51
|
Zhang N, Xing M, Wang Y, Tao H, Cheng Y. Repetitive transcranial magnetic stimulation enhances spatial learning and synaptic plasticity via the VEGF and BDNF-NMDAR pathways in a rat model of vascular dementia. Neuroscience 2015; 311:284-91. [PMID: 26518460 DOI: 10.1016/j.neuroscience.2015.10.038] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/22/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022]
Abstract
This study aimed to evaluate the effects of repetitive transcranial magnetic stimulation (rTMS) on learning and memory in a rat model of vascular dementia (VaD) and to analyze the associated mechanisms. Bilateral carotid artery occlusion (2-VO) was used to establish a rat model of VaD. High-frequency (5Hz) rTMS was performed on rats for four weeks. Spatial learning and memory abilities were evaluated using the Morris water maze (MWM), and synaptic plasticity in the hippocampus was assessed via long-term potentiation (LTP). Hippocampal expression of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF) and three subunits of the N-methyl-D-aspartic acid receptor (NMDAR), NR1, NR2A and NR2B, was analyzed by Western blotting. Compared with the VaD group, escape latency was decreased (P<0.05) and the time spent in the target quadrant and the percentage of swimming distance within that quadrant were increased (P<0.05) in the rTMS group. LTP at hippocampal CA3-CA1 synapses was enhanced by rTMS (P<0.05). VEGF expression was up-regulated following 2-VO and was further increased by rTMS (P<0.05). BDNF, NR1 and NR2B expression was decreased in the VaD group and increased by rTMS (P<0.05). There were no significant differences in NR2A expression among the three groups. These results suggest that rTMS improved learning and memory in the VaD model rats via the up-regulation of VEGF, BDNF and NMDARs. In addition, NR2B may be more important than NR2A for LTP induction in the hippocampus during rTMS treatment of VaD.
Collapse
Affiliation(s)
- N Zhang
- Department of Neurology, Key Laboratory of Post-Traumatic Neuro-Repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - M Xing
- Department of Neurology, Key Laboratory of Post-Traumatic Neuro-Repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Y Wang
- Department of Neurology, Tianjin Haihe Hospital, Tianjin, China
| | - H Tao
- Department of Neurology, Key Laboratory of Post-Traumatic Neuro-Repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Y Cheng
- Department of Neurology, Key Laboratory of Post-Traumatic Neuro-Repair and Regeneration in the Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
52
|
Zhang ZC, Luan F, Xie CY, Geng DD, Wang YY, Ma J. Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain. Neural Regen Res 2015. [PMID: 26199608 PMCID: PMC4498353 DOI: 10.4103/1673-5374.158356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz) ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers), to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz) increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.
Collapse
Affiliation(s)
- Zhan-Chi Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Feng Luan
- Department of Otorhinolaryngology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Chun-Yan Xie
- Second Surgical Department, Qinghe Public Hospital of Hebei Province, Xingtai, Hebei Province, China
| | - Dan-Dan Geng
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yan-Yong Wang
- Department of Neurology, First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China ; Hebei Key Laboratory for Brain Aging and Cognitive Neuroscience, Shijiazhuang, Hebei Province, China
| | - Jun Ma
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei Province, China ; Hebei Key Laboratory for Brain Aging and Cognitive Neuroscience, Shijiazhuang, Hebei Province, China
| |
Collapse
|
53
|
Lu H, Zhang T, Wen M, Sun L. Impact of repetitive transcranial magnetic stimulation on post-stroke dysmnesia and the role of BDNF Val66Met SNP. Med Sci Monit 2015; 21:761-8. [PMID: 25770310 PMCID: PMC4370352 DOI: 10.12659/msm.892337] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background Little is known about the effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) on dysmnesia and the impact of brain nucleotide neurotrophic factor (BDNF) Val66Met single-nucleotide polymorphism (SNP). This study investigated the impact of low-frequency rTMS on post-stroke dysmnesia and the impact of BDNF Val66Met SNP. Material/Methods Forty patients with post-stroke dysmnesia were prospectively randomized into the rTMS and sham groups. BDNF Val66Met SNP was determined using restriction fragment length polymorphism. Montreal Cognitive Assessment (MoCA), Loewenstein Occupational Therapy of Cognitive Assessment (LOTCA), and Rivermead Behavior Memory Test (RBMT) scores, as well as plasma BDNF concentrations, were measured at baseline and at 3 days and 2 months post-treatment. Results MoCA, LOTCA, and RBMT scores were higher after rTMS. Three days after treatment, BDNF decreased in the rTMS group but it increased in the sham group (P<0.05). Two months after treatment, RMBT scores in the rTMS group were higher than in the sham group, but not MoCA and LOTCA scores. Conclusions Low-frequency rTMS may improve after-stoke memory through various pathways, which may involve polymorphisms and several neural genes, but not through an increase in BDNF levels.
Collapse
Affiliation(s)
- Haitao Lu
- Department of Neurorehabilitation, Capital Medical University School of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing, China (mainland)
| | - Tong Zhang
- Department of Neurorehabilitation, Capital Medical University School of Rehabilitation Medicine, China Rehabilitation Research Center, Beijing, China (mainland)
| | - Mei Wen
- Department of Neurorehabilitation, Institute of Rehabilitation Medicine of China, China Rehabilitation Research Center, Beijing, China (mainland)
| | - Li Sun
- Department of Neurology, China Rehabilitation Research Center, Beijing, China (mainland)
| |
Collapse
|
54
|
Effects of repetitive transcranial magnetic stimulation on synaptic plasticity and apoptosis in vascular dementia rats. Behav Brain Res 2015; 281:149-55. [DOI: 10.1016/j.bbr.2014.12.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 11/21/2022]
|
55
|
The neuroprotection of repetitive transcranial magnetic stimulation pre-treatment in vascular dementia rats. J Mol Neurosci 2015; 56:198-204. [PMID: 25585610 DOI: 10.1007/s12031-014-0480-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique that could interfere cortical excitability though brief electric currents induced by alternating magnetic fields from the inductive coil. Currently, it has been applied in many fields of basic and clinical neuro-research. The aims of the present study are to investigate the effect of rTMS pre-treatment on cognitive function in vascular dementia (VaD) rats and further explore the molecular mechanism of rTMS neuroprotection on VaD. We found that rTMS pre-treated VaD rats showed significantly better memory and learning abilities in Morris water maze test compared to the untreated group. Moreover, the mRNA and protein expression levels of BDNF, TrkB, and SYN were significantly higher in the rTMS pre-treated group, indicating that rTMS pre-treatment has neuroprotective effect for VaD, which may have resulted from the increased level of BDNF, TrkB, and SYN in the hippocampal CA1 area.
Collapse
|
56
|
Brunoni AR, Machado-Vieira R, Zarate CA, Vieira ELM, Valiengo L, Benseñor IM, Lotufo PA, Gattaz WF, Teixeira AL. Assessment of non-BDNF neurotrophins and GDNF levels after depression treatment with sertraline and transcranial direct current stimulation in a factorial, randomized, sham-controlled trial (SELECT-TDCS): an exploratory analysis. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:91-6. [PMID: 25172025 PMCID: PMC4258544 DOI: 10.1016/j.pnpbp.2014.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/24/2014] [Accepted: 08/20/2014] [Indexed: 01/07/2023]
Abstract
The neurotrophic hypothesis of depression states that the major depressive episode is associated with lower neurotrophic factors levels, which increase with amelioration of depressive symptoms. However, this hypothesis has not been extended to investigate neurotrophic factors other than the brain-derived neurotrophic factor (BDNF). We therefore explored whether plasma levels of neurotrophins 3 (NT-3) and 4 (NT-4), nerve growth factor (NGF) and glial cell line derived neurotrophic factor (GDNF) changed after antidepressant treatment and correlated with treatment response. Seventy-three patients with moderate-to-severe, antidepressant-free unipolar depression were assigned to a pharmacological (sertraline) and a non-pharmacological (transcranial direct current stimulation, tDCS) intervention in a randomized, 2 × 2, placebo-controlled design. The plasma levels of NT-3, NT-4, NGF and GDNF were determined by enzyme-linked immunosorbent assay before and after a 6-week treatment course and analyzed according to clinical response and allocation group. We found that tDCS and sertraline (separately and combined) produced significant improvement in depressive symptoms. Plasma levels of all neurotrophic factors were similar across groups at baseline and remained significantly unchanged regardless of the intervention and of clinical response. Also, baseline plasma levels were not associated with clinical response. To conclude, in this 6-week placebo-controlled trial, NT-3, NT-4, NGF and GDNF plasma levels did not significantly change with sertraline or tDCS. These data suggest that these neurotrophic factors are not surrogate biomarkers of treatment response or involved in the antidepressant mechanisms of tDCS.
Collapse
Affiliation(s)
- André R Brunoni
- Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo, São Paulo, Brazil; Service of Interdisciplinary Neuromodulation (SIN), Department and Institute of Psychiatry, Faculty of Medicine of University of São Paulo, São Paulo, Brazil; Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil.
| | - Rodrigo Machado-Vieira
- Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil; Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, USA
| | - Erica L M Vieira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine of Minas Gerais, Belo Horizonte, Brazil
| | - Leandro Valiengo
- Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo, São Paulo, Brazil; Service of Interdisciplinary Neuromodulation (SIN), Department and Institute of Psychiatry, Faculty of Medicine of University of São Paulo, São Paulo, Brazil; Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Isabela M Benseñor
- Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo, São Paulo, Brazil
| | - Paulo A Lotufo
- Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo, São Paulo, Brazil
| | - Wagner F Gattaz
- Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Antonio L Teixeira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
57
|
Bai W, Yi H, Liu T, Wei J, Tian X. Incoordination between spikes and LFPs in Aβ1-42-mediated memory deficits in rats. Front Behav Neurosci 2014; 8:411. [PMID: 25505877 PMCID: PMC4245911 DOI: 10.3389/fnbeh.2014.00411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 11/12/2014] [Indexed: 01/23/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that gradually induces cognitive deficits. Impairments of working memory have been typically observed in AD. It is well known that spikes and local field potentials (LFPs) as well as the coordination between them encode information in normal brain function. However, the abnormal coordination between spikes and LFPs in the cognitive deficits of AD has remained largely unexplored. As amyloid-β peptide (Aβ) is a causative factor for the cognitive impairments of AD, developing a mechanistic understanding of the contribution of Aβ to cognitive impairments may yield important insights into the pathophysiology of AD. In the present study, we simultaneously recorded spikes and LFPs from multiple electrodes implanted in the prefrontal cortex of rats (control and intra-hippocampal Aβ injection group) that performed a Y-maze working memory task. The information changes in spikes and LFPs during the task were assessed by calculation of entropy. Then the coordination between spikes and LFPs was estimated by the correlation of LFP entropy and spike entropy. Compared with the control group, the Aβ group showed significantly weaker coordination between spikes and LFPs. Our results indicate that the incoordination between spikes and LFPs may provide a potential mechanism for the cognitive deficits in working memory of AD.
Collapse
Affiliation(s)
- Wenwen Bai
- Department of Biomedical Engineering, School of Biomedical Engineering and Technology, Tianjin Medical University Tianjin, China
| | - Hu Yi
- Department of Biomedical Engineering, School of Biomedical Engineering and Technology, Tianjin Medical University Tianjin, China
| | - Tiaotiao Liu
- Department of Biomedical Engineering, School of Biomedical Engineering and Technology, Tianjin Medical University Tianjin, China
| | - Jing Wei
- Department of Biomedical Engineering, School of Biomedical Engineering and Technology, Tianjin Medical University Tianjin, China
| | - Xin Tian
- Department of Biomedical Engineering, School of Biomedical Engineering and Technology, Tianjin Medical University Tianjin, China
| |
Collapse
|
58
|
Repetitive transcranial magnetic stimulation (rTMS) influences spatial cognition and modulates hippocampal structural synaptic plasticity in aging mice. Exp Gerontol 2014; 58:256-68. [DOI: 10.1016/j.exger.2014.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/27/2014] [Accepted: 08/26/2014] [Indexed: 01/09/2023]
|
59
|
Cannabinoid receptor CB1 is involved in nicotine-induced protection against Aβ1-42 neurotoxicity in HT22 cells. J Mol Neurosci 2014; 55:778-87. [PMID: 25262246 DOI: 10.1007/s12031-014-0422-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Emerging evidences suggest that nicotine exerts a neuroprotective effect on Alzheimer's disease (AD), yet the precise mechanism is not fully elucidated. Here, HT22 cells were exposed to amyloid beta protein fragment (Aβ)1-42 to mimic the pathological process of neuron in AD. We hypothesized that cannabinoid receptor CB1 is involved in the nicotine-induced neuroprotection against Aβ1-42 injury in HT22 cells. CB1 expression in HT22 cells was investigated by immunocytochemistry and Western blot. The injury of HT22 cells was evaluated by cellular morphology, cell viability, and lactate dehydrogenase (LDH) release. The apoptosis of HT22 cells was assessed by flow cytometry and expressions of Bcl-2 and Bax. The results demonstrated that nicotine markedly upregulated CB1 expression, increased cell viability, ameliorated cellular morphology, decreased LDH release, and reduced the apoptotic rate of HT22 cells exposed to Aβ1-42 for 24 h, while the blockade of CB1 or the inhibition of protein kinase C (PKC) partially reversed the neuroprotection. Furthermore, the blockade of CB1 reversed nicotine-induced PKC activation in HT22 cells exposed to Aβ1-42. These results suggest that CB1 is involved in the nicotine-induced neuroprotection against Aβ1-42 neurotoxicity, and the neuroprotection may be dependent on the activation of PKC.
Collapse
|
60
|
Wang HN, Wang L, Zhang RG, Chen YC, Liu L, Gao F, Nie H, Hou WG, Peng ZW, Tan Q. Anti-depressive mechanism of repetitive transcranial magnetic stimulation in rat: the role of the endocannabinoid system. J Psychiatr Res 2014; 51:79-87. [PMID: 24479995 DOI: 10.1016/j.jpsychires.2014.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/11/2013] [Accepted: 01/08/2014] [Indexed: 12/23/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) to treat depression has been thoroughly investigated in recent years. However, the underlying mechanisms are not fully understood. In this study, a chronic unpredictable mild stress (CUMS) paradigm was applied to male Sprague Dawley rats. Then rTMS was performed for 7 consecutive days, and the anti-depressive effects were evaluated by the sucrose preference test (SPT), the forced swimming test (FST), and the open-field test (OFT). Hippocampal cannabinoid type I receptor (CB1) expression was measured, and the expression levels of brain-derived neurotrophic factor (BDNF), Bcl-2, and Bax and the number of bromodeoxyuridine (BrdU)-positive cells were also investigated. These parameters were also observed after the selective CB1 receptor antagonist AM251 was used as a blocking agent. The results showed that CUMS induced a significant decrease in sucrose preference, a significant increase in immobility time in the FST, and a significantly decreased horizontal distance in the OFT. In addition, reduced hippocampal CB1 receptor, BDNF, and Bcl-2/Bax protein expression levels in CUMS rats, as well as decreased cell proliferation were also observed in the dentate gyrus. Meanwhile, rTMS treatment up-regulated cell proliferation; elevated CB1 receptor, BDNF, and Bcl-2/Bax expression levels in the hippocampus; and ameliorated depressive-like behaviors. All of these beneficial effects were abolished by AM251. These results indicate that rTMS increases BDNF production and hippocampal cell proliferation to protect against CUMS-induced changes through its effect on CB1 receptors.
Collapse
Affiliation(s)
- Hua-ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, 17 Changle Road, Xi'an, Shaanxi 710032, China
| | - Lei Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, 17 Changle Road, Xi'an, Shaanxi 710032, China; Xi'an city mental health center, Xi'an, China
| | - Rui-guo Zhang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, 17 Changle Road, Xi'an, Shaanxi 710032, China
| | - Yun-chun Chen
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, 17 Changle Road, Xi'an, Shaanxi 710032, China
| | - Ling Liu
- Institute of Neuroscience, Fourth Military Medical University, Xi'an 710032, China
| | - Fang Gao
- Institute of Neuroscience, Fourth Military Medical University, Xi'an 710032, China
| | - Huang Nie
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wu-gang Hou
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zheng-wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, 17 Changle Road, Xi'an, Shaanxi 710032, China; Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| | - Qingrong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, 17 Changle Road, Xi'an, Shaanxi 710032, China.
| |
Collapse
|