51
|
Santos CS, de Oliveira RD, Pitchaimuthu S, Marchesi LF, Pessôa CA. Modified electrodes based on MnO2 electrodeposited onto carbon felt: an evaluation toward supercapacitive applications. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-019-00920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
52
|
Xing F, Xi H, Yu Y, Zhou Y. A sensitive, wide-ranging comprehensive toxicity indicator based on microbial fuel cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134667. [PMID: 31759717 DOI: 10.1016/j.scitotenv.2019.134667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
An innovative indicator for toxicity detection based on microbial fuel cells, average current inhibition rate (ACIR) was proposed. It was applied to the toxicity evaluation of three typical specific pollutants in petrochemical wastewater including copper(II), 2,4-dichlorophenol (2,4-DCP) and pyridine. ACIR which considered the entire process of toxic effects was proved to be more sensitive and wide-ranging than the conventional indicators. The linear detection ranges were 0.3-100 mg/L of copper(II), 0.4-1000 mg/L of 2,4-DCP, and 0.1-1000 mg/L of pyridine. The median effective concentrations of the three toxicants were 34.32, 36.18 and above 1000 mg/L, respectively. By contrast, using a conventional indicator such as the voltage inhibition rate, the calculation results consistently change with the exposure time. Based on the response time, the toxicity will be difficult to distinguish under high concentrations. An analysis of the microbial community in anode chamber showed that electrogenic bacteria such as Geobacter and Arcobacter significantly decreased with 2,4-DCP and pyridine under all tested concentrations. A principal component analysis was conducted, the results of which showed that the microbial community shifted from left to right with the increase concentration of copper(II) and 2,4-DCP. An increase of ACIR was noticed to be in accordance with the reduction of electrogenic bacteria.
Collapse
Affiliation(s)
- Fei Xing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Hongbo Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
53
|
Chlorine-free emission disposal of spent acid etchant in a three-compartment ceramic membrane reactor. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
54
|
Ni XY, Liu H, Wang C, Wang WL, Xu ZB, Chen Z, Wu YH, Hu HY. Comparison of carbonized and graphitized carbon fiber electrodes under flow-through electrode system (FES) for high-efficiency bacterial inactivation. WATER RESEARCH 2020; 168:115150. [PMID: 31606556 DOI: 10.1016/j.watres.2019.115150] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
The disinfection performance of a flow-through electrode system (FES) was systematically evaluated using different carbonized (C1, C2, and C3) and corresponding graphitized (G1, G2, and G3) carbon fiber felt (CFF) electrodes. The physicochemical and electrochemical properties were characterized to identify the differences among CFFs. Graphitized CFFs (gCFFs) can achieve complete inactivation of Escherichia coli (>6 log) at the voltage of 3 V and flux of 120-3600 L/(m2 h) for high conductivity and chemical stability, while carbonized CFFs (cCFFs) only achieved around 1 log removal with obvious carbon corrosion. For the gCFFs, G1 (>6 log removal) with higher conductivity, better graphite structure, and larger surface area (related to fiber diameter and density) presented better disinfection performance at the flow rate of 30 mL/min than G2 (∼3 log) and G3(∼1 log). Furthermore, no regrowth and reactivation of bacteria occurred during the storage under visible light illumination after FES treatment. Three parallel FESs with G1 were operated continuously for one week (24 h per day, 7 days) treating the solution with an E. coli concentration ranging from 106 to 107 CFU/mL at the applied voltage of 3 V and the flow rate of 20 mL/min. No live bacteria were detected in the effluent of any of these three FESs. In-situ sampling experiments demonstrated that the inactivation of bacteria on anode was the dominant mechanism for FES treatment, which can be attributed to the sequential adsorption, direct-oxidation and desorption process on anode, instead of indirect oxidation by generating chemical oxidants. In addition, hydroxide ion generated from cathode reaction enhanced anode adsorption and inactivation of bacteria by providing alkaline environment. Combining the analysis results of material properties and disinfection performance, the gCFF-based FES was suggested to be a low-cost, high-efficiency, and safe alternative for future water disinfection.
Collapse
Affiliation(s)
- Xin-Ye Ni
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Hai Liu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Guangzhou Key Laboratory of Environmental Exposure and Health, And Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Chun Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Wen-Long Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Zi-Bin Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China.
| |
Collapse
|
55
|
Theoretical Description of Carbon Felt Electrical Properties Affected by Compression. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9194030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electro-conductive carbon felt (CF) material is composed by bonding together different lengths of carbon filaments resulting in a porous structure with a significant internal surface that facilitates enhanced electrochemical reactions. Owing to its excellent electrical properties, CF is found in numerous electrochemical applications, such as electrodes in redox flow batteries, fuel cells, and electrochemical desalination apparatus. CF electro-conductivity mostly arises from the close contact between the surface of two electrodes and the long carbon fibers located between them. Electrical conductivity can be improved by a moderate pressing of the CF between conducting electrodes. There exist large amounts of experimental data regarding CF electro-conductivity. However, there is a lack of analytical theoretical models explaining the CF electrical characteristics and the effects of compression. Moreover, CF electrodes in electrochemical cells are immersed in different electrolytes that affect the interconnections of fibers and their contacts with electrodes, which in turn influence conductivity. In this paper, we investigated both the role of CF compression, as well as the impact of electrolyte characteristics on electro-conductivity. The article presents results of measurements, mathematical analysis of CF electrical properties, and a theoretical analytical explanation of the CF electrical conductivity which was done by a stochastic description of carbon filaments disposition inside a CF frame.
Collapse
|
56
|
Wiberg C, Carney TJ, Brushett F, Ahlberg E, Wang E. Dimerization of 9,10-anthraquinone-2,7-Disulfonic acid (AQDS). Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.134] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
57
|
Wang Q, Daoud WA. Reaction kinetics of cerium on glassy carbon with in situ electrochemical treatment for cerium-based flow battery. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
58
|
|
59
|
Zhou W, Meng X, Gao J, Alshawabkeh AN. Hydrogen peroxide generation from O 2 electroreduction for environmental remediation: A state-of-the-art review. CHEMOSPHERE 2019; 225:588-607. [PMID: 30903840 PMCID: PMC6921702 DOI: 10.1016/j.chemosphere.2019.03.042] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 05/12/2023]
Abstract
The electrochemical production of hydrogen peroxide (H2O2) by 2-electron oxygen reduction reaction (ORR) is an attractive alternative to the present complex anthraquinone process. The objective of this paper is to provide a state-of-the-arts review of the most important aspects of this process. First, recent advances in H2O2 production are reviewed and the advantages of H2O2 electrogeneration via 2-electron ORR are highlighted. Second, the selectivity of the ORR pathway towards H2O2 formation as well as the development process of H2O2 production are presented. The cathode characteristics are the decisive factors of H2O2 production. Thus the focus is shifted to the introduction of commonly used carbon cathodes and their modification methods, including the introduction of other active carbon materials, hetero-atoms doping (i.e., O, N, F, B, and P) and decoration with metal oxides. Cathode stability is evaluated due to its significance for long-term application. Effects of various operational parameters, such as electrode potential/current density, supporting electrolyte, electrolyte pH, temperature, dissolved oxygen, and current mode on H2O2 production are then discussed. Additionally, the environmental application of electrogenerated H2O2 on aqueous and gaseous contaminants removal, including dyes, pesticides, herbicides, phenolic compounds, drugs, VOCs, SO2, NO, and Hg0, are described. Finally, a brief conclusion about the recent progress achieved in H2O2 electrogeneration via 2-electron ORR and an outlook on future research challenges are proposed.
Collapse
Affiliation(s)
- Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Xiaoxiao Meng
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China
| | - Jihui Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 PR China.
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
60
|
Lacasa E, Cañizares P, Walsh FC, Rodrigo MA, Ponce-de-León C. Removal of methylene blue from aqueous solutions using an Fe2+ catalyst and in-situ H2O2 generated at gas diffusion cathodes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.218] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
61
|
Bento FR, Corradini PG, Mascaro LH. Inexpensive methodology for obtaining flexible SnO2-single-walled carbon nanotube composites for lithium-ion battery anodes. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04283-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
62
|
Voltammetric determination of fenitrothion based on pencil graphite electrode modified with poly(Purpald®). CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00731-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
63
|
Mohd Suah FB, Teh BP, Mansor N, Hamzah HH, Mohamed N. A closed-loop electrogenerative recycling process for recovery of silver from a diluted cyanide solution. RSC Adv 2019; 9:31753-31757. [PMID: 35527948 PMCID: PMC9072640 DOI: 10.1039/c9ra05557f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/01/2019] [Indexed: 11/27/2022] Open
Abstract
A closed-loop process for the complete recovery of silver from a diluted silver cyanide solution has been constructed based on an electrogenerative process. It was shown that the reduction of silver was a mass transport controlled process. Under optimal experimental conditions, 100% of silver was recovered from 500 mg L−1 and 100 mg L−1 silver cyanide solutions by using a reticulated vitreous electrode (RVC) as the cathode. The cyanide solution was recycled and reused so that a closed-loop process was obtained. In addition, the RVC in this study can be used repeatedly up to 10 cycles with a calculated relative standard deviation of 1.90%. A closed-loop process for the complete recovery of silver from a diluted silver cyanide solution has been constructed based on an electrogenerative process.![]()
Collapse
Affiliation(s)
- Faiz Bukhari Mohd Suah
- Electrogenerative Research Unit
- School of Chemical Sciences
- Universiti Sains Malaysia
- 11800 Minden
- Malaysia
| | - Bee Ping Teh
- Electrogenerative Research Unit
- School of Chemical Sciences
- Universiti Sains Malaysia
- 11800 Minden
- Malaysia
| | - Nadia Mansor
- Electrogenerative Research Unit
- School of Chemical Sciences
- Universiti Sains Malaysia
- 11800 Minden
- Malaysia
| | - Hairul Hisham Hamzah
- Electrogenerative Research Unit
- School of Chemical Sciences
- Universiti Sains Malaysia
- 11800 Minden
- Malaysia
| | - Norita Mohamed
- Electrogenerative Research Unit
- School of Chemical Sciences
- Universiti Sains Malaysia
- 11800 Minden
- Malaysia
| |
Collapse
|
64
|
Wang Y, Zhou W, Gao J, Ding Y, Kou K. Oxidative modification of graphite felts for efficient H2O2 electrogeneration: Enhancement mechanism and long-term stability. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
65
|
Yan X, Chen T, Wang L, Li X, Wang H, Deng B, Wei Z, Qu M. Carbon Nanofibers Grown on Carbon Felt as a Reinforced Current Collector for High-Performance Lithium−Sulfur Batteries. ChemElectroChem 2018. [DOI: 10.1002/celc.201800747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xinxiu Yan
- Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Tao Chen
- Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Lei Wang
- Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
| | - Xiang Li
- Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
| | - Hao Wang
- Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
| | - Bangwei Deng
- Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Zhikai Wei
- Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
| | - Meizhen Qu
- Chengdu Institute of Organic Chemistry; Chinese Academy of Sciences; Chengdu 610041 China
| |
Collapse
|
66
|
Electric and Hydraulic Properties of Carbon Felt Immersed in Different Dielectric Liquids. MATERIALS 2018; 11:ma11040650. [PMID: 29690636 PMCID: PMC5951534 DOI: 10.3390/ma11040650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/12/2018] [Accepted: 04/20/2018] [Indexed: 11/16/2022]
Abstract
Electroconductive carbon felt (CF) material, having a permeable structure and significant electroconductive surface, is widely used for electrodes in numerous electrochemical applications such as redox flow batteries, fuel cells, electrochemical desalination apparatus, etc. The internal structure of CF is composed of different lengths of carbon filaments bonded together. This structure creates a large number of stochastically oriented and stochastically linked channels that have different lengths and cross sections. Therefore, the CF hydraulic permeability is similar to that of porous media and is determined by the internal empty volume and arrangement of carbon fibers. Its electroconductivity is ensured by the conductivity of the carbon filaments and by the electrical interconnections between fibers. Both of these properties (permeability and electrical conductivity) are extremely important for the efficient functioning of electrochemical devices. However, their influences counter each other during CF compressing. Increasing the stress on a felt element provides supplementary electrical contacts of carbon filaments, which lead to improved electrical conductivity. Thus, the active surface of the felt electrode is increased, which also boosts redox chemical reactions. On the other hand, compressed felt possesses reduced hydrodynamic permeability as a result of a diminished free volume of porous media and intrinsic channels. This causes increasing hydrodynamic expenditures of electrolyte pumping through electrodes and lessened cell (battery) efficiency. The designer of specific electrochemical systems has to take into account both of these properties when selecting the optimal construction for a cell. This article presents the results of measurements and novel approximating expressions of electrical and hydraulic characteristics of a CF during its compression. Since electrical conductivity plays a determining role in providing electrochemical reactions, it was measured in dry conditions and when the CF was immersed in several non-conductive liquids. The choice of such liquids prevented side effects of electrolyte ionic conductivity impact on electrical resistivity of the CF. This gave an opportunity to determine the influences of dielectric parameters of electrolytes to increase or decrease the density of interconnectivity of carbon fibers either between themselves or between them and electrodes. The experiments showed the influence of liquid permittivity on the conductivity of CF, probably by changing the density of fiber interconnections inside the felt.
Collapse
|
67
|
Electrosynthesis of hydrogen peroxide in a filter-press flow cell using graphite felt as air-diffusion cathode. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.01.054] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|