigation of drug transfer mechanisms through microneedles includes coat and poke, poke and flow, poke and patch and poke and release method. This review article discusses different categories of microneedles with fabrication methods such as photolithography, laser cutting, 3D printing, etc. in therapeutic applications for treating cancer, diabetes, arthritis, obesity, neurological disorders, and glaucoma. Biosensing devices based on microneedles may detect target analytes directly in the interstitial fluid by penetrating the stratum corneum of the skin and thus microneedles-based devices can be considered as a single tool in diagnostic sensing and therapeutic administration of drugs inside the body. Moreover, the clinical status and commercial availability of microneedle devices are discussed in this review article to offer new insights to researchers and scientists. Continuous monitoring particularly for the determination of blood glucose concentration is one of the most important requirements for the development of next-generation healthcare devices. The aim of this review article focuses mainly on the theranostic applications of microneedles in various medical conditions such as malaria, glaucoma, cancer, etc.
Collapse
Affiliation(s)
- Ragini Amarnani
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
95
|
Peters JT, Wechsler ME, Peppas NA. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. Regen Biomater 2021; 8:rbab060. [PMID: 34925879 PMCID: PMC8678442 DOI: 10.1093/rb/rbab060] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are cross-linked polymeric networks swollen in water, physiological aqueous solutions or biological fluids. They are synthesized by a wide range of polymerization methods that allow for the introduction of linear and branched units with specific molecular characteristics. In addition, they can be tuned to exhibit desirable chemical characteristics including hydrophilicity or hydrophobicity. The synthesized hydrogels can be anionic, cationic, or amphiphilic and can contain multifunctional cross-links, junctions or tie points. Beyond these characteristics, hydrogels exhibit compatibility with biological systems, and can be synthesized to render systems that swell or collapse in response to external stimuli. This versatility and compatibility have led to better understanding of how the hydrogel's molecular architecture will affect their physicochemical, mechanical and biological properties. We present a critical summary of the main methods to synthesize hydrogels, which define their architecture, and advanced structural characteristics for macromolecular/biological applications.
Collapse
Affiliation(s)
- Jonathan T Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Bldg. B, Austin, TX 78712, USA
| |
Collapse
|
96
|
Transdermal Drug Delivery in the Pig Skin. Pharmaceutics 2021; 13:pharmaceutics13122016. [PMID: 34959299 PMCID: PMC8707795 DOI: 10.3390/pharmaceutics13122016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/04/2022] Open
Abstract
Transdermal delivery can be accomplished through various mechanisms including formulation optimization, epidermal stratum corneum barrier disruption, or directly by removing the stratum corneum layer. Microneedling, electroporation, a combination of both and also the intradermal injection known as mesotherapy have proved efficacy in epidermal-barrier disruption. Here we analyzed the effects of these methods of epidermal-barrier disruption in the structure of the skin and the absorption of four compounds with different characteristics and properties (ketoprofen, biotin, caffein, and procaine). Swine skin (Pietrain x Durox) was used as a human analogue, both having similar structure and pharmacological release. They were biopsied at different intervals, up to 2 weeks after application. High-pressure liquid chromatography and brightfield microscopy were performed, conducting a biometric analysis and measuring histological structure and vascular status. The performed experiments led to different results in the function of the studied molecules: ketoprofen and biotin had the best concentrations with intradermal injections, while delivery methods for obtaining procaine and caffein maximum concentrations changed on the basis of the lapsed time. The studied techniques did not produce significant histological alterations after their application, except for an observed increase in Langerhans cells and melanocytes after applying electroporation, and an epidermal thinning after using microneedles, with variable results regarding dermal thickness. Although all the studied barrier disruptors can accomplish transdermal delivery, the best disruptor is dependent on the particular molecule.
Collapse
|
97
|
Li Z, Fang X, Yu D. Transdermal Drug Delivery Systems and Their Use in Obesity Treatment. Int J Mol Sci 2021; 22:12754. [PMID: 34884558 PMCID: PMC8657870 DOI: 10.3390/ijms222312754] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Transdermal drug delivery (TDD) has recently emerged as an effective alternative to oral and injection administration because of its less invasiveness, low rejection rate, and excellent ease of administration. TDD has made an important contribution to medical practice such as diabetes, hemorrhoids, arthritis, migraine, and schizophrenia treatment, but has yet to fully achieve its potential in the treatment of obesity. Obesity has reached epidemic proportions globally and posed a significant threat to human health. Various approaches, including oral and injection administration have widely been used in clinical setting for obesity treatment. However, these traditional options remain ineffective and inconvenient, and carry risks of adverse effects. Therefore, alternative and advanced drug delivery strategies with higher efficacy and less toxicity such as TDD are urgently required for obesity treatment. This review summarizes current TDD technology, and the main anti-obesity drug delivery system. This review also provides insights into various anti-obesity drugs under study with a focus on the recent developments of TDD system for enhanced anti-obesity drug delivery. Although most of presented studies stay in animal stage, the application of TDD in anti-obesity drugs would have a significant impact on bringing safe and effective therapies to obese patients in the future.
Collapse
Affiliation(s)
| | | | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (Z.L.); (X.F.)
| |
Collapse
|
98
|
Wang Z, Xu FJ, Yu B. Smart Polymeric Delivery System for Antitumor and Antimicrobial Photodynamic Therapy. Front Bioeng Biotechnol 2021; 9:783354. [PMID: 34805129 PMCID: PMC8599151 DOI: 10.3389/fbioe.2021.783354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) has attracted tremendous attention in the antitumor and antimicrobial areas. To enhance the water solubility of photosensitizers and facilitate their accumulation in the tumor/infection site, polymeric materials are frequently explored as delivery systems, which are expected to show target and controllable activation of photosensitizers. This review introduces the smart polymeric delivery systems for the PDT of tumor and bacterial infections. In particular, strategies that are tumor/bacteria targeted or activatable by the tumor/bacteria microenvironment such as enzyme/pH/reactive oxygen species (ROS) are summarized. The similarities and differences of polymeric delivery systems in antitumor and antimicrobial PDT are compared. Finally, the potential challenges and perspectives of those polymeric delivery systems are discussed.
Collapse
Affiliation(s)
- Zhijia Wang
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules Beijing University of Chemical Technology, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| | - Fu-Jian Xu
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules Beijing University of Chemical Technology, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| | - Bingran Yu
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules Beijing University of Chemical Technology, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
99
|
Teaima M, Abdelmonem R, Adel YA, El-Nabarawi MA, El-Nawawy TM. Transdermal Delivery of Telmisartan: Formulation, in vitro, ex vivo, Iontophoretic Permeation Enhancement and Comparative Pharmacokinetic Study in Rats. Drug Des Devel Ther 2021; 15:4603-4614. [PMID: 34785889 PMCID: PMC8590984 DOI: 10.2147/dddt.s327860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The purpose of this study was to prepare telmisartan transethosomes, incorporate them into a gel, evaluate them for in vitro drug release and in vivo permeation using iontophoresis to enhance their transdermal delivery. Materials and Methods TE formulae were prepared using various surfactants (SAAs), different ethanol concentrations, and different phospholipid-to-SAA ratios with different cholesterol ratios, characterized according to their entrapment efficiency percentage (EE%), zeta potential (ZP), particle size (PS), and polydispersity index (PDI). The optimum three formulae were incorporated into a gel, evaluated physically, in vitro dissolution, and ex vivo drug permeation using rat skin and Iontophoresis was performed on the best formula. Results The optimum three formulae (F29, F31, F32) had an EE% of 97±0.26%, 89±0.25% and 88±0.17%, PS of 244±5.88 nm, 337±4.6 nm and 382.2±3.06 nm, PDI of 0.57±1.9, 0.5±1.4 and 0.63±2.2 and ZP of −31.6±1.59 mV, −28.3±3.79 mV and −31±5.65, respectively. Selecting F29 for in vivo study by iontophoretic enhancement, Cmax was increased by 1.85 folds compared to the commercial oral tablet and by 1.5 folds compared to transdermal gel. Tmax decreased by half using iontophoresis compared to commercial tablets and transdermal gel. Conclusion The transethosomal formulation of telmisartan enhanced its transdermal absorption and increased its bioavailability as well. Iontophoresis was used to increase maximum plasma concentration and reduce Tmax by half.
Collapse
Affiliation(s)
- Mahmoud Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, 12566, Egypt
| | - Yomna A Adel
- Department of Pharmaceutics, Egyptian Drug Authority, Cairo, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | |
Collapse
|
100
|
Nguyen TT, Nguyen TTD, Tran NMA, Vo GV. Advances of microneedles in hormone delivery. Biomed Pharmacother 2021; 145:112393. [PMID: 34773762 DOI: 10.1016/j.biopha.2021.112393] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
The skin is recognized as a potential target for local and systemic drug delivery and hormone. However, the transdermal route of drug administration seems to be limited by substantial barrier properties of the skin. Recently, delivering hormone via the skin by transdermal patches is a big challenge because of the presence of the stratum corneum that prevents the application of hormone via this route. In order to overcome the limitations, microneedle (MN), consisting of micro-sized needles, are a promising approach to drill the stratum corneum and release hormone into the dermis via a minimal-invasive route. This review aimed to highlight advances in research on the development of MNs-based therapeutics for their implications in hormone delivery. The challenges during clinical translation of MNs from bench to bedside are also discussed.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Viet Nam
| | - Thi Thuy Dung Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | - Nguyen-Minh-An Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 71420, Viet Nam.
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Viet Nam; Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Viet Nam; Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|