51
|
Coker ES, Gunier R, Huen K, Holland N, Eskenazi B. DNA methylation and socioeconomic status in a Mexican-American birth cohort. Clin Epigenetics 2018; 10:61. [PMID: 29760810 PMCID: PMC5941629 DOI: 10.1186/s13148-018-0494-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/25/2018] [Indexed: 11/25/2022] Open
Abstract
Background Maternal social environmental stressors during pregnancy are associated with adverse birth and child developmental outcomes, and epigenetics has been proposed as a possible mechanism for such relationships. Methods In a Mexican-American birth cohort of 241 maternal-infant pairs, cord blood samples were measured for repeat element DNA methylation (LINE-1 and Alu). Linear mixed effects regression was used to model associations between indicators of the social environment (low household income and education, neighborhood-level characteristics) and repeat element methylation. Results from a dietary questionnaire were also used to assess the interaction between maternal diet quality and the social environment on markers of repeat element DNA methylation. Results After adjusting for confounders, living in the most impoverished neighborhoods was associated with higher cord blood LINE-1 methylation (β = 0.78, 95%CI 0.06, 1.50, p = 0.03). No other neighborhood-, household-, or individual-level socioeconomic indicators were significantly associated with repeat element methylation. We observed a statistical trend showing that positive association between neighborhood poverty and LINE-1 methylation was strongest in cord blood of infants whose mothers reported better diet quality during pregnancy (pinteraction = 0.12). Conclusion Our findings indicate a small yet unexpected positive association between neighborhood-level poverty during pregnancy and methylation of repetitive element DNA in infant cord blood and that this association is possibly modified by diet quality during pregnancy. However, our null findings for other adverse SES indicators do not provide strong evidence for an adverse association between early-life socioeconomic environment and repeat element DNA methylation in infants.
Collapse
Affiliation(s)
- Eric S. Coker
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA USA
- Berkeley, USA
| | - Robert Gunier
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA USA
- Berkeley, USA
| | - Karen Huen
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA USA
- Richmond, USA
| | - Nina Holland
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA USA
- Richmond, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA USA
- Berkeley, USA
| |
Collapse
|
52
|
Yang P, Gong YJ, Cao WC, Wang RX, Wang YX, Liu C, Chen YJ, Huang LL, Ai SH, Lu WQ, Zeng Q. Prenatal urinary polycyclic aromatic hydrocarbon metabolites, global DNA methylation in cord blood, and birth outcomes: A cohort study in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:396-405. [PMID: 29202418 DOI: 10.1016/j.envpol.2017.11.082] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/17/2017] [Accepted: 11/26/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) is a potential risk factor for adverse birth outcomes. Epigenetic mechanisms may play a key role in which PAHs exert its effects. OBJECTIVE Our study aimed to examine whether prenatal PAH exposure was associated with adverse birth outcomes and altered DNA methylation and to explore potential mediating roles of DNA methylation. METHODS Ten urinary PAH metabolites were measured from 106 pregnant women during late pregnancy in a Chinese cohort study. Cord blood DNA methylation in long interspersed nucleotide element-1 (LINE-1) and Alu repetitive elements as surrogates of global DNA methylation was analyzed by bisulfite pyrosequencing. Multivariable linear regression was used to estimate the associations of urinary PAH metabolites with birth outcomes and DNA methylation, and a mediation analysis was also conducted. RESULTS Prenatal urinary 2-hydroxynaphthalene (2-OHNa), ∑OHNa (sum of 1- and 2-OHNa), and sum of monohydroxy-PAH (∑OH-PAHs) were associated with lower birth length (e.g., -0.80%, 95% CI: -1.39%, -0.20% for the third vs. first tertile of 2-OHNa; p for trend = 0.01). Prenatal urinary 2-OHNa and 1-hydroxyphenanthrene (1-OHPh) were associated with lower Alu and LINE-1 methylation (e.g., -1.88%, 95% CI: -3.73%, -0.10% for the third vs. first tertile tertile of 2-OHNa in Alu methylation; p for trend = 0.04). Mediation analysis failed to show a mediator effect of global DNA methylation in the association between prenatal urinary OH-PAHs and birth outcomes. CONCLUSIONS Prenatal specific PAH exposures are associated with decreased birth length and global DNA methylation. However, global DNA methylation does not mediate the associations of prenatal PAH exposure with birth outcomes. Further studies are needed to confirm the results.
Collapse
Affiliation(s)
- Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ya-Jie Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Wen-Cheng Cao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Rui-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying-Jun Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li-Li Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Song-Hua Ai
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
53
|
Brewster CS, Sharma VK, Cizmas L, McDonald TJ. Occurrence, distribution and composition of aliphatic and polycyclic aromatic hydrocarbons in sediment cores from the Lower Fox River, Wisconsin, US. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4974-4988. [PMID: 29204943 PMCID: PMC5823782 DOI: 10.1007/s11356-017-0819-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
The Lower Fox River is a 39 mile section which supports approximately 270,000 rural inhabitants across 18 counties, 303,000 metropolitan residents in Green Bay and Appleton, Wisconsin, and several large industrial complexes such as paper mills and power plants. This paper presents the distribution and concentrations of aliphatic (n-alkanes) and aromatic hydrocarbons (polycyclic aromatic hydrocarbons [PAHs]) as well as total organic carbon (TOC) in the Lower Fox River to identify the sources of hydrocarbon contamination. Excluding one outlier, percent TOC values were between 0.73 and 19.9% with an average value of 6.74%. Total n-alkanes ranged from 3.51 μg/g to 117 μg/g and showed a strong presence of odd carbon-numbered n-alkane ratios (range of C25 to C35), suggesting source input from terrestrial biomass. The mean polycyclic aromatic hydrocarbon (PAH) concentration was 24,800 ng/g. High molecular weight PAH concentrations dominated the distribution of hydrocarbon contaminants. Cross-plots of PAHs were used to compare diagnostic source ratios of benz[a]anthracene (BaA), chrysene (Chr), fluoranthene (Flu), pyrene (Pyr), anthracene (Ant), phenanthrene (Phe), indeno[1,2,3-cd]pyrene (InP), and benzo[g,h,i]perylene (BghiP) by depth and area. PAH ratios varied slightly with the core depth. Deeper core sections indicated the presence of biomass combustion while the upper core sections indicated combustion of both petroleum and biomass. The PAH toxicity of one core was estimated using toxicity equivalency factors, and the benzo[a]pyrene toxic equivalence quotient totaled 2,293 ng/g-dry wt. Levels of PAHs in sediments are compared with established regulatory values and recommendations are made.
Collapse
Affiliation(s)
- Chase S Brewster
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX, 77843-1266, USA
- TDI-Brooks International, 10060 N Dowling Road, College Station, TX, 77845, USA
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX, 77843-1266, USA
| | - Leslie Cizmas
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX, 77843-1266, USA
| | - Thomas J McDonald
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX, 77843-1266, USA.
| |
Collapse
|
54
|
Martin EM, Fry RC. Environmental Influences on the Epigenome: Exposure- Associated DNA Methylation in Human Populations. Annu Rev Public Health 2018; 39:309-333. [PMID: 29328878 DOI: 10.1146/annurev-publhealth-040617-014629] [Citation(s) in RCA: 411] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA methylation is the most well studied of the epigenetic regulators in relation to environmental exposures. To date, numerous studies have detailed the manner by which DNA methylation is influenced by the environment, resulting in altered global and gene-specific DNA methylation. These studies have focused on prenatal, early-life, and adult exposure scenarios. The present review summarizes currently available literature that demonstrates a relationship between DNA methylation and environmental exposures. It includes studies on aflatoxin B1, air pollution, arsenic, bisphenol A, cadmium, chromium, lead, mercury, polycyclic aromatic hydrocarbons, persistent organic pollutants, tobacco smoke, and nutritional factors. It also addresses gaps in the literature and future directions for research. These gaps include studies of mixtures, sexual dimorphisms with respect to environmentally associated methylation changes, tissue specificity, and temporal stability of the methylation marks.
Collapse
Affiliation(s)
- Elizabeth M Martin
- Department of Environmental Sciences and Engineering, and Curriculum in Toxicology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, USA; ,
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, and Curriculum in Toxicology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, USA; ,
| |
Collapse
|
55
|
Perera F. Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 15:E16. [PMID: 29295510 PMCID: PMC5800116 DOI: 10.3390/ijerph15010016] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
Fossil-fuel combustion by-products are the world's most significant threat to children's health and future and are major contributors to global inequality and environmental injustice. The emissions include a myriad of toxic air pollutants and carbon dioxide (CO₂), which is the most important human-produced climate-altering greenhouse gas. Synergies between air pollution and climate change can magnify the harm to children. Impacts include impairment of cognitive and behavioral development, respiratory illness, and other chronic diseases-all of which may be "seeded" in utero and affect health and functioning immediately and over the life course. By impairing children's health, ability to learn, and potential to contribute to society, pollution and climate change cause children to become less resilient and the communities they live in to become less equitable. The developing fetus and young child are disproportionately affected by these exposures because of their immature defense mechanisms and rapid development, especially those in low- and middle-income countries where poverty and lack of resources compound the effects. No country is spared, however: even high-income countries, especially low-income communities and communities of color within them, are experiencing impacts of fossil fuel-related pollution, climate change and resultant widening inequality and environmental injustice. Global pediatric health is at a tipping point, with catastrophic consequences in the absence of bold action. Fortunately, technologies and interventions are at hand to reduce and prevent pollution and climate change, with large economic benefits documented or predicted. All cultures and communities share a concern for the health and well-being of present and future children: this shared value provides a politically powerful lever for action. The purpose of this commentary is to briefly review the data on the health impacts of fossil-fuel pollution, highlighting the neurodevelopmental impacts, and to briefly describe available means to achieve a low-carbon economy, and some examples of interventions that have benefited health and the economy.
Collapse
Affiliation(s)
- Frederica Perera
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th Street, New York, NY 10032, USA.
| |
Collapse
|
56
|
Kalia V, Perera F, Tang D. Environmental Pollutants and Neurodevelopment: Review of Benefits From Closure of a Coal-Burning Power Plant in Tongliang, China. Glob Pediatr Health 2017; 4:2333794X17721609. [PMID: 28812058 PMCID: PMC5542072 DOI: 10.1177/2333794x17721609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 06/13/2017] [Accepted: 06/21/2017] [Indexed: 12/02/2022] Open
Abstract
Background. Understanding preventable causes of neurodevelopmental disorders is a public health priority. Polycyclic aromatic hydrocarbons (PAH) from combustion of fossil fuel, lead, and mercury are among known neurodevelopmental toxicants. Method. For the first time, we comprehensively review the findings from a study by the Columbia Center for Children's Environmental Health and Chinese partners that followed 2 groups of mother-child pairs, one from 2002 and another from 2005, in Tongliang County, China. Pregnant mothers in the 2 cohorts experienced different exposure to PAH because a local coal-burning power plant was shut down in 2004. Investigators assessed change in prenatal PAH exposure, measured using a biomarker (benzo[a]pyrene [BaP]-DNA adducts in cord blood). Developmental quotients were measured using the Gesell Developmental Scales at age 2 and IQ was assessed using the Wechsler Intelligence Scale for Children at age 5. Biologic markers of preclinical response were measured in cord blood: methylation status of long interspersed nuclear elements (LINE1), an indicator of genomic stability, and brain-derived neurotrophic factor (BDNF), a neuronal growth promoter. Analyses accounted for co-exposure to lead and mercury. Results. BaP-DNA adducts were significantly inversely associated with Gesell Developmental Scales scores in the first cohort but not in the second cohort; and levels of BDNF and LINE1 methylation were higher in the second cohort. Conclusion. In this study, reduced exposure to PAH was associated with beneficial effects on neurodevelopment as well as molecular changes related to improved brain development and health. These benefits should encourage further efforts to limit exposure to these toxic pollutants.
Collapse
Affiliation(s)
- Vrinda Kalia
- Department of Environmental Health Sciences, Columbia Center for Children’s Environemental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Frederica Perera
- Department of Environmental Health Sciences, Columbia Center for Children’s Environemental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Deliang Tang
- Department of Environmental Health Sciences, Columbia Center for Children’s Environemental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|