51
|
Guo D, Kang H, Wei P, Yang Y, Hao Z, Zhang Q, Liu L. A high-performance bimetallic cobalt iron oxide catalyst for the oxygen evolution reaction. CrystEngComm 2020. [DOI: 10.1039/d0ce00401d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, a facile solvothermal approach was designed to produce the CoFe2O4 nanospheres with unique porous structure. As an efficient electrocatalyst for OER, the CoFe2O4 nanospheres performed high performance.
Collapse
Affiliation(s)
- Donggang Guo
- College of Environment and Resource
- Shanxi University
- Taiyuan
- China
| | - Hongzhi Kang
- College of Environment and Resource
- Shanxi University
- Taiyuan
- China
| | - Pengkun Wei
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control
- College of Environmental Science and Engineering
- Nankai University
- Tianjin
- China
| | - Yang Yang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control
- College of Environmental Science and Engineering
- Nankai University
- Tianjin
- China
| | - Zewei Hao
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control
- College of Environmental Science and Engineering
- Nankai University
- Tianjin
- China
| | - Quanxi Zhang
- College of Environment and Resource
- Shanxi University
- Taiyuan
- China
| | - Lu Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control
- College of Environmental Science and Engineering
- Nankai University
- Tianjin
- China
| |
Collapse
|
53
|
Zhang J, Jiang Y, Wang Y, Yu C, Cui J, Wu J, Shu X, Qin Y, Sun J, Yan J, Zheng H, Zhang Y, Wu Y. Ultrathin carbon coated mesoporous Ni-NiFe2O4 nanosheet arrays for efficient overall water splitting. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134652] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
54
|
Magnetically retrievable ferrite nanoparticles in the catalysis application. Adv Colloid Interface Sci 2019; 271:101982. [PMID: 31325653 DOI: 10.1016/j.cis.2019.07.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022]
Abstract
In the present review, we summarized the applications of magnetic spinel ferrite nanoparticles as catalysts in organic reactions and transformations. Catalytic applications are comprised of using mostly cobalt, nickel, copper, and zinc ferrites, along with their mixed-metal combinations based on nano ferrites. The spinel ferrites (SFs) are gained principally by wet-chemical, sol-gel or co-precipitation methods, more infrequently by the mechanical high-energy ball milling, spark plasma sintering, sonochemical technique, microwave heating or hydrothermal route. Catalytic processes with the application of ferrite nanoparticles are included decomposition (in particular photocatalytic), reactions of dehydrogenation, oxidation, alkylation, CC coupling, removing organic/inorganic contaminants from aqueous solutions. As significant and remarkable advantages, ferrite nanocatalysts not only are environmentally benign and compatible with green chemistry aspects but also can be simply recovered from reaction systems and recycled up to several times almost without significant loss of their catalytic activity.
Collapse
|
55
|
Mahala C, Devi Sharma M, Basu M. Fe‐Doped Nickel Hydroxide/Nickel Oxyhydroxide Function as an Efficient Catalyst for the Oxygen Evolution Reaction. ChemElectroChem 2019. [DOI: 10.1002/celc.201900857] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chavi Mahala
- Department of Chemistry, BITS Pilani, Pilani Rajasthan 333031 India
| | | | - Mrinmoyee Basu
- Department of Chemistry, BITS Pilani, Pilani Rajasthan 333031 India
| |
Collapse
|
58
|
Zhu S, Lei J, Qin Y, Zhang L, Lu L. Spinel oxide CoFe 2O 4 grown on Ni foam as an efficient electrocatalyst for oxygen evolution reaction. RSC Adv 2019; 9:13269-13274. [PMID: 35520770 PMCID: PMC9063757 DOI: 10.1039/c9ra01802f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 04/18/2019] [Indexed: 12/16/2022] Open
Abstract
The effect of the oxygen evolution reaction (OER) is important in water splitting. In this work, we develop sphere-like morphology spinel oxide CoFe2O4/NF by hydrothermal reaction and calcination, and the diameter of the spheres is about 111.1 nm. The CoFe2O4/NF catalyst exhibits excellent electrocatalytic performance with an overpotential of 273 mV at a current density of 10 mA cm-2 and a Tafel slope of 78 mV dec-1. The cycling stability of CoFe2O4/NF is remarkable, and it only increased by 5 mV at a current density of 100 mA cm-2 after 3000 cycles. Therefore, this simple method to prepare CoFe2O4/NF can enhance the OER properties of electrocatalysts, which makes CoFe2O4/NF a promising material to replace noble metal-based catalysts for the oxygen evolution reaction.
Collapse
Affiliation(s)
- Shasha Zhu
- College of Chemistry and Chemical Engineering, Chongqing University Chongqing 400044 China
| | - Jinglei Lei
- College of Chemistry and Chemical Engineering, Chongqing University Chongqing 400044 China
| | - Yonghan Qin
- College of Chemistry and Chemical Engineering, Chongqing University Chongqing 400044 China
| | - Lina Zhang
- College of Chemistry and Chemical Engineering, Chongqing University Chongqing 400044 China
| | - Lijuan Lu
- College of Computer Science and Technology, Chongqing University of Posts and Telecommunications Chonqing 400065 China
| |
Collapse
|
61
|
Li P, Zhao R, Chen H, Wang H, Wei P, Huang H, Liu Q, Li T, Shi X, Zhang Y, Liu M, Sun X. Recent Advances in the Development of Water Oxidation Electrocatalysts at Mild pH. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805103. [PMID: 30773809 DOI: 10.1002/smll.201805103] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/14/2019] [Indexed: 05/06/2023]
Abstract
Developing anodic oxygen evolution reaction (OER) electrocatalysts with high catalytic activities is of great importance for effective water splitting. Compared with the water-oxidation electrocatalysts that are commonly utilized in alkaline conditions, the ones operating efficiently under neutral or near neutral conditions are more environmentally friendly with less corrosion issues. This review starts with a brief introduction of OER, the importance of OER in mild-pH media, as well as the fundamentals and performance parameters of OER electrocatalysts. Then, recent progress of the rational design of electrocatalysts for OER in mild-pH conditions is discussed. The chemical structures or components, synthetic approaches, and catalytic performances of the OER catalysts will be reviewed. Some interesting insights into the catalytic mechanism are also included and discussed. It concludes with a brief outlook on the possible remaining challenges and future trends of neutral or near-neutral OER electrocatalysts. It hopefully provides the readers with a distinct perspective of the history, present, and future of OER electrocatalysts at mild conditions.
Collapse
Affiliation(s)
- Peipei Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Runbo Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Hongyu Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Huanbo Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Peipei Wei
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Hong Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Qian Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Tingshuai Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Xifeng Shi
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| |
Collapse
|
64
|
Li L, Zhang Y, Li J, Huo W, Li B, Bai J, Cheng Y, Tang H, Li X. Facile synthesis of yolk–shell structured ZnFe2O4 microspheres for enhanced electrocatalytic oxygen evolution reaction. Inorg Chem Front 2019. [DOI: 10.1039/c8qi01191e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Yolk–shell structured ZnFe2O4 microspheres with excellent OER performance are synthesized via a facile solvothermal method and annealing treatment.
Collapse
Affiliation(s)
- Li Li
- Department of Materials Science and Engineering
- Huaibei Normal University
- Huaibei 235000
- PR China
| | - Yongxing Zhang
- Department of Materials Science and Engineering
- Huaibei Normal University
- Huaibei 235000
- PR China
| | - Jia Li
- Department of Materials Science and Engineering
- Huaibei Normal University
- Huaibei 235000
- PR China
| | - Wang Huo
- Department of Materials Science and Engineering
- Huaibei Normal University
- Huaibei 235000
- PR China
| | - Bing Li
- Department of Materials Science and Engineering
- Huaibei Normal University
- Huaibei 235000
- PR China
| | - Juan Bai
- School of Materials Science and Engineering
- Shaanxi Normal University
- Xi'an 710119
- PR China
| | - Yu Cheng
- School of Materials Science and Engineering
- Shaanxi Normal University
- Xi'an 710119
- PR China
| | - Huijie Tang
- State Key Laboratory of Solidification Processing Center of Nano Energy Materials
- School of Materials Science and Engineering
- Northwestern Polytechnical University
- Xi'an 710072
- PR China
| | - Xuanhua Li
- State Key Laboratory of Solidification Processing Center of Nano Energy Materials
- School of Materials Science and Engineering
- Northwestern Polytechnical University
- Xi'an 710072
- PR China
| |
Collapse
|
65
|
Hao P, Zhu W, Li L, Xin Y, Xie J, Lei F, Tian J, Tang B. An iron incorporation-induced nickel hydroxide multiphase with a 2D/3D hierarchical sheet-on-sheet structure for electrocatalytic water oxidation. Chem Commun (Camb) 2019; 55:10138-10141. [DOI: 10.1039/c9cc05115e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Fe-incorporated Ni(OH)2 multiphase with a unique 2D/3D hierarchical sheet-on-sheet structure exhibits superior catalytic activity contributed by synergistic effects, enhanced electron transport and well-exposed active sites.
Collapse
Affiliation(s)
- Pin Hao
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Wenqian Zhu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Liyi Li
- Intel Corporation
- Hillsboro
- USA
| | - Ying Xin
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Junfeng Xie
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Fengcai Lei
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Jian Tian
- School of Materials Science and Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|