51
|
Green D, Dalmay T, Chapman T. Microguards and micromessengers of the genome. Heredity (Edinb) 2016; 116:125-34. [PMID: 26419338 PMCID: PMC4806885 DOI: 10.1038/hdy.2015.84] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/23/2015] [Accepted: 08/03/2015] [Indexed: 01/12/2023] Open
Abstract
The regulation of gene expression is of fundamental importance to maintain organismal function and integrity and requires a multifaceted and highly ordered sequence of events. The cyclic nature of gene expression is known as 'transcription dynamics'. Disruption or perturbation of these dynamics can result in significant fitness costs arising from genome instability, accelerated ageing and disease. We review recent research that supports the idea that an important new role for small RNAs, particularly microRNAs (miRNAs), is in protecting the genome against short-term transcriptional fluctuations, in a process we term 'microguarding'. An additional emerging role for miRNAs is as 'micromessengers'-through alteration of gene expression in target cells to which they are trafficked within microvesicles. We describe the scant but emerging evidence that miRNAs can be moved between different cells, individuals and even species, to exert biologically significant responses. With these two new roles, miRNAs have the potential to protect against deleterious gene expression variation from perturbation and to themselves perturb the expression of genes in target cells. These interactions between cells will frequently be subject to conflicts of interest when they occur between unrelated cells that lack a coincidence of fitness interests. Hence, there is the potential for miRNAs to represent both a means to resolve conflicts of interest, as well as instigate them. We conclude by exploring this conflict hypothesis, by describing some of the initial evidence consistent with it and proposing new ideas for future research into this exciting topic.
Collapse
Affiliation(s)
- D Green
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - T Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - T Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
52
|
Casey MC, Sweeney KJ, Brown JAL, Kerin MJ. Exploring circulating micro-RNA in the neoadjuvant treatment of breast cancer. Int J Cancer 2016; 139:12-22. [PMID: 26756433 PMCID: PMC5066681 DOI: 10.1002/ijc.29985] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/04/2015] [Accepted: 12/22/2015] [Indexed: 12/18/2022]
Abstract
Breast cancer is the most frequently diagnosed malignancy amongst females worldwide. In recent years the management of this disease has transformed considerably, including the administration of chemotherapy in the neoadjuvant setting. Aside from increasing rates of breast conserving surgery and enabling surgery via tumour burden reduction, use of chemotherapy in the neoadjuvant setting allows monitoring of in vivo tumour response to chemotherapeutics. Currently, there is no effective means of identifying chemotherapeutic responders from non‐responders. Whilst some patients achieve complete pathological response (pCR) to chemotherapy, a good prognostic index, a proportion of patients derive little or no benefit, being exposed to the deleterious effects of systemic treatment without any knowledge of whether they will receive benefit. The identification of predictive and prognostic biomarkers could confer multiple benefits in this setting, specifically the individualization of breast cancer management and more effective administration of chemotherapeutics. In addition, biomarkers could potentially expedite the identification of novel chemotherapeutic agents or increase their efficacy. Micro‐RNAs (miRNAs) are small non‐coding RNA molecules. With their tissue‐specific expression, correlation with clinicopathological prognostic indices and known dysregulation in breast cancer, miRNAs have quickly become an important avenue in the search for novel breast cancer biomarkers. We provide a brief history of breast cancer chemotherapeutics and explore the emerging field of circulating (blood‐borne) miRNAs as breast cancer biomarkers for the neoadjuvant treatment of breast cancer. Established molecular markers of breast cancer are outlined, while the potential role of circulating miRNAs as chemotherapeutic response predictors, prognosticators or potential therapeutic targets is discussed.
Collapse
Affiliation(s)
- Máire-Caitlín Casey
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Karl J Sweeney
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | | | - Michael J Kerin
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| |
Collapse
|
53
|
Weilner S, Keider V, Winter M, Harreither E, Salzer B, Weiss F, Schraml E, Messner P, Pietschmann P, Hildner F, Gabriel C, Redl H, Grillari-Voglauer R, Grillari J. Vesicular Galectin-3 levels decrease with donor age and contribute to the reduced osteo-inductive potential of human plasma derived extracellular vesicles. Aging (Albany NY) 2016; 8:16-33. [PMID: 26752347 PMCID: PMC4761711 DOI: 10.18632/aging.100865] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/29/2015] [Indexed: 12/21/2022]
Abstract
Aging results in a decline of physiological functions and in reduced repair capacities, in part due to impaired regenerative power of stem cells, influenced by the systemic environment. In particular osteogenic differentiation capacity (ODC) of mesenchymal stem cells (MSCs) has been shown to decrease with age, thereby contributing to reduced bone formation and an increased fracture risk. Searching for systemic factors that might contribute to this age related decline of regenerative capacity led us to investigate plasma-derived extracellular vesicles (EVs). EVs of the elderly were found to inhibit osteogenesis compared to those of young individuals. By analyzing the differences in the vesicular content Galectin-3 was shown to be reduced in elderly-derived vesicles. While overexpression of Galectin-3 resulted in an enhanced ODC of MSCs, siRNA against Galectin-3 reduced osteogenesis. Modulation of intravesicular Galectin-3 levels correlated with an altered osteo-inductive potential indicating that vesicular Galectin-3 contributes to the biological response of MSCs to EVs. By site-directed mutagenesis we identified a phosphorylation-site on Galectin-3 mediating this effect. Finally, we showed that cell penetrating peptides comprising this phosphorylation-site are sufficient to increase ODC in MSCs. Therefore, we suggest that decrease of Galectin-3 in the plasma of elderly contributes to the age-related loss of ODC.
Collapse
Affiliation(s)
- Sylvia Weilner
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
- Evercyte GmbH, 1190 Vienna, Austria
| | - Verena Keider
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | - Melanie Winter
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | - Eva Harreither
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | - Benjamin Salzer
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | - Florian Weiss
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | - Elisabeth Schraml
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | - Paul Messner
- Department of Nanobiotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Hildner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| | - Christian Gabriel
- Red Cross Blood Transfusion Service of Upper Austria, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| | - Regina Grillari-Voglauer
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
- Evercyte GmbH, 1190 Vienna, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
- Evercyte GmbH, 1190 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| |
Collapse
|
54
|
Bedreag OH, Rogobete AF, Dumache R, Sarandan M, Cradigati AC, Papurica M, Craciunescu MC, Popa DM, Luca L, Nartita R, Sandesc D. Use of circulating microRNAs as biomarkers in critically ill polytrauma patients. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.bgm.2015.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
55
|
Victoria B, Dhahbi JM, Nunez Lopez YO, Spinel L, Atamna H, Spindler SR, Masternak MM. Circulating microRNA signature of genotype-by-age interactions in the long-lived Ames dwarf mouse. Aging Cell 2015; 14:1055-66. [PMID: 26176567 PMCID: PMC4693471 DOI: 10.1111/acel.12373] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2015] [Indexed: 11/29/2022] Open
Abstract
Recent evidence demonstrates that serum levels of specific miRNAs significantly change with age. The ability of circulating sncRNAs to act as signaling molecules and regulate a broad spectrum of cellular functions implicates them as key players in the aging process. To discover circulating sncRNAs that impact aging in the long‐lived Ames dwarf mice, we conducted deep sequencing of small RNAs extracted from serum of young and old mice. Our analysis showed genotype‐specific changes in the circulating levels of 21 miRNAs during aging [genotype‐by‐age interaction (GbA)]. Genotype‐by‐age miRNAs showed four distinct expression patterns and significant overtargeting of transcripts involved in age‐related processes. Functional enrichment analysis of putative and validated miRNA targets highlighted cellular processes such as tumor suppression, anti‐inflammatory response, and modulation of Wnt, insulin, mTOR, and MAPK signaling pathways, among others. The comparative analysis of circulating GbA miRNAs in Ames mice with circulating miRNAs modulated by calorie restriction (CR) in another long‐lived mouse suggests CR‐like and CR‐independent mechanisms contributing to longevity in the Ames mouse. In conclusion, we showed for the first time a signature of circulating miRNAs modulated by age in the long‐lived Ames mouse.
Collapse
Affiliation(s)
- Berta Victoria
- Burnett School of Biomedical Sciences College of Medicine University of Central Florida 6900 Lake Nona Blvd. Orlando FL 32827 USA
| | - Joseph M. Dhahbi
- Department of Biochemistry University of California at Riverside Riverside CA 92521 USA
- Center for Genetics Childrens Hospital Oakland Research Institute Oakland CA 94609 USA
| | - Yury O. Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes Florida Hospital 301 E. Princeton Street Orlando FL 2804 USA
| | - Lina Spinel
- Burnett School of Biomedical Sciences College of Medicine University of Central Florida 6900 Lake Nona Blvd. Orlando FL 32827 USA
| | - Hani Atamna
- Department of Medical Education California Northstate University Elk Grove CA USA
| | - Stephen R. Spindler
- Department of Biochemistry University of California at Riverside Riverside CA 92521 USA
| | - Michal M. Masternak
- Burnett School of Biomedical Sciences College of Medicine University of Central Florida 6900 Lake Nona Blvd. Orlando FL 32827 USA
- Department of Head and Neck Surgery The Greater Poland Cancer Centre 15 Garbary St. 61‐866 Poznan Poland
| |
Collapse
|
56
|
Weilner S, Skalicky S, Salzer B, Keider V, Wagner M, Hildner F, Gabriel C, Dovjak P, Pietschmann P, Grillari-Voglauer R, Grillari J, Hackl M. Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone 2015; 79:43-51. [PMID: 26026730 DOI: 10.1016/j.bone.2015.05.027] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 05/08/2015] [Accepted: 05/21/2015] [Indexed: 01/08/2023]
Abstract
Osteoporosis is the consequence of altered bone metabolism resulting in the systemic reduction of bone strength and increased risk of fragility fractures. MicroRNAs (miRNAs) regulate gene expression on a post-transcriptional level and are known to take part in the control of bone formation and bone resorption. In addition, it is known that miRNAs are secreted by many cell types and can transfer "messages" to recipient cells. Thus, circulating miRNAs might not only be useful as surrogate biomarkers for the diagnosis or prognosis of pathological conditions, but could be actively modulating tissue physiology. Therefore, the aim of this study was to test whether circulating miRNAs that exhibit changes in recent osteoporotic fracture patients could be causally related to bone metabolism. In the first step we performed an explorative analysis of 175 miRNAs in serum samples obtained from 7 female patients with recent osteoporotic fractures at the femoral neck, and 7 age-matched female controls. Unsupervised cluster analysis revealed a high discriminatory power of the top 10 circulating miRNAs for patients with recent osteoporotic fractures. In total 6 miRNAs, miR-10a-5p, miR-10b-5p, miR-133b, miR-22-3p, miR-328-3p, and let-7g-5p exhibited significantly different serum levels in response to fracture (adjusted p-value<0.05). These miRNAs were subsequently analyzed in a validation cohort of 23 patients (11 control, 12 fracture), which confirmed significant regulation for miR-22-3p, miR-328-3p, and let-7g-5p. A set of these and of other miRNAs known to change in the context of osteoporotic fractures were subsequently tested for their effects on osteogenic differentiation of human mesenchymal stem cells (MSCs) in vitro. The results show that 5 out of 7 tested miRNAs can modulate osteogenic differentiation of MSCs in vitro. Overall, these data suggest that levels of specific circulating miRNAs change in the context of recent osteoporotic fractures and that such perturbations of "normal" levels might affect bone metabolism or bone healing processes.
Collapse
Affiliation(s)
- Sylvia Weilner
- CD Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | | | - Benjamin Salzer
- CD Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | - Verena Keider
- CD Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | | | - Florian Hildner
- Red Cross Blood Transfusion Service of Upper Austria, Austrian Cluster for Tissue Regeneration, 4020 Linz, Austria
| | - Christian Gabriel
- Red Cross Blood Transfusion Service of Upper Austria, Austrian Cluster for Tissue Regeneration, 4020 Linz, Austria
| | - Peter Dovjak
- Salzkammergut-Klinikum Gmunden, 4810 Gmunden, Austria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, 1090 Vienna, Austria
| | | | - Johannes Grillari
- CD Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria; TAmiRNA GmbH, 1190 Vienna, Austria; Evercyte GmbH, 1190 Vienna, Austria.
| | - Matthias Hackl
- CD Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria; TAmiRNA GmbH, 1190 Vienna, Austria.
| |
Collapse
|
57
|
Erusalimsky JD, Grillari J, Grune T, Jansen-Duerr P, Lippi G, Sinclair AJ, Tegnér J, Viña J, Durrance-Bagale A, Miñambres R, Viegas M, Rodríguez-Mañas L. In Search of ‘Omics'-Based Biomarkers to Predict Risk of Frailty and Its Consequences in Older Individuals: The FRAILOMIC Initiative. Gerontology 2015; 62:182-90. [DOI: 10.1159/000435853] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/10/2015] [Indexed: 11/19/2022] Open
|
58
|
Zhang T, Birbrair A, Wang ZM, Messi ML, Marsh AP, Leng I, Nicklas BJ, Delbono O. Improved knee extensor strength with resistance training associates with muscle specific miRNAs in older adults. Exp Gerontol 2015; 62:7-13. [PMID: 25560803 PMCID: PMC4314447 DOI: 10.1016/j.exger.2014.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 11/26/2022]
Abstract
Regular exercise, particularly resistance training (RT), is the only therapy known to consistently improve muscle strength and quality (force per unit of mass) in older persons, but there is considerable variability in responsiveness to training. Identifying sensitive diagnostic biomarkers of responsiveness to RT may inform the design of a more efficient exercise regimen to improve muscle strength in older adults. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. We quantified six muscle specific miRNAs (miR-1, -133a, -133b, -206, -208b and -499) in both muscle tissue and blood plasma, and their relationship with knee extensor strength in seven older (age=70.5 ± 2.5 years) adults before and after 5 months of RT. MiRNAs differentially responded to RT; muscle miR-133b decreased, while all plasma miRNAs tended to increase. Percent changes in knee extensor strength with RT showed strong positive correlations with percent changes in muscle miR-133a, -133b, and -206 and with percent changes in plasma and plasma/muscle miR-499 ratio. Baseline level of plasma or plasma/muscle miR-499 ratio further predicts muscle response to RT, while changes in muscle miR-133a, -133b, and -206 may correlate with muscle TNNT1 gene alternative splicing in response to RT. Our results indicate that RT alters muscle specific miRNAs in muscle and plasma, and that these changes account for some of the variation in strength responses to RT in older adults.
Collapse
Affiliation(s)
- Tan Zhang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States; J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Alexander Birbrair
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - María L Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Anthony P Marsh
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC 27109, United States
| | - Iris Leng
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Barbara J Nicklas
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States; J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States; J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
59
|
Weilner S, Grillari-Voglauer R, Redl H, Grillari J, Nau T. The role of microRNAs in cellular senescence and age-related conditions of cartilage and bone. Acta Orthop 2015; 86:92-9. [PMID: 25175665 PMCID: PMC4366666 DOI: 10.3109/17453674.2014.957079] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE We reviewed the current state of research on microRNAs in age-related diseases in cartilage and bone. METHODS PubMed searches were conducted using separate terms to retrieve articles on (1) the role of microRNAs on aging and tissue degeneration, (2) specific microRNAs that influence cellular and organism senescence, (3) microRNAs in age-related musculoskeletal conditions, and (4) the diagnostic and therapeutic potential of microRNAs in age-related musculoskeletal conditions. RESULTS An increasing number of studies have identified microRNAs associated with cellular aging and tissue degeneration. Specifically in regard to frailty, microRNAs have been found to influence the onset and course of age-related musculoskeletal conditions such as osteoporosis, osteoarthritis, and posttraumatic arthritis. Both intracellular and extracellular microRNAs may be suitable to function as diagnostic biomarkers. INTERPRETATION The research data currently available suggest that microRNAs play an important role in orchestrating age-related processes and conditions of the musculoskeletal system. Further research may help to improve our understanding of the complexity of these processes at the cellular and extracellular level. The option to develop microRNA biomarkers and novel therapeutic agents for the degenerating diseases of bone and cartilage appears to be promising.
Collapse
Affiliation(s)
- Sylvia Weilner
- Department of Biotechnology, VIBT-BOKU, University of Natural Resources and Life Sciences,Evercyte GmbH
| | - Regina Grillari-Voglauer
- Department of Biotechnology, VIBT-BOKU, University of Natural Resources and Life Sciences,Evercyte GmbH
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology,The Austrian Cluster for Tissue Regeneration
| | - Johannes Grillari
- Department of Biotechnology, VIBT-BOKU, University of Natural Resources and Life Sciences,Evercyte GmbH,Christian Doppler Laboratory for Biotechnology of Skin Aging
| | - Thomas Nau
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology,The Austrian Cluster for Tissue Regeneration,Institute for Musculoskeletal Analysis Research and Therapy (IMSART), Vienna, Austria
| |
Collapse
|
60
|
Microvesicles as a Biomarker for Tumor Progression versus Treatment Effect in Radiation/Temozolomide-Treated Glioblastoma Patients. Transl Oncol 2014; 7:752-8. [PMID: 25500085 PMCID: PMC4311040 DOI: 10.1016/j.tranon.2014.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 12/31/2022] Open
Abstract
The standard of care for glioblastoma (GB) is surgery followed by concurrent radiation therapy (RT) and temozolomide (TMZ) and then adjuvant TMZ. This regime is associated with increased survival but also increased occurrence of equivocal imaging findings, e.g., tumor progression (TP) versus treatment effect (TE), which is also referred to as pseudoprogression (PsP). Equivocal findings make decisions regarding further treatment difficult and often delayed. Because none of the current imaging assays have proven sensitive and specific for differentiation of TP versus TE/PsP, we investigated whether blood-derived microvesicles (MVs) would be a relevant assay. METHODS: 2.8 ml of citrated blood was collected from patients with GB at the time of their RT simulation, at the end of chemoradiation therapy (CRT), and multiple times following treatment. MVs were collected following multiple centrifugations (300g, 2500g, and 15,000g). The pellet from the final spin was analyzed using flow cytometry. A diameter of approximately 300 nm or greater and Pacific Blue–labeled Annexin V positivity were used to identify the MVs reported herein. RESULTS: We analyzed 19 blood samples from 11 patients with GB. MV counts in the patients with stable disease or TE/PsP were significantly lower than patients who developed TP (P = .014). CONCLUSION: These preliminary data suggest that blood analysis for MVs from GB patients receiving CRT may be useful to distinguish TE/PsP from TP. MVs may add clarity to standard imaging for decision making in patients with equivocal imaging findings.
Collapse
|
61
|
Olivieri F, Bonafè M, Spazzafumo L, Gobbi M, Prattichizzo F, Recchioni R, Marcheselli F, Sala LL, Galeazzi R, Rippo MR, Fulgenzi G, Angelini S, Lazzarini R, Bonfigli AR, Brugè F, Tiano L, Genovese S, Ceriello A, Boemi M, Franceschi C, Procopio AD, Testa R. Age- and glycemia-related miR-126-3p levels in plasma and endothelial cells. Aging (Albany NY) 2014; 6:771-87. [PMID: 25324472 PMCID: PMC4221921 DOI: 10.18632/aging.100693] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/05/2014] [Indexed: 02/06/2023]
Abstract
Circulating miR-126-3p levels were determined in 136 healthy subjects (CTRs) aged 20-90 years and 193 patients with type-2 diabetes mellitus (T2DMs) aged 40-80 years, to explore the combined effect of age and glycemic state on miR-126-3p expression. Moreover, intra/extracellular miR-126-3p levels were measured in human endothelial cells (HUVECs) undergoing senescence under normo/hyper-glycemic conditions. Plasma miR-126-3p was significantly higher in the oldest compared with the youngest CTRs ( <45 vs. >75 years; relative expression: 0.27±0.29 vs. 0.48±0.39, p=0.047). Age-based comparison between CTRs and T2DM demonstrated significantly different miR-126-3p levels only in the oldest (0.48±0.39 vs. 0.22±0.23, p<0.005). After multiple adjustments, miR-126-3p levels were seen to be lower in patients with poor glycemic control, compared with age-matched CTRs. The age-related increase in plasma miR-126-3p found in CTRs was paralleled by a 5/6-fold increase in intra/extracellular miR-126-3p in in vitro-cultured HUVECs undergoing senescence. Notably, significant down- regulation of SPRED-1 protein, a validated miR-126-3p target, was found in senescent HUVECs. Moreover, miR-126-3p expression was down-regulated in intermediate-age HUVECs grown in high-glucose medium until senescence. Aging/senescence-associated miR-126-3p up-regulation is likely a senescence-associated compensatory mechanism that is blunted when endothelial cells are exposed to high glucose levels, a phenomenon that probably occurs in vivo in T2DM patients.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, National Institute INRCA-IRCCS, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
- CNR, National Research Council of Italy, Institute for Molecular Genetics, Unit of Bologna IOR, Bologna, Italy
- Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| | - Liana Spazzafumo
- Center of Biostatistics, INRCA-IRCCS National Institute, Ancona, Italy
| | - Mirko Gobbi
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Prattichizzo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Rina Recchioni
- Center of Clinical Pathology and Innovative Therapy, National Institute INRCA-IRCCS, Ancona, Italy
| | - Fiorella Marcheselli
- Center of Clinical Pathology and Innovative Therapy, National Institute INRCA-IRCCS, Ancona, Italy
| | - Lucia La Sala
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Roberta Galeazzi
- Clinical & Molecular Diagnostic Laboratory, INRCA-IRCCS National Institute, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Gianluca Fulgenzi
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Raffaella Lazzarini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Anna Rita Bonfigli
- Metabolic Diseases and Diabetology Unit, INRCA-IRCCS National Institute, Ancona, Italy
| | - Francesca Brugè
- Department of Dentistry and Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Luca Tiano
- Department of Dentistry and Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Stefano Genovese
- Department of Cardiovascular and Metabolic Diseases, IRCCS Gruppo Multimedica Sesto San Giovanni, Italy
| | - Antonio Ceriello
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Massimo Boemi
- Metabolic Diseases and Diabetology Unit, INRCA-IRCCS National Institute, Ancona, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
- C.I.G. Interdepartmental Center "L. Galvani", University of Bologna, Bologna, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, National Institute INRCA-IRCCS, Ancona, Italy
| | - Roberto Testa
- Experimental Models in Clinical Pathology, INRCA-IRCCS National Institute, Ancona, Italy
| |
Collapse
|
62
|
Reynoso R, Laufer N, Hackl M, Skalicky S, Monteforte R, Turk G, Carobene M, Quarleri J, Cahn P, Werner R, Stoiber H, Grillari-Voglauer R, Grillari J. MicroRNAs differentially present in the plasma of HIV elite controllers reduce HIV infection in vitro. Sci Rep 2014; 4:5915. [PMID: 25081906 PMCID: PMC4118195 DOI: 10.1038/srep05915] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 07/10/2014] [Indexed: 01/02/2023] Open
Abstract
Elite controllers maintain HIV-1 viral loads below the limit of detection. The mechanisms responsible for this phenomenon are poorly understood. As microRNAs (miRNAs) are regulators of gene expression and some of them modulate HIV infection, we have studied the miRNA profile in plasma from HIV elite controllers and chronically infected individuals and compared against healthy donors. Several miRNAs correlate with CD4+ T cell count or with the known time of infection. No significant differences were observed between elite controllers and healthy donors; however, 16 miRNAs were different in the plasma of chronic infected versus healthy donors. In addition, levels of hsa-miR-29b-3p, hsa-miR-33a-5p and hsa-miR-146a-5p were higher in plasma from elite controllers than chronic infected and hsa-miR-29b-3p and hsa-miR-33a-5p overexpression significantly reduced the viral production in MT2 and primary T CD4+ cells. Therefore, levels of circulating miRNAs might be of diagnostic and/or prognostic value for HIV infection, and hsa-miR-29b-3p and miR-33a-5p may contribute to the design of new anti-HIV drugs.
Collapse
Affiliation(s)
- Rita Reynoso
- Department of Biotechnology, CD laboratory on Biotechnology of Skin Aging, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Natalia Laufer
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
- CONICET, Argentina
- J.A. Fernández Hospital, Infectious Diseases Unit, Buenos Aires, Argentina
| | - Matthias Hackl
- Department of Biotechnology, CD laboratory on Biotechnology of Skin Aging, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190 Vienna, Austria
- TAmiRNA GmbH, Muthgasse 11, A-1190 Vienna, Austria
| | | | - Rossella Monteforte
- Department of Biotechnology, CD laboratory on Biotechnology of Skin Aging, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Gabriela Turk
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
- CONICET, Argentina
| | - Mauricio Carobene
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
- CONICET, Argentina
| | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
- CONICET, Argentina
| | - Pedro Cahn
- J.A. Fernández Hospital, Infectious Diseases Unit, Buenos Aires, Argentina
- Huesped Foundation, Buenos Aires, Argentina
| | - Roland Werner
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Regina Grillari-Voglauer
- Department of Biotechnology, CD laboratory on Biotechnology of Skin Aging, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190 Vienna, Austria
- Evercyte GmbH, Muthgasse 18, A-1190 Vienna, Austria
| | - Johannes Grillari
- Department of Biotechnology, CD laboratory on Biotechnology of Skin Aging, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190 Vienna, Austria
- Evercyte GmbH, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
63
|
Comegna M, Succoio M, Napolitano M, Vitale M, D'Ambrosio C, Scaloni A, Passaro F, Zambrano N, Cimino F, Faraonio R. Identification of miR-494 direct targets involved in senescence of human diploid fibroblasts. FASEB J 2014; 28:3720-33. [PMID: 24823364 DOI: 10.1096/fj.13-239129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cellular senescence is a permanent cell cycle arrest triggered by different stimuli. We recently identified up-regulation of microRNA (miR)-494 as a component of the genetic program leading to senescence of human diploid IMR90 fibroblasts. Here, we used 2-dimensional differential gel electrophoresis (2D-DIGE) coupled to mass spectrometry to profile protein expression changes induced by adoptive overexpression of miR-494 in IMR90 cells. miR-494 induced robust perturbation of the IMR90 proteome by significantly (P≤0.05) down-regulating a number of proteins. Combination of mass spectrometry-based identification of down-regulated proteins and bioinformatic prediction of the miR-494 binding sites on the relevant mRNAs identified 26 potential targets of miR-494. Among them, computational analysis identified 7 potential evolution-conserved miR-494 targets. Functional miR-494 binding sites were confirmed in 3'-untranslated regions (UTRs) of 4 of them [heterogeneous nuclear ribonucleoprotein A3 (hnRNPA3), protein disulfide isomerase A3 (PDIA3), UV excision repair protein RAD23 homolog B (RAD23B), and synaptotagmin-binding cytoplasmic RNA-interacting protein (SYNCRIP)/heterogeneous nuclear ribonucleoprotein Q (hnRNPQ)]. Their reduced expression correlated with miR-494 up-regulation in senescent cells. RNA interference-mediated knockdown of hnRNPA3 and, to a lesser extent, RAD23B mirrored the senescent phenotype induced by miR-494 overexpression, blunting cell proliferation and causing up-regulation of SA-β-galactosidase and DNA damage. Ectopic expression of hnRNPA3 or RAD23B slowed the appearance of the senescent phenotype induced by miR-494. Overall, these findings identify novel miR-494 direct targets that are involved in cellular senescence.
Collapse
Affiliation(s)
- Marika Comegna
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Mariangela Succoio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Marco Napolitano
- Fondazione SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy
| | - Monica Vitale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Chiara D'Ambrosio
- Proteomics and Mass Spectrometry Laboratory, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, National Research Council, Naples, Italy
| | - Fabiana Passaro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Fondazione SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Filiberto Cimino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Fondazione SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Raffaella Faraonio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| |
Collapse
|
64
|
Cau P, Navarro C, Harhouri K, Roll P, Sigaudy S, Kaspi E, Perrin S, De Sandre-Giovannoli A, Lévy N. WITHDRAWN: Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 2014:S1084-9521(14)00058-5. [PMID: 24685615 DOI: 10.1016/j.semcdb.2014.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/03/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.semcdb.2014.03.022. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Pierre Cau
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2).
| | - Claire Navarro
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Karim Harhouri
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Patrice Roll
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2)
| | - Sabine Sigaudy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3)
| | - Elise Kaspi
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2)
| | - Sophie Perrin
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Annachiara De Sandre-Giovannoli
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3)
| | - Nicolas Lévy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3).
| |
Collapse
|
65
|
Cau P, Navarro C, Harhouri K, Roll P, Sigaudy S, Kaspi E, Perrin S, De Sandre-Giovannoli A, Lévy N. Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 2014; 29:125-47. [PMID: 24662892 DOI: 10.1016/j.semcdb.2014.03.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lamin A-related progeroid syndromes are genetically determined, extremely rare and severe. In the past ten years, our knowledge and perspectives for these diseases has widely progressed, through the progressive dissection of their pathophysiological mechanisms leading to precocious and accelerated aging, from the genes mutations discovery until therapeutic trials in affected children. A-type lamins are major actors in several structural and functional activities at the nuclear periphery, as they are major components of the nuclear lamina. However, while this is usually poorly considered, they also play a key role within the rest of the nucleoplasm, whose defects are related to cell senescence. Although nuclear shape and nuclear envelope deformities are obvious and visible events, nuclear matrix disorganization and abnormal composition certainly represent the most important causes of cell defects with dramatic pathological consequences. Therefore, lamin-associated diseases should be better referred as laminopathies instead of envelopathies, this later being too restrictive, considering neither the key structural and functional roles of soluble lamins in the entire nucleoplasm, nor the nuclear matrix contribution to the pathophysiology of lamin-associated disorders and in particular in defective lamin A processing-associated aging diseases. Based on both our understanding of pathophysiological mechanisms and the biological and clinical consequences of progeria and related diseases, therapeutic trials have been conducted in patients and were terminated less than 10 years after the gene discovery, a quite fast issue for a genetic disease. Pharmacological drugs have been repurposed and used to decrease the toxicity of the accumulated, unprocessed and truncated prelaminA in progeria. To date, none of them may be considered as a cure for progeria and these clinical strategies were essentially designed toward reducing a subset of the most dramatic and morbid features associated to progeria. New therapeutic strategies under study, in particular targeting the protein expression pathway at the mRNA level, have shown a remarkable efficacy both in vitro in cells and in vivo in mice models. Strategies intending to clear the toxic accumulated proteins from the nucleus are also under evaluation. However, although exceedingly rare, improving our knowledge of genetic progeroid syndromes and searching for innovative and efficient therapies in these syndromes is of paramount importance as, even before they can be used to save lives, they may significantly (i) expand the affected childrens' lifespan and preserve their quality of life; (ii) improve our understanding of aging-related disorders and other more common diseases; and (iii) expand our fundamental knowledge of physiological aging and its links with major physiological processes such as those involved in oncogenesis.
Collapse
Affiliation(s)
- Pierre Cau
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France.
| | - Claire Navarro
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Karim Harhouri
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Patrice Roll
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Sabine Sigaudy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Elise Kaspi
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Sophie Perrin
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Annachiara De Sandre-Giovannoli
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Nicolas Lévy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France.
| |
Collapse
|