51
|
George AD, Kaya D, Layton BA, Bailey K, Mansell S, Kelly C, Williamson KJ, Radniecki TS. Impact of Sampling Type, Frequency, and Scale of the Collection System on SARS-CoV-2 Quantification Fidelity. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2022; 9:160-165. [PMID: 37566370 PMCID: PMC8791033 DOI: 10.1021/acs.estlett.1c00882] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 05/05/2023]
Abstract
With the rapid onset of the COVID-19 pandemic, wastewater-based epidemiology sampling methodologies for SARS-CoV-2 were often implemented quickly and may not have considered the unique drainage catchment characteristics. This study assessed the impact of grab versus composite sampling on the detection and quantification of SARS-CoV-2 in four different catchment scales with flow rates ranging from high flow (wastewater treatment plant influent) to medium flow (neighborhood scale) to low-flow (city block scale) to ultralow flow (building scale). At the high-flow site, grab samples were comparable to 24 h composite samples with SARS-CoV-2 detected in all samples and differed in concentration from the composite by <1 log 10 unit. However, as the size of the catchment decreased, the percentage of negative grab samples increased despite all respective composites being positive, and the SARS-CoV-2 concentrations of grab samples varied from those of the composites by up to almost 2 log 10 units. At the ultra-low-flow site, increased sampling frequencies generated composite samples with higher fidelity to the 5 min composite, which is the closest estimate of the true SARS-CoV-2 composite concentration that could be measured. Thus, composite sampling is more likely to compensate for temporal signal variability while grab samples do not, especially as the catchment basin size decreases.
Collapse
Affiliation(s)
- Andrea D. George
- Department of Research & Innovation,
Clean Water Services, Hillsboro, Oregon 97123,
United States
- School of Chemical, Biological, and Environmental
Engineering, Oregon State University, Corvallis, Oregon 97331,
United States
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental
Engineering, Oregon State University, Corvallis, Oregon 97331,
United States
| | - Blythe A. Layton
- Department of Research & Innovation,
Clean Water Services, Hillsboro, Oregon 97123,
United States
| | - Kestrel Bailey
- Department of Research & Innovation,
Clean Water Services, Hillsboro, Oregon 97123,
United States
| | - Scott Mansell
- Department of Research & Innovation,
Clean Water Services, Hillsboro, Oregon 97123,
United States
| | - Christine Kelly
- School of Chemical, Biological, and Environmental
Engineering, Oregon State University, Corvallis, Oregon 97331,
United States
| | - Kenneth J. Williamson
- Department of Research & Innovation,
Clean Water Services, Hillsboro, Oregon 97123,
United States
| | - Tyler S. Radniecki
- School of Chemical, Biological, and Environmental
Engineering, Oregon State University, Corvallis, Oregon 97331,
United States
| |
Collapse
|
52
|
Coprostanol as a Population Biomarker for SARS-CoV-2 Wastewater Surveillance Studies. WATER 2022. [DOI: 10.3390/w14020225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wastewater surveillance is a cost-effective tool for monitoring SARS-CoV-2 transmission in a community. However, challenges remain with regard to interpretating such studies, not least in how to compare SARS-CoV-2 levels between different-sized wastewater treatment plants. Viral faecal indicators, including crAssphage and pepper mild mottle virus, have been proposed as population biomarkers to normalise SARS-CoV-2 levels in wastewater. However, as these indicators exhibit variability between individuals and may not be excreted by everyone, their utility as population biomarkers may be limited. Coprostanol, meanwhile, is a bacterial metabolite of cholesterol which is excreted by all individuals. In this study, composite influent samples were collected from a large- and medium-sized wastewater treatment plant in Dublin, Ireland and SARS-CoV-2 N1, crAssphage, pepper mild mottle virus, HF183 and coprostanol levels were determined. SARS-CoV-2 N1 RNA was detected and quantified in all samples from both treatment plants. Regardless of treatment plant size, coprostanol levels exhibited the lowest variation in composite influent samples, while crAssphage exhibited the greatest variation. Moreover, the strongest correlations were observed between SARS-CoV-2 levels and national and Dublin COVID-19 cases when levels were normalised to coprostanol. This work demonstrates the usefulness of coprostanol as a population biomarker for wastewater surveillance studies.
Collapse
|
53
|
Cutrupi F, Cadonna M, Manara S, Foladori P. Surveillance of SARS-CoV-2 in extensive monitoring of municipal wastewater: key issues to yield reliable results. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3508-3514. [PMID: 34928822 DOI: 10.2166/wst.2021.469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Several studies have detected SARS-CoV-2 in the stool of infected people as in urban wastewater. The quantification of SARS-CoV-2 in wastewater appears today as a powerful tool that can help in wastewater-based epidemiology (WBE). The goal is to improve the prediction of new waves of COVID-19 outbreaks and provide an early warning of the evolution of the infection. In this research, we highlighted some practical and scientific aspects that emerged during an extensive ongoing monitoring campaign carried out on a large number of wastewater treatment plants located in the province of Trento (North Italy) and aimed at the detection of SARS-CoV-2 in raw municipal wastewater. The open issues underline are related to the collection and storage (sampling protocol, storage and heat treatment), to the molecular analysis (enrichment phase), and to the mathematical calculation of SARS-CoV-2 load in wastewater, suitable for WBE (standard curve to obtain the concentration of genomic units and flow rate measurements). This study provides some insights that can help in the implementation of surveillance plans in other regions.
Collapse
Affiliation(s)
- F Cutrupi
- Department of Civil, Environmental and Mechanical Engineering (DICAM), University of Trento, via Mesiano, n. 77, 38123 Trento, Italy E-mail:
| | - M Cadonna
- ADEP - Agenzia per la Depurazione, Autonomous Province of Trento, via Gilli, n. 3, 38121 Trento, Italy
| | - S Manara
- Department of Cellular Computational and Integrative Biology (CIBIO), University of Trento, via Sommarive, n. 9, 38123 Trento, Italy
| | - P Foladori
- Department of Civil, Environmental and Mechanical Engineering (DICAM), University of Trento, via Mesiano, n. 77, 38123 Trento, Italy E-mail:
| |
Collapse
|
54
|
Wu J, Wang Z, Lin Y, Zhang L, Chen J, Li P, Liu W, Wang Y, Yao C, Yang K. Technical framework for wastewater-based epidemiology of SARS-CoV-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148271. [PMID: 34130001 PMCID: PMC8195746 DOI: 10.1016/j.scitotenv.2021.148271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 05/02/2023]
Abstract
Wastewater-based epidemiology (WBE) is expected to become a powerful tool to monitor the dissemination of SARS-CoV-2 at the community level, which has attracted the attention of scholars all over the world. However, there is not yet a standard protocol to guide its implementation. In this paper, we proposed a comprehensive technical and theoretical framework of relative quantification via qPCR for determining the virus abundance in wastewater and estimating the infection ratio in corresponding communities, which is expected to achieve horizontal and vertical comparability of the data using a human-specific biomarker as the internal reference. Critical factors affecting the virus detectability and the estimation of infection ratio include virus concentration methods, lag-period, per capita virus shedding amount, sewage generation rate, temperature-related decay kinetics of virus/biomarker in wastewater, and hydraulic retention time (HRT), etc. Theoretical simulation shows that the main factors affecting the detectability of virus in sewage are per capita virus shedding amount and sewage generation rate. While the decay of SARS-CoV-2 RNA in sewage is a relatively slow process, which may have limited impact on its detection. Under the ideal condition of high per capita virus shedding amount and low sewage generation rate, it is expected to detect a single infected person within 400,000 people.
Collapse
Affiliation(s)
- Jinyong Wu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zizheng Wang
- West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yufei Lin
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lihua Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Chen
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Panyu Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenbin Liu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yabo Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kun Yang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
55
|
Impacts of COVID-19 on the Aquatic Environment and Implications on Aquatic Food Production. SUSTAINABILITY 2021. [DOI: 10.3390/su132011281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulted in ecological changes of aquatic ecosystems, affected the aquatic food supply chain, and disrupted the socio-economy of global populations. Due to reduced human activities during the pandemic, the aquatic environment was reported to improve its water quality, wild fishery stocks, and biodiversity. However, the sudden surge of plastics and biomedical wastes during the COVID-19 pandemic masked the positive impacts and increased the risks of aquatic pollution, especially microplastics, pharmaceuticals, and disinfectants. The transmission of SARS-CoV-2 from wastewater treatment plants to natural water bodies could have serious impacts on the environment and human health, especially in developing countries with poor waste treatment facilities. The presence and persistence of SARS-CoV-2 in human excreta, wastewaters, and sludge and its transmission to aquatic ecosystems could have negative impacts on fisheries and aquaculture industries, which have direct implications on food safety and security. COVID-19 pandemic-related environmental pollution showed a high risk to aquatic food security and human health. This paper reviews the impacts of COVID-19, both positive and negative, and assesses the causes and consequences of anthropogenic activities that can be managed through effective regulation and management of eco-resources for the revival of biodiversity, ecosystem health, and sustainable aquatic food production.
Collapse
|
56
|
Núñez-Delgado A, Bontempi E, Coccia M, Kumar M, Farkas K, Domingo JL. SARS-CoV-2 and other pathogenic microorganisms in the environment. ENVIRONMENTAL RESEARCH 2021; 201:111606. [PMID: 34181924 PMCID: PMC8459334 DOI: 10.1016/j.envres.2021.111606] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The title of the Virtual Special Issue (VSI) "SARS-CoV-2 and other pathogenic microorganisms in the environment", clearly indicates a main focus not only on the virus causing the current pandemic, but also on other pathogenic microorganisms and their spatial and temporal dynamics in environmental compartments. Overall, the VSI has received more than 100 submissions relating to most of the possible fields connected to the pandemic, many of them of high scientific value. A rigorous peer-reviewing process has been carried out, with a panel of experts making a great work to evaluate that important number of submissions. As a result, those manuscripts reaching the highest scientific standards were selected for publication. We think that the papers included constitute a set of high-quality contributions, which should help to improve the overall scientific perspective regarding this crucial issue. In this piece, the Editors comment some issues on the papers accepted for publication, and include additional reflections.
Collapse
Affiliation(s)
- Avelino Núñez-Delgado
- Dept. Soil Sci. and Agric. Chem., Univ. Santiago de Compostela, Engineering Polytech. School, Campus Univ. S/n, 27002, Lugo, Spain.
| | - Elza Bontempi
- INSTM and University of Brescia, Via Branze 38, 25123, Brescia, Italy
| | - Mario Coccia
- National Research Council of Italy, Research Institute on Sustainable Economic Growth, Roma, Italy
| | - Manish Kumar
- Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382 355, India
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Deiniol Rd, Bangor, Gwynedd, UK
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, Reus, Spain
| |
Collapse
|
57
|
Kolarević S, Micsinai A, Szántó-Egész R, Lukács A, Kračun-Kolarević M, Lundy L, Kirschner AKT, Farnleitner AH, Djukic A, Čolić J, Nenin T, Sunjog K, Paunović M. Detection of SARS-CoV-2 RNA in the Danube River in Serbia associated with the discharge of untreated wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146967. [PMID: 33865136 PMCID: PMC9754897 DOI: 10.1016/j.scitotenv.2021.146967] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 05/17/2023]
Abstract
In Serbia less than 13% of collected municipal wastewaters is being treated before their release in the environment. This includes all municipal wastewater discharges from Belgrade (capital city of Serbia; population 1,700,000). Previous research has identified the impacts of raw wastewater discharges from Belgrade on the Danube River, and this study investigated if such discharges also provided a pathway for SARS-CoV-2 RNA material. Samples were collected during the most critical circumstances that occurred so far within the COVID-19 pandemics in Serbia. Grab and composite samples were collected in December 2020, during the peak of the third wave (in terms of reported cases) at the site which receives the wastewater loads in Belgrade. Grab samples collected upstream and downstream of Belgrade were also analyzed. RNA was quantified using RT-qPCR with primer sets targeting nucleocapsid (N1 and N2) and envelope (E) protein genes. SARS-CoV-2 RNA (5.97 × 103 to 1.32 × 104 copies/L) was detected only in samples collected at the site strongly impacted by the wastewaters where all three applied primer sets gave positive signals. Determined concentrations correspond to those reported in wastewater influents sampled at treatment plants in other countries indicating an epidemiological indicator function of used approach for rivers with high pollution loads in countries with poor wastewater treatment.
Collapse
Affiliation(s)
- Stoimir Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Hydroecology and Water Protection, Bulevar despota Stefana 142, 11000 Belgrade, Serbia.
| | - Adrienn Micsinai
- WESSLING Hungary Ltd., H-1045 Budapest, Anonymus str 6., Hungary
| | | | - Alena Lukács
- Biomi Ltd., H-2100 Gödöllő, Szent-Györgyi Albert str 4., Hungary
| | - Margareta Kračun-Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Hydroecology and Water Protection, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Lian Lundy
- DRIZZLE Centre of Excellence, Luleå University of Technology, VA-Teknik, 971 87 Luleå, Sweden; Middlesex University, The Burroughs, London NW4 4BT, UK
| | - Alexander K T Kirschner
- Medical University Vienna, Institute for Hygiene and Applied Immunology - Water Microbiology, Kinderspitalgasse 15, Vienna, Austria; Interuniversity Cooperation Center Water and Health (ICC), Austria; Karl Landsteiner University of Health Sciences, Division Water Quality & Health, Dr.-Karl-Dorrek-Straße 30, A-3500 Krems, Austria
| | - Andreas H Farnleitner
- Interuniversity Cooperation Center Water and Health (ICC), Austria; Karl Landsteiner University of Health Sciences, Division Water Quality & Health, Dr.-Karl-Dorrek-Straße 30, A-3500 Krems, Austria; Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Group for Environmental Microbiology and Molecular Diagnostics, Gumpendorferstraße 1a, A-1060 Vienna, Austria
| | - Aleksandar Djukic
- Faculty of Civil Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11000 Belgrade, Serbia
| | - Jasna Čolić
- Jaroslav Černi Water Institute, Jaroslava Černog 80, 11226 Belgrade, Serbia
| | - Tanja Nenin
- Jaroslav Černi Water Institute, Jaroslava Černog 80, 11226 Belgrade, Serbia
| | - Karolina Sunjog
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Momir Paunović
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Hydroecology and Water Protection, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
58
|
Comparison of Detecting and Quantitating SARS-CoV-2 in Wastewater Using Moderate-Speed Centrifuged Solids versus an Ultrafiltration Method. WATER 2021. [DOI: 10.3390/w13162166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mounting evidence suggests that solids are a reliable matrix for SARS-CoV-2 detection in wastewater, yet studies comparing solids-based methods and common concentration methods using the liquid fraction remain limited. In this study, we developed and optimized a method for SARS-CoV-2 detection in wastewater using moderate-speed centrifuged solids and evaluated it against an ultrafiltration reference method. SARS-CoV-2 was quantified in samples from 12 wastewater treatment plants from Alberta, Canada, using RT-qPCR targeting the N2 and E genes. PCR inhibition was examined by spiking salmon DNA. The effects of using different amounts of solids, adjusting the sample pH to 9.6–10, and modifying the elution volume at the final step of RNA extraction were evaluated. SARS-CoV-2 detection rate in solids from 20 mL of wastewater showed no statistically significant difference compared to the ultrafiltration method (97/139 versus 90/139, p = 0.26, McNemar’s mid-p test). The optimized wastewater solids-based method had a significantly lower rate of samples with PCR inhibition versus ultrafiltration (3% versus 9.5%, p = 0.014, Chi-square test). Our optimized moderate-speed centrifuged solids-based method had similar sensitivity when compared to the ultrafiltration reference method but had the added advantages of lower costs, fewer processing steps, and a shorter turnaround time.
Collapse
|
59
|
Greenwald HD, Kennedy LC, Hinkle A, Whitney ON, Fan VB, Crits-Christoph A, Harris-Lovett S, Flamholz AI, Al-Shayeb B, Liao LD, Beyers M, Brown D, Chakrabarti AR, Dow J, Frost D, Koekemoer M, Lynch C, Sarkar P, White E, Kantor R, Nelson KL. Tools for interpretation of wastewater SARS-CoV-2 temporal and spatial trends demonstrated with data collected in the San Francisco Bay Area. WATER RESEARCH X 2021; 12:100111. [PMID: 34373850 DOI: 10.1101/2021.05.04.21256418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Accepted: 07/25/2021] [Indexed: 05/26/2023]
Abstract
Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA can be integrated with COVID-19 case data to inform timely pandemic response. However, more research is needed to apply and develop systematic methods to interpret the true SARS-CoV-2 signal from noise introduced in wastewater samples (e.g., from sewer conditions, sampling and extraction methods, etc.). In this study, raw wastewater was collected weekly from five sewersheds and one residential facility. The concentrations of SARS-CoV-2 in wastewater samples were compared to geocoded COVID-19 clinical testing data. SARS-CoV-2 was reliably detected (95% positivity) in frozen wastewater samples when reported daily new COVID-19 cases were 2.4 or more per 100,000 people. To adjust for variation in sample fecal content, four normalization biomarkers were evaluated: crAssphage, pepper mild mottle virus, Bacteroides ribosomal RNA (rRNA), and human 18S rRNA. Of these, crAssphage displayed the least spatial and temporal variability. Both unnormalized SARS-CoV-2 RNA signal and signal normalized to crAssphage had positive and significant correlation with clinical testing data (Kendall's Tau-b (τ)=0.43 and 0.38, respectively), but no normalization biomarker strengthened the correlation with clinical testing data. Locational dependencies and the date associated with testing data impacted the lead time of wastewater for clinical trends, and no lead time was observed when the sample collection date (versus the result date) was used for both wastewater and clinical testing data. This study supports that trends in wastewater surveillance data reflect trends in COVID-19 disease occurrence and presents tools that could be applied to make wastewater signal more interpretable and comparable across studies.
Collapse
Affiliation(s)
- Hannah D Greenwald
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
- Berkeley Water Center, University of California, Berkeley, CA, USA
| | - Lauren C Kennedy
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
- Berkeley Water Center, University of California, Berkeley, CA, USA
| | - Adrian Hinkle
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
- Berkeley Water Center, University of California, Berkeley, CA, USA
| | - Oscar N Whitney
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Vinson B Fan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Alexander Crits-Christoph
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | | | - Avi I Flamholz
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Basem Al-Shayeb
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Lauren D Liao
- School of Public Health, University of California, Berkeley, CA, USA
| | - Matt Beyers
- Alameda County Public Health Department, San Leandro, CA, USA
| | | | | | - Jason Dow
- Central Marin Sanitation Agency, San Rafael, CA, USA
| | - Dan Frost
- Central Contra Costa Sanitary District, Martinez, CA, USA
| | | | - Chris Lynch
- Contra Costa Health Services, Martinez, CA, USA
| | - Payal Sarkar
- San José-Santa Clara Regional Wastewater Facility, San José, CA, USA
| | - Eileen White
- East Bay Municipal Utility District, Oakland, CA, USA
| | - Rose Kantor
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
- Berkeley Water Center, University of California, Berkeley, CA, USA
| | - Kara L Nelson
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
- Berkeley Water Center, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| |
Collapse
|
60
|
Greenwald HD, Kennedy LC, Hinkle A, Whitney ON, Fan VB, Crits-Christoph A, Harris-Lovett S, Flamholz AI, Al-Shayeb B, Liao LD, Beyers M, Brown D, Chakrabarti AR, Dow J, Frost D, Koekemoer M, Lynch C, Sarkar P, White E, Kantor R, Nelson KL. Tools for interpretation of wastewater SARS-CoV-2 temporal and spatial trends demonstrated with data collected in the San Francisco Bay Area. WATER RESEARCH X 2021; 12:100111. [PMID: 34373850 PMCID: PMC8325558 DOI: 10.1016/j.wroa.2021.100111] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Accepted: 07/25/2021] [Indexed: 05/18/2023]
Abstract
Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA can be integrated with COVID-19 case data to inform timely pandemic response. However, more research is needed to apply and develop systematic methods to interpret the true SARS-CoV-2 signal from noise introduced in wastewater samples (e.g., from sewer conditions, sampling and extraction methods, etc.). In this study, raw wastewater was collected weekly from five sewersheds and one residential facility. The concentrations of SARS-CoV-2 in wastewater samples were compared to geocoded COVID-19 clinical testing data. SARS-CoV-2 was reliably detected (95% positivity) in frozen wastewater samples when reported daily new COVID-19 cases were 2.4 or more per 100,000 people. To adjust for variation in sample fecal content, four normalization biomarkers were evaluated: crAssphage, pepper mild mottle virus, Bacteroides ribosomal RNA (rRNA), and human 18S rRNA. Of these, crAssphage displayed the least spatial and temporal variability. Both unnormalized SARS-CoV-2 RNA signal and signal normalized to crAssphage had positive and significant correlation with clinical testing data (Kendall's Tau-b (τ)=0.43 and 0.38, respectively), but no normalization biomarker strengthened the correlation with clinical testing data. Locational dependencies and the date associated with testing data impacted the lead time of wastewater for clinical trends, and no lead time was observed when the sample collection date (versus the result date) was used for both wastewater and clinical testing data. This study supports that trends in wastewater surveillance data reflect trends in COVID-19 disease occurrence and presents tools that could be applied to make wastewater signal more interpretable and comparable across studies.
Collapse
Affiliation(s)
- Hannah D. Greenwald
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
- Berkeley Water Center, University of California, Berkeley, CA, USA
| | - Lauren C. Kennedy
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
- Berkeley Water Center, University of California, Berkeley, CA, USA
| | - Adrian Hinkle
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
- Berkeley Water Center, University of California, Berkeley, CA, USA
| | - Oscar N. Whitney
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Vinson B. Fan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Alexander Crits-Christoph
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | | | - Avi I. Flamholz
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Basem Al-Shayeb
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Lauren D. Liao
- School of Public Health, University of California, Berkeley, CA, USA
| | - Matt Beyers
- Alameda County Public Health Department, San Leandro, CA, USA
| | | | | | - Jason Dow
- Central Marin Sanitation Agency, San Rafael, CA, USA
| | - Dan Frost
- Central Contra Costa Sanitary District, Martinez, CA, USA
| | | | - Chris Lynch
- Contra Costa Health Services, Martinez, CA, USA
| | - Payal Sarkar
- San José-Santa Clara Regional Wastewater Facility, San José, CA, USA
| | - Eileen White
- East Bay Municipal Utility District, Oakland, CA, USA
| | - Rose Kantor
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
- Berkeley Water Center, University of California, Berkeley, CA, USA
| | - Kara L. Nelson
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
- Berkeley Water Center, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| |
Collapse
|
61
|
Hillary LS, Farkas K, Maher KH, Lucaci A, Thorpe J, Distaso MA, Gaze WH, Paterson S, Burke T, Connor TR, McDonald JE, Malham SK, Jones DL. Monitoring SARS-CoV-2 in municipal wastewater to evaluate the success of lockdown measures for controlling COVID-19 in the UK. WATER RESEARCH 2021; 200:117214. [PMID: 34058486 PMCID: PMC8105641 DOI: 10.1016/j.watres.2021.117214] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/19/2021] [Accepted: 04/30/2021] [Indexed: 05/18/2023]
Abstract
SARS-CoV-2 and the resulting COVID-19 pandemic represents one of the greatest recent threats to human health, wellbeing and economic growth. Wastewater-based epidemiology (WBE) of human viruses can be a useful tool for population-scale monitoring of SARS-CoV-2 prevalence and epidemiology to help prevent further spread of the disease, particularly within urban centres. Here, we present a longitudinal analysis (March-July 2020) of SARS-CoV-2 RNA prevalence in sewage across six major urban centres in the UK (total population equivalent 3 million) by q(RT-)PCR and viral genome sequencing. Our results demonstrate that levels of SARS-CoV-2 RNA generally correlated with the abundance of clinical cases recorded within the community in large urban centres, with a marked decline in SARS-CoV-2 RNA abundance following the implementation of lockdown measures. The strength of this association was weaker in areas with lower confirmed COVID-19 case numbers. Further, sequence analysis of SARS-CoV-2 from wastewater suggested that multiple genetically distinct clusters were co-circulating in the local populations covered by our sample sites, and that the genetic variants observed in wastewater reflected similar SNPs observed in contemporaneous samples from cases tested in clinical diagnostic laboratories. We demonstrate how WBE can be used for both community-level detection and tracking of SARS-CoV-2 and other virus' prevalence, and can inform public health policy decisions. Although, greater understanding of the factors that affect SARS-CoV-2 RNA concentration in wastewater are needed for the full integration of WBE data into outbreak surveillance. In conclusion, our results lend support to the use of routine WBE for monitoring of SARS-CoV-2 and other human pathogenic viruses circulating in the population and assessment of the effectiveness of disease control measures.
Collapse
Affiliation(s)
- Luke S Hillary
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, United Kingdom.
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, United Kingdom; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, United Kingdom
| | - Kathryn H Maher
- NERC Environmental Omics Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Anita Lucaci
- NERC Environmental Omics Facility, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Jamie Thorpe
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, United Kingdom; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, United Kingdom
| | - Marco A Distaso
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, United Kingdom
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, ESI, Penryn Campus, TR10 9FE United Kingdom
| | - Steve Paterson
- NERC Environmental Omics Facility, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Terry Burke
- NERC Environmental Omics Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Thomas R Connor
- Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom; Public Health Wales, University Hospital of Wales, Cardiff, CF14 4XW, United Kingdom
| | - James E McDonald
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, United Kingdom
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, United Kingdom
| | - David L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, United Kingdom; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
62
|
Harris-Lovett S, Nelson KL, Beamer P, Bischel HN, Bivins A, Bruder A, Butler C, Camenisch TD, De Long SK, Karthikeyan S, Larsen DA, Meierdiercks K, Mouser PJ, Pagsuyoin S, Prasek SM, Radniecki TS, Ram JL, Roper DK, Safford H, Sherchan SP, Shuster W, Stalder T, Wheeler RT, Korfmacher KS. Wastewater Surveillance for SARS-CoV-2 on College Campuses: Initial Efforts, Lessons Learned, and Research Needs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4455. [PMID: 33922263 PMCID: PMC8122720 DOI: 10.3390/ijerph18094455] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 01/28/2023]
Abstract
Wastewater surveillance for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging approach to help identify the risk of a coronavirus disease (COVID-19) outbreak. This tool can contribute to public health surveillance at both community (wastewater treatment system) and institutional (e.g., colleges, prisons, and nursing homes) scales. This paper explores the successes, challenges, and lessons learned from initial wastewater surveillance efforts at colleges and university systems to inform future research, development and implementation. We present the experiences of 25 college and university systems in the United States that monitored campus wastewater for SARS-CoV-2 during the fall 2020 academic period. We describe the broad range of approaches, findings, resources, and impacts from these initial efforts. These institutions range in size, social and political geographies, and include both public and private institutions. Our analysis suggests that wastewater monitoring at colleges requires consideration of local information needs, sewage infrastructure, resources for sampling and analysis, college and community dynamics, approaches to interpretation and communication of results, and follow-up actions. Most colleges reported that a learning process of experimentation, evaluation, and adaptation was key to progress. This process requires ongoing collaboration among diverse stakeholders including decision-makers, researchers, faculty, facilities staff, students, and community members.
Collapse
Affiliation(s)
- Sasha Harris-Lovett
- Berkeley Water Center, University of California Berkeley, 410 O’Brien Hall, Berkeley, CA 94720, USA
| | - Kara L. Nelson
- Department of Civil and Environmental Engineering, University of California Berkeley, MS 1710, Berkeley, CA 94720, USA;
| | - Paloma Beamer
- Department of Community, Environment & Policy, Zuckerman College of Public Health, University of Arizona, 1295 N Martin Ave., Tucson, AZ 85724, USA;
| | - Heather N. Bischel
- Department of Civil and Environmental Engineering, University of California Davis, 3109 Ghausi Hall, One Shields Ave., Davis, CA 95616, USA;
| | - Aaron Bivins
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA;
| | - Andrea Bruder
- Department of Mathematics and Computer Science, Colorado College, 14 E Cache la Poudre St., Colorado Springs, CO 80903, USA;
| | - Caitlyn Butler
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, 130 Natural Resources Rd., Amherst, MA 01003, USA;
| | - Todd D. Camenisch
- Department of Pharmaceutical Sciences, St. John Fisher College, 3690 East Ave., Rochester, NY 14618, USA;
| | - Susan K. De Long
- Department of Civil and Environmental Engineering, 1301 Campus Delivery, Colorado State University, Fort Collins, CO 80526, USA;
| | - Smruthi Karthikeyan
- Department of Pediatrics, University of California San Diego, Biomedical Res. Facility 2, 9500 Gilman Drive, La Jolla, CA 92037, USA;
| | - David A. Larsen
- Department of Public Health, Syracuse University, 430C Barclay, Syracuse, New York, NY 13244, USA;
| | - Katherine Meierdiercks
- Department of Environmental Studies and Sciences, Siena College, 515 Loudon Rd., Loudonville, NY 12211, USA;
| | - Paula J. Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire Durham, 35 Colovos Rd., 236 Gregg Hall, Durham, NH 03824, USA;
| | - Sheree Pagsuyoin
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA;
| | - Sarah M. Prasek
- Water and Energy Sustainable Technology Center, University of Arizona, 2959 W Calle Agua Nueva, Tucson, AZ 85745, USA;
| | - Tyler S. Radniecki
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, 105 SW 26th St., Corvallis, OR 97331, USA;
| | - Jeffrey L. Ram
- Department of Physiology, Wayne State University, 540 E. Canfield St., Detroit, MI 48201, USA;
| | - D. Keith Roper
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, USA;
| | - Hannah Safford
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, Davis, CA 95616, USA;
| | - Samendra P. Sherchan
- Department of Environmental Health Science, Tulane University, 1440 Canal St., New Orleans, LA 70112, USA;
| | - William Shuster
- Department of Civil and Environmental Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202, USA;
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, 875 Perimeter Dr. MS3051, Moscow, ID 83844, USA;
| | - Robert T. Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, 5735 Hitchner Hall, Orono, ME 04473, USA;
| | - Katrina Smith Korfmacher
- Department of Environmental Medicine, University of Rochester, 601 Elmwood Ave., Box EHSC, Rochester, NY 14642, USA;
| |
Collapse
|
63
|
Hong PY, Rachmadi AT, Mantilla-Calderon D, Alkahtani M, Bashawri YM, Al Qarni H, O'Reilly KM, Zhou J. Estimating the minimum number of SARS-CoV-2 infected cases needed to detect viral RNA in wastewater: To what extent of the outbreak can surveillance of wastewater tell us? ENVIRONMENTAL RESEARCH 2021; 195:110748. [PMID: 33465345 DOI: 10.1101/2020.08.19.20177667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 05/19/2023]
Abstract
There is increasing interest in wastewater-based epidemiology (WBE) of SARS-CoV-2 RNA to serve as an early warning system for a community. Despite successful detection of SARS-CoV-2 RNA in wastewaters sampled from multiple locations, there is still no clear idea on the minimal number of cases in a community that are associated with a positive detection of the virus in wastewater. To address this knowledge gap, we sampled wastewaters from a septic tank (n = 57) and biological activated sludge tank (n = 52) located on-site of a hospital. The hospital is providing treatment for SARS-CoV-2 infected patients, with the number of hospitalized patients per day known. It was observed that depending on which nucleocapsid gene is targeted by means of RT-qPCR, a range of 253-409 positive cases out of 10,000 persons are required prior to detecting RNA SARS-CoV-2 in wastewater. There was a weak correlation between N1 and N2 gene abundances in wastewater with the number of hospitalized cases. This correlation was however not observed for N3 gene. The frequency of detecting N1 and N2 gene in wastewater was also higher than that for N3 gene. Furthermore, nucleocapsid genes of SARS-CoV-2 were detected at lower frequency in the partially treated wastewater than in the septic tank. In particular, N1 gene abundance was associated with water quality parameters such as total organic carbon and pH. In instances of positive detection, the average abundance of N1 and N3 genes in the activated sludge tank were reduced by 50 and 70% of the levels detected in septic tank, suggesting degradation of the SARS-CoV-2 gene fragments already occurring in the early stages of the wastewater treatment process.
Collapse
Affiliation(s)
- Pei-Ying Hong
- Division of Biological and Environmental Science and Engineering, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Andri Taruna Rachmadi
- Division of Biological and Environmental Science and Engineering, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - David Mantilla-Calderon
- Division of Biological and Environmental Science and Engineering, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohsen Alkahtani
- Environmental Health Laboratory, Jeddah, Ministry of Health, Saudi Arabia
| | - Yasir M Bashawri
- General Directorate of Environment Health, Ministry of Health, Saudi Arabia
| | - Hamed Al Qarni
- General Directorate of Environment Health, Ministry of Health, Saudi Arabia
| | - Kathleen M O'Reilly
- Faculty of Epidemiology and Population Health and Centre for Mathematical Modelling of Infectious Disease, London School of Hygiene and Tropical Medicine, London, UK
| | - Jianqiang Zhou
- Division of Biological and Environmental Science and Engineering, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
64
|
Hong PY, Rachmadi AT, Mantilla-Calderon D, Alkahtani M, Bashawri YM, Al Qarni H, O'Reilly KM, Zhou J. Estimating the minimum number of SARS-CoV-2 infected cases needed to detect viral RNA in wastewater: To what extent of the outbreak can surveillance of wastewater tell us? ENVIRONMENTAL RESEARCH 2021; 195:110748. [PMID: 33465345 PMCID: PMC7831732 DOI: 10.1016/j.envres.2021.110748] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 05/19/2023]
Abstract
There is increasing interest in wastewater-based epidemiology (WBE) of SARS-CoV-2 RNA to serve as an early warning system for a community. Despite successful detection of SARS-CoV-2 RNA in wastewaters sampled from multiple locations, there is still no clear idea on the minimal number of cases in a community that are associated with a positive detection of the virus in wastewater. To address this knowledge gap, we sampled wastewaters from a septic tank (n = 57) and biological activated sludge tank (n = 52) located on-site of a hospital. The hospital is providing treatment for SARS-CoV-2 infected patients, with the number of hospitalized patients per day known. It was observed that depending on which nucleocapsid gene is targeted by means of RT-qPCR, a range of 253-409 positive cases out of 10,000 persons are required prior to detecting RNA SARS-CoV-2 in wastewater. There was a weak correlation between N1 and N2 gene abundances in wastewater with the number of hospitalized cases. This correlation was however not observed for N3 gene. The frequency of detecting N1 and N2 gene in wastewater was also higher than that for N3 gene. Furthermore, nucleocapsid genes of SARS-CoV-2 were detected at lower frequency in the partially treated wastewater than in the septic tank. In particular, N1 gene abundance was associated with water quality parameters such as total organic carbon and pH. In instances of positive detection, the average abundance of N1 and N3 genes in the activated sludge tank were reduced by 50 and 70% of the levels detected in septic tank, suggesting degradation of the SARS-CoV-2 gene fragments already occurring in the early stages of the wastewater treatment process.
Collapse
Affiliation(s)
- Pei-Ying Hong
- Division of Biological and Environmental Science and Engineering, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Andri Taruna Rachmadi
- Division of Biological and Environmental Science and Engineering, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - David Mantilla-Calderon
- Division of Biological and Environmental Science and Engineering, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohsen Alkahtani
- Environmental Health Laboratory, Jeddah, Ministry of Health, Saudi Arabia
| | - Yasir M Bashawri
- General Directorate of Environment Health, Ministry of Health, Saudi Arabia
| | - Hamed Al Qarni
- General Directorate of Environment Health, Ministry of Health, Saudi Arabia
| | - Kathleen M O'Reilly
- Faculty of Epidemiology and Population Health and Centre for Mathematical Modelling of Infectious Disease, London School of Hygiene and Tropical Medicine, London, UK
| | - Jianqiang Zhou
- Division of Biological and Environmental Science and Engineering, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
65
|
Kantor RS, Nelson KL, Greenwald HD, Kennedy LC. Challenges in Measuring the Recovery of SARS-CoV-2 from Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3514-3519. [PMID: 33656856 DOI: 10.1021/acs.est.0c08210] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Wastewater-based epidemiology is an emerging tool for tracking the spread of SARS-CoV-2 through populations. However, many factors influence recovery and quantification of SARS-CoV-2 from wastewater, complicating data interpretation. Specifically, these factors may differentially affect the measured virus concentration, depending on the laboratory methods used to perform the test. Many laboratories add a proxy virus to wastewater samples to determine losses associated with concentration and extraction of viral RNA. While measuring recovery of a proxy virus is an important process control, in this piece, we describe the caveats and limitations to the interpretation of this control, including that it typically does not account for losses during RNA extraction. We recommend reporting the directly measured concentration data alongside the measured recovery efficiency, rather than attempting to correct the concentration for recovery efficiency. Even though the ability to directly compare SARS-CoV-2 concentrations from different sampling locations determined using different methods is limited, concentration data (uncorrected for recovery) can be useful for public health response.
Collapse
Affiliation(s)
- Rose S Kantor
- Department of Civil and Environmental Engineering, University of California, Berkeley, 663 Davis Hall, Berkeley, California 94720, United States
| | - Kara L Nelson
- Department of Civil and Environmental Engineering, University of California, Berkeley, 663 Davis Hall, Berkeley, California 94720, United States
| | - Hannah D Greenwald
- Department of Civil and Environmental Engineering, University of California, Berkeley, 663 Davis Hall, Berkeley, California 94720, United States
| | - Lauren C Kennedy
- Department of Civil and Environmental Engineering, University of California, Berkeley, 663 Davis Hall, Berkeley, California 94720, United States
| |
Collapse
|
66
|
Harris-Lovett S, Nelson K, Beamer P, Bischel HN, Bivins A, Bruder A, Butler C, Camenisch TD, De Long SK, Karthikeyan S, Larsen DA, Meierdiercks K, Mouser P, Pagsuyoin S, Prasek S, Radniecki TS, Ram JL, Roper DK, Safford H, Sherchan SP, Shuster W, Stalder T, Wheeler RT, Korfmacher KS. Wastewater surveillance for SARS-CoV-2 on college campuses: Initial efforts, lessons learned and research needs. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.02.01.21250952. [PMID: 33564791 PMCID: PMC7872386 DOI: 10.1101/2021.02.01.21250952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Wastewater surveillance for SARS-CoV-2 is an emerging approach to help identify the risk of a COVID-19 outbreak. This tool can contribute to public health surveillance at both community (wastewater treatment system) and institutional (e.g., colleges, prisons, nursing homes) scales. Objectives This research aims to understand the successes, challenges, and lessons learned from initial wastewater surveillance efforts at colleges and university systems to inform future research, development and implementation. Methods This paper presents the experiences of 25 college and university systems in the United States that monitored campus wastewater for SARS-CoV-2 during the fall 2020 academic period. We describe the broad range of approaches, findings, resource needs, and lessons learned from these initial efforts. These institutions range in size, social and political geographies, and include both public and private institutions. Discussion Our analysis suggests that wastewater monitoring at colleges requires consideration of information needs, local sewage infrastructure, resources for sampling and analysis, college and community dynamics, approaches to interpretation and communication of results, and follow-up actions. Most colleges reported that a learning process of experimentation, evaluation, and adaptation was key to progress. This process requires ongoing collaboration among diverse stakeholders including decision-makers, researchers, faculty, facilities staff, students, and community members.
Collapse
Affiliation(s)
- Sasha Harris-Lovett
- Berkeley Water Center, University of California Berkeley, Berkeley, California, USA
| | - Kara Nelson
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, California, USA
| | - Paloma Beamer
- Department of Community, Environment & Policy, Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
| | - Heather N Bischel
- Department of Civil and Environmental Engineering, University of California Davis, Davis, California, USA
| | - Aaron Bivins
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Andrea Bruder
- Department of Mathematics and Computer Science, Colorado College, Colorado Springs, Colorado, USA
| | - Caitlyn Butler
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Todd D Camenisch
- Department of Pharmaceutical Sciences, St. John Fisher College, Rochester, New York, USA
| | - Susan K De Long
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Smruthi Karthikeyan
- Department of Pediatrics, University of California San Diego, San Diego, California, USA
| | - David A Larsen
- Department of Public Health, Syracuse University, Syracuse, New York, USA
| | - Katherine Meierdiercks
- Department of Environmental Studies and Sciences, Siena College, Loudonville, New York, USA
| | - Paula Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire Durham, Durham, New Hampshire, USA
| | - Sheree Pagsuyoin
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Sarah Prasek
- Water and Energy Sustainable Technology Center, University of Arizona, Tucson, Arizona, USA
| | - Tyler S Radniecki
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Jeffrey L Ram
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - D Keith Roper
- Department of Biological Engineering, Utah State University, Logan, Utah, USA
| | - Hannah Safford
- Department of Civil and Environmental Engineering, University of California Davis, Davis, California, USA
| | - Samendra P Sherchan
- Department of Environmental Health Science, Tulane University, New Orleans, Louisiana, USA
| | - William Shuster
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, Michigan, USA
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Robert T Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | | |
Collapse
|