51
|
Leukocyte expression profiles reveal gene sets with prognostic value for seizure-free outcome following stereotactic laser amygdalohippocampotomy. Sci Rep 2019; 9:1086. [PMID: 30705324 PMCID: PMC6355811 DOI: 10.1038/s41598-018-37763-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/13/2018] [Indexed: 02/08/2023] Open
Abstract
Among patients with intractable epilepsy, the most commonly performed surgical procedure is craniotomy for amygdalohippocampectomy (AH). Stereotactic laser amygdalohippocampotomy (SLAH) has also been recently employed as a minimally invasive treatment for intractable temporal lobe epilepsy (TLE). Among patients treated with AH and SLAH approximately 65% and 54% of patients become seizure-free, respectively. Therefore, selection criteria for surgical candidates with improved prognostic value for post-operative seizure-free outcome are greatly needed. In this study, we perform RNA sequencing (RNA-Seq) on whole blood leukocyte samples taken from 16 patients with intractable TLE prior to SLAH to test the hypothesis that pre-operative leukocyte RNA expression profiles are prognostic for post-operative seizure outcome. Multidimensional scaling analysis of the RNA expression data indicated separate clustering of patients with seizure free (SF) and non-seizure-free (NSF) outcomes. Differential expression (DE) analysis performed on SF versus NSF groups revealed 24 significantly differentially expressed genes (≥2.0-fold change, p-value < 0.05, FDR <0.05). Network and pathway analyses identified differential activation of pathways involved in lipid metabolism, morphology of oligodendrocytes, inflammatory response, and development of astrocytes. These results suggest that pre-operative leukocyte expression profiles have prognostic value for seizure outcome following SLAH.
Collapse
|
52
|
Marchev S, Andreeva-Gateva P, Tzoneva R, Surcheva S, Tzonev A, Kamenova K, Angelova VT, Tchekalarova J, Vlaskovska M. Analgesic activity of some aroylhydrazone-based molecular hybrids with antiseizure activity: in vivo and in silico evaluations. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1555009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Stanislav Marchev
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Pavlina Andreeva-Gateva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
- Department of Internal Medicine, Pharmacology and Clinical Pharmacology, Faculty of Medicine, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Roumiana Tzoneva
- Department of Lipid-Protein Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Slavina Surcheva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Alex Tzonev
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Kalina Kamenova
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Violina T. Angelova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Jana Tchekalarova
- Department of Behaviour Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mila Vlaskovska
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
53
|
Ravizza T, Vezzani A. Pharmacological targeting of brain inflammation in epilepsy: Therapeutic perspectives from experimental and clinical studies. Epilepsia Open 2018; 3:133-142. [PMID: 30564772 PMCID: PMC6293065 DOI: 10.1002/epi4.12242] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2018] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence supports a pathogenic role of unabated neuroinflammation in various central nervous system (CNS) diseases, including epilepsy. Neuroinflammation is not a bystander phenomenon of the diseased brain tissue, but it may contribute to neuronal hyperexcitability underlying seizure generation, cell loss, and neurologic comorbidities. Several molecules, which constitute the inflammatory milieu in the epileptogenic area, activate signaling pathways in neurons and glia resulting in pathologic modifications of cell function, which ultimately lead to alterations in synaptic transmission and plasticity. Herein we report the up-to-date experimental and clinical evidence that supports the neuromodulatory role of inflammatory mediators, their related signaling pathways, and involvement in epilepsy. We discuss how these mechanisms can be harnessed to discover and validate targets for novel therapeutics, which may prevent or control pharmacoresistant epilepsies.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of NeuroscienceIRCCS – Mario Negri Institute for Pharmacological ResearchMilanoItaly
| | - Annamaria Vezzani
- Department of NeuroscienceIRCCS – Mario Negri Institute for Pharmacological ResearchMilanoItaly
| |
Collapse
|
54
|
Hsu MH, Hsu JF, Kuo HC, Lai MY, Chiang MC, Lin YJ, Huang HR, Chu SM, Tsai MH. Neurological Complications in Young Infants With Acute Bacterial Meningitis. Front Neurol 2018; 9:903. [PMID: 30405525 PMCID: PMC6207629 DOI: 10.3389/fneur.2018.00903] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/05/2018] [Indexed: 01/27/2023] Open
Abstract
We aimed to evaluate the occurrence, treatment, and outcomes of neurological complications after bacterial meningitis in young infants. A case series study from a retrospective cohort from two tertiary-level medical centers in Taiwan between 2007 and 2016 was conducted. Eighty-five young infants aged < 90 days with bacterial meningitis were identified. 25 (29.4%) were born at preterm. Group B Streptococcus (GBS) and Escherichia coli caused 74.1% of identified cases. Despite the majority (90.6%) initially received microbiologically appropriate antibiotics, 65 (76.5%) had experienced at least one neurological complication identified at a median of 6 days (range: 1–173) after onset of bacterial meningitis. The most common neurological complication was seizure (58.8%), followed by subdural effusion (47.1%), ventriculomegaly (41.2%), subdural empyema (21.2%), hydrocephalus (18.8%), ventriculitis (15.3%), periventricular leukomalacia (11.8%), and encephalomalacia (10.6%). Nine patients (10.6%) died (including 4 had critical discharge on request) and 29/76 (38.2%) of the survivors had major neurological sequelae at discharge. Nighteen (22.4%) received surgical intervention due to these complications. After multivariate logistic regression, initial seizure (adjusted odds ratio [aOR]: 4.76, 95% confidence interval [CI]: 1.7–13.0, P = 0.002) and septic shock (aOR: 6.04; 95% CI: 1.35–27.0, P = 0.019) were independent predictors for final unfavorable outcomes. Conclusions: Neurological complications and sequelae are common in young infants after bacterial meningitis. Patients presented with early seizure or septic shock can be an early predictor of final unfavorable outcomes and require close monitoring. Further research regarding how to improve clinical management and outcomes is warranted.
Collapse
Affiliation(s)
- Mei-Hsin Hsu
- Division of Neurology and Pediatric Critical Care, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Yunlin, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jen-Fu Hsu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsuan-Chang Kuo
- Division of Neurology and Pediatric Critical Care, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Yunlin, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Nursing, Meiho University, Ping Tung, Taiwan
| | - Mei-Yin Lai
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ming-Chou Chiang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ying-Jui Lin
- Division of Neurology and Pediatric Critical Care, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Yunlin, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsuan-Rong Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Ming Chu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ming-Horng Tsai
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Neonatology and Pediatric Hematology/Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Yunlin, Taiwan
| |
Collapse
|
55
|
Broekaart DWM, Anink JJ, Baayen JC, Idema S, de Vries HE, Aronica E, Gorter JA, van Vliet EA. Activation of the innate immune system is evident throughout epileptogenesis and is associated with blood-brain barrier dysfunction and seizure progression. Epilepsia 2018; 59:1931-1944. [PMID: 30194729 DOI: 10.1111/epi.14550] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Because brain inflammation may contribute to the pathophysiology of temporal lobe epilepsy (TLE), we investigated the expression of various inflammatory markers of the innate and adaptive immune system in the epileptogenic human and rat hippocampus in relation to seizure activity and blood-brain barrier (BBB) dysfunction. METHODS Immunohistochemistry was performed using various immune cell markers (for microglia, monocytes, macrophages, T lymphocytes, and dendritic cells) on hippocampal sections of drug-resistant TLE patients and patients who died after status epilepticus. The expression of these markers was also studied in the electrical post-status epilepticus rat model for TLE, during the acute, latent, and chronic epileptic phase. BBB dysfunction was assessed using albumin immunohistochemistry and the BBB tracer fluorescein. RESULTS Monocyte infiltration, microglia, and perivascular macrophage activation were persistently increased in both epileptogenic human and rat hippocampus, whereas T lymphocytes and dendritic cells were not or were scarcely detected. In addition to this, increased expression of C-C motif ligand 2 (CCL2) and osteopontin was observed. In humans, the expression of CD68 and CCL2 was related to the duration of epilepsy and type of pathology. In rats, the expression of CD68, CCL2, and the perivascular macrophage marker CD163 was related to the duration of the initial insult and to the number of spontaneous seizures. Interestingly, the number of CD163-positive perivascular macrophages was also positively correlated to BBB dysfunction in chronic epileptic rats. SIGNIFICANCE These data suggest a proepileptogenic role for monocytes/macrophages and other cells of the innate immune response, possibly via increased BBB leakage, and indicate that T cells and dendritic cells, which are closely associated with the adaptive immune response, are only sparsely infiltrated during epileptogenesis in the electrical post-status epilepticus rat model. Future studies should reveal the relative importance of these immune cells and whether specific manipulation can modify or prevent epileptogenesis.
Collapse
Affiliation(s)
- Diede W M Broekaart
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jasper J Anink
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Johannes C Baayen
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Sander Idema
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Erwin A van Vliet
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
56
|
Lafora Disease: A Ubiquitination-Related Pathology. Cells 2018; 7:cells7080087. [PMID: 30050012 PMCID: PMC6116066 DOI: 10.3390/cells7080087] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/17/2022] Open
Abstract
Lafora disease (LD, OMIM254780) is a rare and fatal form of progressive myoclonus epilepsy (PME). Among PMEs, LD is unique because of the rapid neurological deterioration of the patients and the appearance in brain and peripheral tissues of insoluble glycogen-like (polyglucosan) inclusions, named Lafora bodies (LBs). LD is caused by mutations in the EPM2A gene, encoding the dual phosphatase laforin, or the EPM2B gene, encoding the E3-ubiquitin ligase malin. Laforin and malin form a functional complex that is involved in the regulation of glycogen synthesis. Thus, in the absence of a functional complex glycogen accumulates in LBs. In addition, it has been suggested that the laforin-malin complex participates in alternative physiological pathways, such as intracellular protein degradation, oxidative stress, and the endoplasmic reticulum unfolded protein response. In this work we review the possible cellular functions of laforin and malin with a special focus on their role in the ubiquitination of specific substrates. We also discuss here the pathological consequences of defects in laforin or malin functions, as well as the therapeutic strategies that are being explored for LD.
Collapse
|
57
|
Liu Y, Hou B, Zhang Y, Fan Y, Peng B, Liu W, Han S, Yin J, He X. Anticonvulsant agent DPP4 inhibitor sitagliptin downregulates CXCR3/RAGE pathway on seizure models. Exp Neurol 2018; 307:90-98. [PMID: 29885296 DOI: 10.1016/j.expneurol.2018.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/09/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
Epilepsy is a common neurological disorder with a complex etiology. Our previous study demonstrated that dipeptidyl peptidase IV (DPP4) may be associated with the pathogenesis of epilepsy. However, whether the DPP4 inhibitor sitagliptin has an anticonvulsant effect and the underlying mechanism remain to be elucidated. In this study, we determined that sitagliptin remarkably attenuated the severity of seizures in a pentylenetetrazole (PTZ)-induced rat model. In addition, sitagliptin decreased epileptiform activity measured by electroencephalography (EEG) recordings and patch-clamp methods. Interestingly, sitagliptin pretreatment downregulated the RAGE-JAK2/STAT3 pathway and decreased the expression of CXCL4 and CXCR3. Moreover, CXCR3 knockdown decreased the expression of RAGE, JAK2 and STAT3 in cultured neurons, which suggests that CXCR3 is upstream of the RAGE-JAK2/STAT3 pathway. Altogether, our present data suggest that sitagliptin has an anticonvulsant effect, which might act via downregulation of the CXCL4/CXCR3 axis, followed by a decrease in RAGE and JAK2/STAT3 expression. Considering these effects, sitagliptin could be considered as a novel potential anticonvulsant drug.
Collapse
Affiliation(s)
- Yunli Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Baohua Hou
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yusong Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanteng Fan
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Biwen Peng
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Xiaohua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
58
|
Xia L, Pan SQ, Zhang QM, Zhou Q, Xia L, Lu ZN. Elevated IL-6 and IL-1β are associated with temporal lobe epilepsy: A study in Chinese patients. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218778934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Activation of proinflammatory cytokines in seizures has been well characterized. However, role of cytokines in epilepsy and association with different clinical phenotype has not been well investigated. Reports on possible link between proinflammatory molecules and epilepsy are very limited. In this study, we performed a hospital-based case control study to investigate the association of plasma cytokines and their expression with different clinical categories of epilepsy. Patients admitted to Neurology Department of Renmin Hospital were enrolled in this study after clinical investigations. In all, 92 patients with temporal lobe epilepsy (TLE) and 45 with extra-temporal lobe epilepsy (XTLE) were included in this study. Furthermore, we included 86 healthy controls from the similar geographical population. Plasma levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β were quantified by enzyme-linked immunosorbent assay (ELISA). All plasma cytokines were elevated in TLE and XTLE compared to healthy controls ( P < 0.0001). Furthermore, IL-6 and IL-1β were significantly higher in TLE when compared to extra-temporal epilepsy. Incidentally, no difference in mean plasma TNF-α levels was noticed among TLE and XTLE. Positive correlations were observed between all plasma proinflammatory molecules (TNF-α, IL-6, and IL-1β) investigated in this study. Epilepsy patients displayed higher proinflammatory molecules, namely, IL-6, IL-1β, and TNF-α. Plasma IL-6 and IL-1β can be use as biomarkers for differentiation of TLE from XTLE.
Collapse
Affiliation(s)
- Li Xia
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song-Qing Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiu-Min Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qin Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Xia
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zu-Neng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
59
|
Howe CL, LaFrance-Corey RG, Goddery EN, Johnson RK, Mirchia K. Neuronal CCL2 expression drives inflammatory monocyte infiltration into the brain during acute virus infection. J Neuroinflammation 2017; 14:238. [PMID: 29202854 PMCID: PMC5715496 DOI: 10.1186/s12974-017-1015-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022] Open
Abstract
Background Viral encephalitis is a dangerous compromise between the need to robustly clear pathogen from the brain and the need to protect neurons from bystander injury. Theiler’s murine encephalomyelitis virus (TMEV) infection of C57Bl/6 mice is a model of viral encephalitis in which the compromise results in hippocampal damage and permanent neurological sequelae. We previously identified brain-infiltrating inflammatory monocytes as the primary driver of this hippocampal pathology, but the mechanisms involved in recruiting these cells to the brain were unclear. Methods Chemokine expression levels in the hippocampus were assessed by microarray, ELISA, RT-PCR, and immunofluorescence. Monocyte infiltration during acute TMEV infection was measured by flow cytometry. CCL2 levels were manipulated by immunodepletion and by specific removal from neurons in mice generated by crossing a line expressing the Cre recombinase behind the synapsin promoter to animals with floxed CCL2. Results Inoculation of the brain with TMEV induced hippocampal production of the proinflammatory chemokine CCL2 that peaked at 6 h postinfection, whereas inoculation with UV-inactivated TMEV did not elicit this response. Immunofluorescence revealed that hippocampal neurons expressed high levels of CCL2 at this timepoint. Genetic deletion of CCR2 and systemic immunodepletion of CCL2 abrogated or blunted the infiltration of inflammatory monocytes into the brain during acute infection. Specific genetic deletion of CCL2 from neurons reduced serum and hippocampal CCL2 levels and inhibited inflammatory monocyte infiltration into the brain. Conclusions We conclude that intracranial inoculation with infectious TMEV rapidly induces the expression of CCL2 in neurons, and this cellular source is necessary for CCR2-dependent infiltration of inflammatory monocytes into the brain during the most acute stage of encephalitis. These findings highlight a unique role for neuronal production of chemokines in the initiation of leukocytic infiltration into the infected central nervous system.
Collapse
Affiliation(s)
- Charles L Howe
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, USA. .,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, USA. .,Department of Neurology, Mayo Clinic, Rochester, USA. .,Department of Neuroscience, Mayo Clinic, Rochester, USA. .,Department of Immunology, Mayo Clinic, Rochester, USA. .,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, USA. .,Mayo Clinic, Guggenheim 1542C, 200 First St SW, Rochester, MN, 55905, USA.
| | - Reghann G LaFrance-Corey
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, USA.,Department of Neurology, Mayo Clinic, Rochester, USA
| | - Emma N Goddery
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, USA.,Department of Immunology, Mayo Clinic, Rochester, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, USA
| | - Renee K Johnson
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, USA.,Department of Neurology, Mayo Clinic, Rochester, USA
| | - Kanish Mirchia
- Translational Neuroimmunology Lab, Mayo Clinic, Rochester, USA.,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, USA.,Department of Neurology, Mayo Clinic, Rochester, USA
| |
Collapse
|