51
|
García-Cruz L, Montiel V, Solla-Gullón J. Shape-controlled metal nanoparticles for electrocatalytic applications. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2017-0124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
The application of shape-controlled metal nanoparticles is profoundly impacting the field of electrocatalysis. On the one hand, their use has remarkably enhanced the electrocatalytic activity of many different reactions of interest. On the other hand, their usage is deeply contributing to a correct understanding of the correlations between shape/surface structure and electrochemical reactivity at the nanoscale. However, from the point of view of an electrochemist, there are a number of questions that must be fully satisfied before the evaluation of the shaped metal nanoparticles as electrocatalysts including (i) surface cleaning, (ii) surface structure characterization, and (iii) correlations between particle shape and surface structure. In this chapter, we will cover all these aspects. Initially, we will collect and discuss about the different practical protocols and procedures for obtaining clean shaped metal nanoparticles. This is an indispensable requirement for the establishment of correct correlations between shape/surface structure and electrochemical reactivity. Next, we will also report how some easy-to-do electrochemical experiments including their subsequent analyses can enormously contribute to a detailed characterization of the surface structure of the shaped metal nanoparticles. At this point, we will remark that the key point determining the resulting electrocatalytic activity is the surface structure of the nanoparticles (obviously, the atomic composition is also extremely relevant) but not the particle shape. Finally, we will summarize some of the most significant advances/results on the use of these shaped metal nanoparticles in electrocatalysis covering a wide range of electrocatalytic reactions including fuel cell-related reactions (electrooxidation of formic acid, methanol and ethanol and oxygen reduction) and also CO2 electroreduction.
Graphical Abstract:
Collapse
|
52
|
Gómez-Marín AM, Feliu JM, Ticianelli E. Oxygen Reduction on Platinum Surfaces in Acid Media: Experimental Evidence of a CECE/DISP Initial Reaction Path. ACS Catal 2019. [DOI: 10.1021/acscatal.8b03351] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana M. Gómez-Marín
- Instituto de Química de São Carlos, Universidade de São Paulo, Caixa
Postal 780, Fisico Quimica, Av. Trabalhador Sao Carlense, São Carlos CEP 13560-970, SP, Brazil
- Department of Chemistry, Division of Fundamental Sciences (IEF), Technological Institute of Aeronautics (ITA), São José dos Campos CEP 12228-900, SP, Brazil
| | - Juan M. Feliu
- Instituto de Electroquímica, Universidad de Alicante, Apt 99, E-03080 Alicante, Spain
| | - Edson Ticianelli
- Instituto de Química de São Carlos, Universidade de São Paulo, Caixa
Postal 780, Fisico Quimica, Av. Trabalhador Sao Carlense, São Carlos CEP 13560-970, SP, Brazil
| |
Collapse
|
53
|
Chen L, Hu J, Zhong X, Zhang Q, Zheng Y, Zhang Z, Zeng D. Corrosion Behaviors of Q345R Steel at the Initial Stage in an Oxygen-Containing Aqueous Environment: Experiment and Modeling. MATERIALS 2018; 11:ma11081462. [PMID: 30126141 PMCID: PMC6119958 DOI: 10.3390/ma11081462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 11/23/2022]
Abstract
The ingress of oxygen into pressure vessels used in oil & gas production and transportation could easily result in serious corrosion. In this work, the corrosion behaviors of Q345R steel at the initial stage in 1 wt.% NaCl solution were investigated using electrochemical techniques. The effects of oxygen concentration, temperature and pH on corrosion behaviors were discussed. Simultaneously, a numerical model based on the mixed potential theory was proposed. The results show that the proposed model accords well with the experimental data in the pH range from 9.0 to 5.0. In this pH range, the oxygen reduction reaction, H+ reduction, water reduction, and iron oxidation can be quantitatively analyzed using this model. However, this model shows a disagreement with the experimental data at lower pH. This can be attributed to the fact that actual area of reaction on the electrode is much smaller than the preset area due to the block effect resulted from hydrogen bubbles adsorbed on the electrode surface.
Collapse
Affiliation(s)
- Longjun Chen
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China.
| | - Junying Hu
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China.
| | - Xiankang Zhong
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China.
| | - Qiang Zhang
- Research Institute of Natural Gas Technology, Southwest Oil and Gas Field Company of PetroChina, Chengdu 610213, China.
| | - Yan Zheng
- School of Mechanical Engineering, Southwest Petroleum University, Chengdu 610500, China.
| | - Zhi Zhang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China.
| | - Dezhi Zeng
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China.
| |
Collapse
|
54
|
Gómez-Marín A, Feliu J, Edson T. Reaction Mechanism for Oxygen Reduction on Platinum: Existence of a Fast Initial Chemical Step and a Soluble Species Different from H2O2. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01291] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ana Gómez-Marín
- Instituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 780, Fisico Quimica, Av. Trabalhador Sao Carlense, São Carlos CEP 13560-970, São Paulo, Brazil
- Department of Chemistry, Division of Fundamental Sciences (IEF), Technological Institute of Aeronautics (ITA), 12228-900 São Paulo, Brazil
| | - Juan Feliu
- Instituto de Electroquímica, Universidad de Alicante, Apt 99, E-03080 Alicante, Spain
| | - Ticianelli Edson
- Instituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 780, Fisico Quimica, Av. Trabalhador Sao Carlense, São Carlos CEP 13560-970, São Paulo, Brazil
| |
Collapse
|
55
|
Ustarroz J, Ornelas IM, Zhang G, Perry D, Kang M, Bentley CL, Walker M, Unwin PR. Mobility and Poisoning of Mass-Selected Platinum Nanoclusters during the Oxygen Reduction Reaction. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00553] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jon Ustarroz
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Research Group Electrochemical and Surface Engineering (SURF), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Isabel M. Ornelas
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Nanoscale Physics, Chemistry and Engineering Research Laboratory, University of Birmingham, Birmingham B15 2TT, U.K
| | - Guohui Zhang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - David Perry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Minkyung Kang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Marc Walker
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Patrick R. Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
56
|
Minguzzi A, Montagna L, Falqui A, Vertova A, Rondinini S, Ghigna P. Dynamics of oxide growth on Pt nanoparticles electrodes in the presence of competing halides by operando energy dispersive X-Ray absorption spectroscopy. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
57
|
Wang C, Zhou J, Gao L. Experimental Study on Four Cation Exchange Membranes in Electrosynthesis of Ammonium Persulfate. J ELECTROCHEM SCI TE 2018. [DOI: 10.33961/jecst.2018.9.1.37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
58
|
Huang J, Zhang J, Eikerling M. Unifying theoretical framework for deciphering the oxygen reduction reaction on platinum. Phys Chem Chem Phys 2018; 20:11776-11786. [DOI: 10.1039/c8cp01315b] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A theoretical framework relates formation of oxygen intermediates to basic electronic and electrostatic properties of the catalytic surface.
Collapse
Affiliation(s)
- Jun Huang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
- Department of Automotive Engineering
| | - Jianbo Zhang
- Department of Automotive Engineering
- State Key Laboratory of Automotive Safety and Energy
- Tsinghua University
- Beijing 100084
- China
| | | |
Collapse
|
59
|
Briega-Martos V, Herrero E, Feliu JM. The inhibition of hydrogen peroxide reduction at low potentials on Pt(111): Hydrogen adsorption or interfacial charge? Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
60
|
Drnec J, Ruge M, Reikowski F, Rahn B, Carlà F, Felici R, Stettner J, Magnussen OM, Harrington DA. Pt oxide and oxygen reduction at Pt(111) studied by surface X-ray diffraction. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|